
CS61c: Verilog Tutorial

J. Wawrzynek

November 17, 2003

1 Introduction

There are several key reasons why we use hardware description languages (HDLs):

• They give us a text-based way to describe and exchange designs,

• They give us a way to simulate the operation of a circuit before we build it in silicon. It is usually
easier to debug a model of the circuit rather than the real circuit in silicon,

• With special tools we can automatically translate our Verilog models to the information needed
for circuit implementation in silicon. This translation takes the form of partitioning and mapping
to primitive circuit elements, element placement, and wire routing. The set of translation tools
could also includelogic synthesis—automatic generation of lower-level logic circuit designs from
high-level specifications.

Two standard HDLs are in wide use, VHDL and Verilog. We use Verilog because it is easier to
learn and use for most people because it looks like the C language in syntax. Also, it is widely used in
industry. Furthermore, because the semantics of both are very similar, making a switch to VHDL from
Verilog later not a problem.

Verilog is a language that includes special features for circuit modeling and simulation. In this
course, we will employ only a simple subset of Verilog. In fact, we will focus just on those language
constructs used for “structural composition”—sometimes also referred to as “gate-level modeling”.
These constructs allow us to instantiate primitive logic elements (logic gates) or subcircuits and connect
them together with wires. With these contructs we can compose a model of any circuit that we wish,
as long the primitive elements are ones included with Verilog. Structural composition is very similar to
the process that we would go through, if we were to wire together physical logic gates in a hardware
lab.

Even though we are primarily interested instructuralVerilog, we will introduce some higher-level
language constructs to help in testing our circuit models. The higher-level language constructs, called
“behavioral constructs”, are the ones that make Verilog seem like a general purpose programming lan-
guage (similar to C or Java). As we will see, the behavioral constructs are very convenient for automat-
ically generating input to and checking output from our circuit models. In fact, an advantage of Verilog
over other systems for modeling circuits, schematic capture for instance, is that it is powerful enough
to also express complex testing procedures without resorting to a different language.

It is important to keep in mind that, although Verilog has constructs that make it a look like a general
purpose programming language, it is really only a hardware description language. Describing circuits

1

2 Wawrzynek 2003 c©UCB

Figure 1: 2-input Multiplexor

in not equilavent to programming. The most effective way to use Verilog is to first figure out the circuit
you want then figure out how to use Verilog to describe it.

2 Two-input Multiplexor Example

A multiplexor is a circuit used to select between a set of values. The multiplexor output takes on
the value of in0 when select=0; otherwise it takes on the value of in1. We can express the 2-input
multiplexor operation with the following boolean expression:

out = select · in1 + select · in0

This operation can be implemented with two 2-input AND gates, a 2-input OR gate, and an inverter,
as shown in figure 1.

This circuit can be modeled in Verilog as follows:

module mux2 (in0, in1, select, out);
input in0,in1,select;
output out;
wire s0,w0,w1;

not
(s0, select);

and
(w0, s0, in0),
(w1, select, in1);

or
(out, w0, w1);

endmodule // mux2

The first thing to notice about this example is that the syntax is similar to that of C++ and Java,
and other C-like languages. In fact, most of the same rules about naming variables (in this case inputs,
outputs, and wires) all follow the same rules as in C. Unlike C, however, is that the body of mux2 is
not made up of assignment statements. In this case, the body describes the connection of primitive

CS61c Lecture Notes 3

logic elements (gates). It is important to understand that there is no real action associated with this
description. In fact, it is more like defining a data-structure (struct in C) than it is like a program. The
function that this circuit model assumes is a result of the function of the primitive elements and their
interconnection.

Modules in Verilog are the basic mechanism for building hierarchies of circuits. Modules are de-
fined and then instantiated in other module definitions. As with C functions, module definitions cannot
be nested. A module definition begins and ends with themodule andendmodule keywords, repec-
tively. The pair of slashes (“//”) signifies the beginning of a comment that extends to the end of the line.
In this case, the “// mux2 ” comment after theendmodule was added automatically by the text editor
emacs in “Verilog mode”.

