
CS61c Verilog Tutorial
J. Wawrzynek

April 14, 2002: Version 0.2

1

4 Bit Vectors and Automatic Looping in Test-benches

Let’s take a look at another test-bench for our 2-input mux:

//Test bench for 2-input multiplexor.
// Tests all input combinations.
module testmux2;

reg [2:0] c;
wire f;
reg expected;

mux2 myMux (.select(c[2]), .in0(c[0]), .in1(c[1]), .out(f));

initial
begin

c = 3’b000; expected=1’b0;
repeat(7)
begin

#10
c = c + 3’b001;
if (c[2]) expected=c[1]; else expected=c[0];

end
#10 $finish;

end
initial

begin
$display("Test of mux2.");
$monitor("[select in1 in0]=%b out=%b expected=%b time=%d",

c, f, expected, $time);
end

endmodule // testmux2

This test-bench is designed to be a comprehensive test of the 2-input mux. Whereas the first test-
bench we wrote tested only three input combinations, this new one preforms an exhaustive test, trying
all possible input combinations. The 2-input mux has three inputs; so a complete set of tests needs
to try eight different combinations. We could have simply extended the first test-bench to try all eight
cases; however, that approach would be a bit tedious and even more so for circuits with more inputs.
Remember the number of unique input combinations for a circuit withn inputs is2n.

The approach we use here is to generate all input combinations through looping and counting. We
consider the three inputs to mux2,a, b, ands as three distinct bits of a 3-bit number, calledc . The
procedure starts by initializingc to all zeroes (3’b000) then sucessively incrementsc through all its
possible values.

Now lets take a look attestmux2 in more detail. Again we declare signals of typereg to be used
on the left-hand side of assignment statements. The signalexpected will again be used to store the
expected output from the mux. The signalc is declared as a 3-bit wide signal. The special syntax
“ [2:0] ” is used in a way similar to array declarations in high-level programming languages. A signal
with width can be thought of as an array of bits. In Verilog, however, unlike C++ the declaration can

2

also specify a naming convention for the bits. In this case therange specifier, “2:0 ” says that the
rightmost bit will be accessed with “c[0] ”, the middle bit with “c[1] ”, and the leftmost with “c[2] ”.

After the signal declarations, mux2 is instantiated. Once again we establish the connections between
the local signals of the test-bench and the module ports of mux2. Here we connect the bits ofc to the
three inputs of mux2, and the output of the mux tof .

The first initial block is the one that incrementsc . It begins settingc to all zeroes, andexpected

to logic 0 (the expected output of a 2-input mux with zeroes at the inputs). Therepeat contruct is used
to successively advance time by 10ns and on each time step incrementc by 1 bit value.

Also included in the repeat block is the generation of the expected output value. Because the input
values to mux2 areautomaticallygenerated in a loop, we need toautomaticallygenerate the value for
expected . By definition, we know that we can express the action of our multiplexor as “if select=0
then output=in0 else output=in1”. The Verilog “If ” contruct is used to express this relationship and
assign the proper value toexpected . After the initialization ofc and seven iterations of the loop, the
simulation is ended 10ns after the final loop iteration with the “#10 $finish; ” line.

The second initial block is used to monitor the test results. Remember, allinitial blocks start to-
gether at the beginning of simulation. In this case, we start off with the system command “$display ”.
This command is similar to the$monitor , except that it prints out a string on the console when the
command is executed, rather than every time the value of one of its input signals changes. In general
$display can accept a output specifier string as can$monitor , but in this case we have passed it a
fixed string.