Following the keyword “module ” is the user-defined name for that module, followed by a list of
signals. These signals define the interface of the module to other modules; think of them as “ports”.
When the module is instantiated, these port names are bound to other signals for interconnection with
other modules. Each port can be defined as “input ”, “ output ”, or some other types that we will not
need in 61C. In mux2, after declaring the inputs and outputs, we define three additional signals,s0 ,
w0, andw1. These additional signals will be used for connecting together the basic logic gates that will
make up the model of mux2. The type of these signals is “wire ”—the standard type used to make
simple connections between elements.

Next is the body of the definition of mux2. It comprises a list of elements. This section could name
other modules that we have defined, but in this case only instantiates primitive logic gates. In addition
to the gates used here, NOT, AND, and OR, Verilog predefines NAND, NOR, XOR, XNOR, and BUF.
BUF is a single-input single-output gate, similar to NOT, that copies its input value to its output without
inversion. The convention for built-in gates is that their output signal is the first port and the remaining
ports are inputs. Except for NOT and BUF, these primitive gates can have any number of inputs.

By following the signal names, the interconnection between the logic gates and there connection to
the module ports should be apparent. An interesting exercise that you might try is to draw a schematic
diagram for this circuit based on the Verilog and compare it to figure 1.

3 Testing the Multiplexor

Given this definition of mux2, it is ready to be instantiated in other modules. However, before we do
that, it is probably a good idea to test it. Several things could have gone wrong: we could have made
a mistake typing in our definition, we could have made a mistake in our understanding of the correct
circuit for implementing the multiplexor function, or perhaps we made an invalid assumption about how
Verilog works.

Testing is a critical part of circuit design. Untested circuits are useless—they’re a dime a dozen.
The fun part of circuit design is coming up with the circuit configuration to achieve a desired function.
The hard part is the testing. For most circuits, coming up with a good test program can take as much
or more time than coming up with the orginal circuit to be tested. However, testing doesn’t need to be
difficult, and in Verilog there are several clever ways to make testing easier—and even fun!

In Verilog it is common practice to define a special module used specifically for testing another
module. The special module is usually defined at the top level, having no ports. It is commonly referred
to as a “test-bench”. The name test-bench is an analogy to the laboratory work bench that houses the
test equipment that we use in testing physical circuits.

4 Wawrzynek 2003 c©UCB

A simple test bench for mux2 is shown below:

module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

initial
begin

#0 s=0; a=0; b=1; expected=0;
#10 a=1; b=0; expected=1;
#10 s=1; a=0; b=1; expected=1;
#10 $finish;

end
initial

$monitor(
"select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",

s, a, b, f, expected, $time);
endmodule // testmux

The test-bench uses some of the constructs in Verilog that make it more like a progamming language.
In particular, notice that the body oftestmux uses assignment statements. These assignments are a
way to set a signal to a particular logic value at a particular time. In general, these assignments can
model the effect that a circuit can have on a signal, however, the assignment itself has no circuit directly
associated with it. In other words, the assignment statement really only takes on meaning in the context
of simulation. However, testing is all about simulation, so we will use assignments in our test-bench.

Because assignments are special, the left-hand side must be signals defined as type “reg ”. (Don’t
confuse these with state elements, registers and flip-flops.) In this test-bench, we define the signalsa,
b, ands as typereg because these will be explicitly assigned values. The signalf will be connected to
the output of our module to be tested, mux2. In fact, if we now skip down to the line that begins, “mux2

myMux ... ” we see that we have instantiated mux2, giving it the local name “myMux”. The local name
is used to distinguish from other instances of mux2 that we might make.

What follows the instantiation of mux2 is a list of connections between our local signals and the
ports of mux2. The syntax used here lists the ports of mux2 in arbitrary order, each one preceded by a
“.”, and followed by the name of a local signal in parentheses. Verilog also allows making connections
between local signals and module ports by simply listing the names of the local signals in the order
that the ports where defined in the module header (as was done with the primitive logic gates in the
definition of mux2). However, we recommend you use the “dot” form because it allows you to list the
ports in any order, making it easier to make changes later, and provides a reminder of exactly which
signal is being connected to what port.

Now that we have established the connection between the local signalsa, b, ands , and the ports of
mux2, anything that we do to change the values of these local signals will instantaneously be seen by
myMux.

CS61c Lecture Notes 5

In addition to the local signals defined for connecting to mux2, we have defined one additional
signal, called “expected ”. This signal is used only to help provide useful output on the console, as
will be seen below.

After instantiating mux2 and connecting it to local signals, we move on to defining the actions that
will drive its inputs. Here we use the “initial ” keyword to say that everything in the following block
should be done once at the start of simulation. Verilog also includes a keywork “always ” for defining
actions that should be done every time a particular event occurs. In our case, what we do is to apply sets
of input values (represented ass , a, andb) to mux2 and at the same time assign to “expected ” what
we expect to see at its output.

What probably looks particularly strange to you are the “#n”s preceding each assignment. These
are used to move along the simulation clock. Unlike programming languages where each statement is
executed after the previous without any regard for absolute time (only sequence is important) everything
in Verilog happens at a particular time (well, simulated time really). By default, the unit of time is
nanoseconds (ns). In testmux, the first set of assignments are made at 0 ns from the start of simulation,
the second at 10ns from the previous, etc. Without the “#n”s all these statements would occur at the
same time (the start of simulation), causing undefined results. The important thing to remember about
Verilog is that time does not move along until we do something to advance it. And without advancing
time, no useful simulation can happen. In this example, new inputs are applied to our circuit every 10ns.
The simulation is ended with the “#10 $finish; ” line.

The final thing to specify intestmux is a way for us to observe what’s happening. For this, we
use another initial block that at the beginning of simulation starts a special built-in function for printing
information to the console. “$monitor ” watches the signals that are connected to it and whenever any
of them change, it prints out a string with the all the signal values. The syntax of the string specification
is similar to “printf ” in C. Here the special format characters “%b” mean that the associated signal
should be printed as a binary number. “%d” is used to print the value of the simulation time as a decimal
number. The simulation time is available by using the special name “$time ”.

The result of executing testmux is shown below:

select=0 in0=0 in1=1 out=0, expected out=0 time=0
select=0 in0=1 in1=0 out=1, expected out=1 time=10
select=1 in0=0 in1=1 out=1, expected out=1 time=20

3.1 Adding Delay to the Multiplexor Example

The multiplexor circuit that we described above contains no delay. You will notice from the simulation
output listed above, that the output changes instantaneously with input changes. Primitive logic gates,
and other circuit elements, in Verilog have any implicit logic delay. The delay much be specified as part
of the circuit description. It is important to add delay to circuit elements to get a realistic simulation,
and in sum cases to get correct operation.

Delay can be added to logic gates in Verilog by using the “#” operator and specifying a delay
amount, in terms of simulation time units, such as “not #1 (a, b); ”.

Delay can be added tomux2 as follows. Here we simply assume that the delay of each logic gate is
1ns.

6 Wawrzynek 2003 c©UCB

module mux2 (in0, in1, select, out);
input in0,in1,select;
output out;
wire s0,w0,w1;

not
#1 (s0, select);

and
#1 (w0, s0, in0),
(w1, select, in1);

or
#1 (out, w0, w1);

endmodule // mux2

Now if we simulate this version of the multiplexor using the test bench that we previously defined,
we would see the following output:

select=0 in0=0 in1=1 out=x, expected out=0 time= 0
select=0 in0=0 in1=1 out=0, expected out=0 time= 2
select=0 in0=1 in1=0 out=0, expected out=1 time= 10
select=0 in0=1 in1=0 out=1, expected out=1 time= 12
select=1 in0=0 in1=0 out=1, expected out=0 time= 20
select=1 in0=0 in1=0 out=0, expected out=0 time= 22

We now see twice the number of output lines printed. The lines with a time that is an even multiple
of 10, correspond to changes in the input. The other lines (with time= 2, 12, and 22) correspond to
changes in the output. You will notice that in the first line, at time=0, the output has value “x”. The
value “x” is used in Verilog to meanundefined. Because the way we assigned delays to the logic gates,
it takes 2ns before the output takes on its new value.