The result of executing testmux2 is shown below:

Test of mux2.
[select in1 in0]=000 out=0 expected=0 time=0
[select in1 in0]=001 out=1 expected=1 time=10
[select in1 in0]=010 out=0 expected=0 time=20
[select in1 in0]=011 out=1 expected=1 time=30
[select in1 in0]=100 out=0 expected=0 time=40
[select in1 in0]=101 out=0 expected=0 time=50
[select in1 in0]=110 out=1 expected=1 time=60
[select in1 in0]=111 out=1 expected=1 time=70

5 Building a Circuit Hierarchy

An important tool in circuit design and specification is hierarchy. As you may have noticed, Verilog
supports hierarchy in circuit specifications though the use of “module” definitions and instantiations.
We have already seen the use of hierarchy in our discussion of test-benches. Each test bench can be
considered a circuit that makes an instance of a sub-circuit—in this case, the circuit under test. To
further investigate the use of hierarchy, let’s take a look at the specification of a 4-to-1 multiplexor.

Any size multiplexor could be built up out of primitive AND and OR gates, as we have done for the
2-input multiplexor. However, a more convenient way to implement a bigger mux is from smaller ones.
In the case of the 4-input mux, we will build it up out of 2-input muxes as shown in figure 2.

Given that we have already defined mux2, the Verilog description of mux4 is very simple:

3

Figure 1: 4-input Multiplexor

//4-input multiplexor built from 3 2-input multiplexors
module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;
input [1:0] select;
output out;
wire w0,w1;

mux2
m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)),
m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)),
m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out));

endmodule // mux4

The port list for mux4 includes the four data inputs, the control input,select , and the output,out .
In this case,select is declared as a 2-bit wide input port—“input [1:0] select; ”. Two local
signals,w0 andw1, are declared for use in wiring together the subcircuits. Three instances of mux2 are
created, interconnected, and wired to mux4 input and output ports. At this point, mux4 is nearly ready
to use in other modules—but not until we test it!

Once again we will test our new module exhaustively. In principle we could simplify the testing
procedure by taking advantage of the fact the the subcircuit mux2 has already been tested, and only
write tests to check the connections between the subcircuits. However, an exhaustive testing procedure
is simple to write and verify and there are a reasonably small number of input combinations, even for a
4-input mux. A test-bench for mux4 is shown below:

//Test bench for 4-input multiplexor.
// Tests all possible input combinations.
module testmux4;

reg [5:0] count = 6’b000000;

4

reg a, b, c, d;
reg [1:0] s;
reg expected;
wire f;

mux4 myMux (.select(s), .in0(a), .in1(b), .in2(c), .in3(d), .out(f));

initial
begin

$monitor("select=%b in0=%b in1=%b in2=%b in3=%b out=%b, expected=%b time=%d",
s, a, b, c, d, f, expected, $time);
repeat(64)

begin
a = count[0];
b = count[1];
c = count[2];
d = count[3];
s = count[5:4];
case (s)

2’b00:
expected = a;

2’b01:
expected = b;

2’b10:
expected = c;

2’b11:
expected = d;

endcase // case(s)
#10 count = count + 1’b1;

end
$finish;

end
endmodule

The testing procedure followed for testmux4 is very similar to that of testmux2. Here the signal
count is used in place ofc from testmux2. Four additional signals,a, b, c , andd, are declared and
used simply to help in the coding. One significant difference between testmux2 and this new one is the
construct used for settingexpected . Here the Verilogcase construct is used. Thecase construct is
very similar toswitch in C++. Also, as in C++, the function of a case can be achieved with a set of
if-than-else statements, but the case is simpler and clearer.

6 Modelling Clocks and Sequential Circuits

Thus far in this tutorial we have considered only combinational logic circuits. Now we turn our attention
to sequential logic circuits.

A distinguishing characteristic of sequential circuits is that they include state elements—usually
flip-flops or registers. Flip-flops and thus registers are built from transistors and logic gates, as are

5

combinational logic circuits, and therefore we could model them as we did combinational logic. How-
ever, our focus in CS61c is not on the internal details of registers; we are really only interested in their
function or behavior. To keep our Verilog specifications easier and to speed up the simulations, we will
abstract the details of flip-flops and registers and model them using high-level behavioral constructs in
Verilog.