From the above output, you might conclude that the mux delay is always 2ns. But in fact, worst case
delay from theselect input to the output is 3ns, because that path has three gates in series. We could
verify the worst case delay by settingselect to 1, in0 to 1, in1 to 0, and then changingselect to 0.
We would expect to the the output change from 0 to 1 after a 3ns delay.

4 Bit Vectors and Automatic Looping in Test-benches

Let’s take a look at another test-bench for our 2-input mux:

//Test bench for 2-input multiplexor.
// Tests all input combinations.
module testmux2;

reg [2:0] c;
wire f;
reg expected;

CS61c Lecture Notes 7

mux2 myMux (.select(c[2]), .in0(c[0]), .in1(c[1]), .out(f));

initial
begin

#0 c = 3’b000; expected=1’b0;
repeat(7)
begin

#10
c = c + 3’b001;
if (c[2]) expected=c[1]; else expected=c[0];

end
#10 $finish;

end
initial

begin
$display("Test of mux2.");
$monitor("[select in1 in0]=%b out=%b expected=%b time=%d",

c, f, expected, $time);
end

endmodule // testmux2

This test-bench is designed to be a comprehensive test of the 2-input mux. Whereas the first test-
bench we wrote tested only three input combinations, this new one preforms an exhaustive test, trying
all possible input combinations. The 2-input mux has three inputs; so a complete set of tests needs
to try eight different combinations. We could have simply extended the first test-bench to try all eight
cases; however, that approach would be a bit tedious and even more so for circuits with more inputs.
Remember the number of unique input combinations for a circuit withn inputs is2n.

The approach we use here is to generate all input combinations through looping and counting. We
consider the three inputs to mux2,a, b, ands as three distinct bits of a 3-bit number, calledc . The
procedure starts by initializingc to all zeroes (3’b000) then sucessively incrementsc through all its
possible values.

Now lets take a look attestmux2 in more detail. Again we declare signals of typereg to be used
on the left-hand side of assignment statements. The signalexpected will again be used to store the
expected output from the mux. The signalc is declared as a 3-bit wide signal. The special syntax
“ [2:0] ” is used in a way similar to array declarations in high-level programming languages. A signal
with width can be thought of as an array of bits. In Verilog, however, unlike C++ the declaration can
also specify a naming convention for the bits. In this case therange specifier, “2:0 ” says that the
rightmost bit will be accessed with “c[0] ”, the middle bit with “c[1] ”, and the leftmost with “c[2] ”.

After the signal declarations, mux2 is instantiated. Once again we establish the connections between
the local signals of the test-bench and the module ports of mux2. Here we connect the bits ofc to the
three inputs of mux2, and the output of the mux tof .

The first initial block is the one that incrementsc . It begins by settingc to all zeroes, andexpected

to logic 0 (the expected output of a 2-input mux with zeroes at the inputs). Therepeat contruct is used
to loop for 7 interations and on each, advancing time by 10ns and incrementingc by 1 bit value.

Also included in the repeat block is the generation of the expected output value. Because the input
values to mux2 areautomaticallygenerated in a loop, we need toautomaticallygenerate the value for

8 Wawrzynek 2003 c©UCB

expected . By definition, we know that we can express the action of our multiplexor as “if select=0
then output=in0 else output=in1”. The Verilog “If ” contruct is used to express this relationship and
assign the proper value toexpected . After the initialization ofc and seven iterations of the loop, the
simulation is ended 10ns after the final loop iteration with the “#10 $finish; ” line.

The second initial block is used to monitor the test results. Remember, allinitial blocks start to-
gether at the beginning of simulation. In this case, we start off with the system command “$display ”.
This command is similar to the$monitor , except that it prints out a string on the console when the
command is executed, rather than every time the value of one of its input signals changes. In general
$display can accept a output specifier string as can$monitor , but in this case we have passed it a
fixed string.