Below is a behavioral model of a 32-bit wide register. This one is apositive edge triggereddesign;
it captures the value of the inputD on the rising edge of the clock. The input input port namedRST

supplies a reset signal. IfRST is asserted on the positive edge of the clock, the register is reset to all
0’s. The internal operation of this module is not important for our purposes, but with a few minutes of
study you will probably be able to understand how it works. The most important consideration for our
purposes is its list of input/output ports. Along withRST, the other ports areCLK, Q, andD. D is the data
input,Q the data output, andCLK the system clock.

//Behavioral model of 32-bit Register:
// positive edge-triggered,
// synchrounous active-high reset.
module reg4 (CLK,Q,D,RST);

input [3:0] D;
input CLK, RST;
output [3:0] Q;
reg [3:0] Q;
always @ (posedge CLK)

if (RST) Q = 0; else Q = D;
endmodule // reg4

The system clock is a globally supplied signal in all synchronous logic systems. In physical hard-
ware the signal is generated from a special clock oscillator based on acrystal—a very stable oscillation
source. Verilog does not supply a clock signal automatically; we must find a way to generate a oscillat-
ing signal within our specification. A standard way to do this is to assign a signal to an inverted version
itself, after the appropriate delay. For example, after declaringCLKas type reg:

initial
begin

CLK=1’b0;
forever

#1 CLK = ˜CLK;
end

CLK begins at logic 0 then changes to logic 1 after 1 ns then back to 0 after another 1ns, etc. This
continues until the end of the simulation. The result is a signal with an oscillation period of 2ns. Here
we assume that some other part of the Verilog specification is responsible for ending the simulation, so
we can allow the clock to oscillate “forever”.

Now that we have a clock signal and a register to connect it to, we are ready to specify a sequential
logic circuit. Recall that sequential circuits are really nothing other than interconnected instances of

6

Figure 2: Accumulator Circuit

combinational logic blocks and state elements. Everything that we have discussed thus far concerning
making instances of modules and wiring them together applies as well to sequential logic.

Let’s take a look at a circuit useful for adding list of numbers, called an accumulator. The block
diagam for this circuit is shown in figure 3. The reset signal, RST, is used to force the register to all 0’s,
then on each cycle of the clock the value on IN is added to the value in the register and the result stored
back into the register.

The Verilog description for the accumulator circuit is shown below:

//Accumulator
module acc (CLK,RST,IN,OUT);

input CLK,RST;
input [3:0] IN;
output [3:0] OUT;

wire [3:0] W0;

add4 myAdd (.S(W0), .A(IN), .B(OUT));
reg4 myReg (.CLK(CLK), .Q(OUT), .D(W0), .RST(RST));

endmodule // acc

This module definition assumes that we will also include a definition of a module calledadd4 with
the following port list:

module add4 (S,A,B);

This module is a combinational logic block that forms the sum of the two 4-bit binary numbersA

andB, leaving the result inS.
A test-bench for the accumulator circuit is shown below:

module accTest;

7

reg [3:0] IN;
reg CLK, RST;
wire [3:0] OUT;

acc myAcc (.CLK(CLK), .RST(RST), .IN(IN), .OUT(OUT));

initial
begin

CLK=1’b0;
repeat (20)

#5 CLK = ˜CLK;
end

initial
begin

#0 RST=1’b1; IN=4’b0001;
#10 RST=1’b0;

end
initial

$monitor("time=%0d: OUT=%1h", $time, OUT);
endmodule // accTest

This one works by first asserting the reset signal for one clock cycle, in the secondinitial block.
At the same time the input is set to the value of decimal 1 (0001 in binary) and held at that value for
the remainder of the simulation. Meanwhile in the firstinitial block the clock signal is forced to
oscillate for 10 cycles. The output should be a sequence of numbers 0,1,2,... for 10 clock cycles.

8