The result of executing testmux2 is shown below:

Test of mux2.
[select in1 in0]=000 out=x expected=0 time= 0
[select in1 in0]=000 out=0 expected=0 time= 2
[select in1 in0]=001 out=0 expected=1 time= 10
[select in1 in0]=001 out=1 expected=1 time= 12
[select in1 in0]=010 out=1 expected=0 time= 20
[select in1 in0]=010 out=0 expected=0 time= 22
[select in1 in0]=011 out=0 expected=1 time= 20
[select in1 in0]=011 out=1 expected=1 time= 32
[select in1 in0]=100 out=1 expected=0 time= 40
[select in1 in0]=100 out=0 expected=0 time= 42
[select in1 in0]=101 out=0 expected=0 time= 50
[select in1 in0]=110 out=0 expected=1 time= 60
[select in1 in0]=110 out=1 expected=1 time= 62
[select in1 in0]=111 out=1 expected=1 time= 70

4.1 Using the “$strobe” System Command

The system command “$monitor ” prints signal values whenever any of the signals it is connected
to changes value. That can often result in a confusing looking display making it difficult to verify
correct operation. As an alternative, system command “$strobe ” can be used to print signal values at
a particular time in the simulation.$strobe is defined to be the last action taken on any simulation
step, so it is gauranteed to see the latest values of any signal it displays. In a typical simulation, inputs
would be applied at one point in time, then after some delay sufficient to allow all the outputs to settle,
$strobe would be to called to print out the input values and the associated outputs.

In the example below we have modified the mux test-bench to use$strobe instead of$monitor .
Starting 5ns from the beginning of the simulation,$strobe is invoked every 10ns. The$strobe

system command lives in its owninitial block, which runs in parallel with theinitial block used
for setting input values. We could have put it all together in one block, but they were kept separate for
clarity. The secondinitial block starts at time 0—the “#5” before the$strobe command is used
to delay$strobe 5ns—then the “#5 ; ” delays the start of the newrepeat iteration for another 5ns,
resulting in an iteration period of 10ns. The net effect is that each time the inputs are changed, 5ns
later$strobe prints out the values of the inputs and the new output value. We chose the 5ns staggerng

CS61c Lecture Notes 9

between new inputs and printing the output, because we expect that the new outputs will have settled in
less than 5ns (we know this to be true, because the worst case delay through the mux is 3ns).

//Test bench for 2-input multiplexor.
// Tests all input combinations.
module testmux2;

reg [2:0] c;
wire f;
reg expected;

mux2 myMux (.select(c[2]), .in0(c[0]), .in1(c[1]), .out(f));

initial
begin

#0 c = 3’b000; expected=1’b0;
repeat(7)
begin

#10
c = c + 3’b001;
if (c[2]) expected=c[1]; else expected=c[0];

end
#10 $finish;

end
initial

begin
$display("Test of mux2.");
repeat(7)

begin
#5
$strobe("[select in1 in0]=%b out=%b expected=%b time=%d",

c, f, expected, $time);
#5 ;

end
end

endmodule // testmux2

The result of executing testmux2 using$strobe instead of$monitor is shown below. Here it
is clear to see that the circuit is functioning correctly, because on every line the output matches the
expected output.

Test of mux2.
[select in1 in0]=000 out=0 expected=0 time= 5
[select in1 in0]=001 out=1 expected=1 time= 15
[select in1 in0]=010 out=0 expected=0 time= 25
[select in1 in0]=011 out=1 expected=1 time= 35
[select in1 in0]=100 out=0 expected=0 time= 45
[select in1 in0]=101 out=0 expected=0 time= 55
[select in1 in0]=110 out=1 expected=1 time= 65

10 Wawrzynek 2003 c©UCB

Figure 2: 4-input Multiplexor

5 Building a Circuit Hierarchy

An important tool in circuit design and specification is hierarchy. As you may have noticed, Verilog
supports hierarchy in circuit specifications though the use of “module” definitions and instantiations.
We have already seen the use of hierarchy in our discussion of test-benches. Each test bench can be
considered a circuit that makes an instance of a sub-circuit—in this case, the circuit under test. To
further investigate the use of hierarchy, let’s take a look at the specification of a 4-to-1 multiplexor.

Any size multiplexor could be built up out of primitive AND and OR gates, as we have done for the
2-input multiplexor. However, a more convenient way to implement a bigger mux is from smaller ones.
In the case of the 4-input mux, we will build it up out of 2-input muxes as shown in figure 2.

Given that we have already defined mux2, the Verilog description of mux4 is very simple:

//4-input multiplexor built from 3 2-input multiplexors
module mux4 (in0, in1, in2, in3, select, out);

input in0,in1,in2,in3;
input [1:0] select;
output out;
wire w0,w1;

mux2
m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)),
m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)),
m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out));

endmodule // mux4

The port list for mux4 includes the four data inputs, the control input,select , and the output,out .
In this case,select is declared as a 2-bit wide input port—“input [1:0] select; ”. Two local
signals,w0 andw1, are declared for use in wiring together the subcircuits. Three instances of mux2 are

CS61c Lecture Notes 11

created, interconnected, and wired to mux4 input and output ports. Because that are no primitive gates
in mux4 we have no need to add explicit delay. The delay from the input of mux4 to its output will be
a consequence of the delay through the instances of mux2. (In real circuits, the wire that interconnects
subcircuits also introduces delay, however that level of detail is beyond our concern in cs61c.) At this
point, mux4 is nearly ready to use in other modules—but not until we test it!

Once again we will test our new module exhaustively. In principle we could simplify the testing
procedure by taking advantage of the fact the the subcircuit mux2 has already been tested, and only
write tests to check the connections between the subcircuits. However, an exhaustive testing procedure
is simple to write and verify and there are a reasonably small number of input combinations, even for a
4-input mux. A test-bench for mux4 is shown below:

//Test bench for 4-input multiplexor.
// Tests all possible input combinations.
module testmux4;

reg [5:0] count = 6’b000000;
reg a, b, c, d;
reg [1:0] s;
reg expected;
wire f;

mux4 myMux (.select(s), .in0(a), .in1(b), .in2(c), .in3(d), .out(f));

initial
begin

repeat(64)
begin

a = count[0];
b = count[1];
c = count[2];
d = count[3];
s = count[5:4];
case (s)

2’b00:
expected = a;

2’b01:
expected = b;

2’b10:
expected = c;

2’b11:
expected = d;

endcase // case(s)
#8
$strobe(
"select=%b in0=%b in1=%b in2=%b in3=%b out=%b, expected=%b time=%d",

s, a, b, c, d, f, expected, $time);
#2 count = count + 1’b1;

end
$finish;
end

endmodule

12 Wawrzynek 2003 c©UCB

The testing procedure followed for testmux4 is very similar to that of testmux2. Here the signal
count is used in place ofc from testmux2. Four additional signals,a, b, c , andd, are declared and
used simply to help in the coding. One significant difference between testmux2 and this new one is the
construct used for settingexpected . Here the Verilogcase construct is used. Thecase construct is
very similar toswitch in C++. Also, as in C++, the function of a case can be achieved with a set of
if-than-else statements, but the case is simpler and clearer.

Output is generated using the$strobe system command. Here it is put in therepeat loop and is
delayed 8ns from the setting of the inputs, to allow sufficient time for the output to settle.

6 Modeling Clocks and Sequential Circuits

Thus far in this tutorial we have considered only combinational logic circuits. Now we turn our attention
to sequential logic circuits.

Sequential circuits are circuits and include state elements—usually flip-flops or registers. Flip-flops
and thus registers are built from transistors and logic gates, as are combinational logic circuits, and
therefore we could model them as we did combinational logic. However, our focus in CS61c is not on
the internal details of registers; we are really only interested in their function or behavior. To keep our
Verilog specifications easier and to speed up the simulations, we will abstract the details of flip-flops
and registers and model them using high-level behavioral constructs in Verilog.

Below is a behavioral model of a 32-bit wide register. This one is apositive edge triggereddesign;
it captures the value of the inputD on the rising edge of the clock and sends it to the outputQafter the
clk-to-q delay, in this case 1ns. The input port namedRSTsupplies a reset signal. IfRST is asserted on
the positive edge of the clock, the register is reset to all 0’s. The internal operation of this module is
not important for our purposes, but with a few minutes of study you will probably be able to understand
how it works. The most important consideration for our purposes is its list of input/output ports. Along
with RST, the other ports areCLK, Q, andD. D is the data input,Q the data output, andCLK the system
clock.

//Behavioral model of 32-bit Register:
// positive edge-triggered,
// synchrounous active-high reset.
module reg4 (CLK,Q,D,RST);

input [3:0] D;
input CLK, RST;
output [3:0] Q;
reg [3:0] Q;
always @ (posedge CLK)

if (RST) #1 Q = 0; else #1 Q = D;
endmodule // reg4

The system clock is a globally supplied signal in all synchronous logic systems. In physical hard-
ware the signal is generated from a special clock oscillator based on acrystal—a very stable oscillation

CS61c Lecture Notes 13

Figure 3: Accumulator Circuit

source. Verilog does not supply a clock signal automatically; we must find a way to generate a oscillat-
ing signal within our specification. A standard way to do this is to assign a signal to an inverted version
of itself, after the appropriate delay. For example, after declaringCLKas type reg:

initial
begin

CLK=1’b0;
forever

#5 CLK = ˜CLK;
end

CLK begins at logic 0 then changes to logic 1 after 5 ns then back to 0 after another 5ns, etc. This
continues until the end of the simulation. The result is a signal with an oscillation period of 10ns. Here
we assume that some other part of the Verilog specification is responsible for ending the simulation, so
we can allow the clock to oscillate “forever”.

Now that we have a clock signal and a register to connect it to, we are ready to specify a sequential
logic circuit. Sequential circuits are really nothing other than interconnected instances of combinational
logic blocks and state elements. Everything that we have discussed thus far concerning making instances
of modules and wiring them together applies as well to sequential logic.

Let’s take a look at a circuit useful for adding lists of numbers, called an accumulator. The block
diagam for this circuit is shown in figure 3. The reset signal, RST, is used to force the register to all 0’s,
then on each cycle of the clock the value on IN is added to the value in the register and the result stored
back into the register.

14 Wawrzynek 2003 c©UCB

The Verilog description for the accumulator circuit is shown below:

//Accumulator
module acc (CLK,RST,IN,OUT);

input CLK,RST;
input [3:0] IN;
output [3:0] OUT;

wire [3:0] W0;

add4 myAdd (.S(W0), .A(IN), .B(OUT));
reg4 myReg (.CLK(CLK), .Q(OUT), .D(W0), .RST(RST));

endmodule // acc

This module definition assumes that we will also include a definition of a module calledadd4 with
the following port list:

module add4 (S,A,B);

This module is a combinational logic block that forms the sum of the two 4-bit binary numbersA

andB, leaving the result inS. As part of its module specification, the input/output delay for the add4
block is defined as 4ns.

A test-bench for the accumulator circuit is shown below:

module accTest;
reg [3:0] IN;
reg CLK, RST;
wire [3:0] OUT;

acc myAcc (.CLK(CLK), .RST(RST), .IN(IN), .OUT(OUT));

initial
begin

CLK=1’b0;
repeat (20)

#5 CLK = ˜CLK;
end

initial
begin

#0 RST=1’b1; IN=4’b0001;
#10 RST=1’b0;

end
initial

$monitor("time=%0d: OUT=%1h", $time, OUT);
endmodule // accTest

CS61c Lecture Notes 15

Figure 4: Bit-serial Parity Checker

This one works by first asserting the reset signal for one clock cycle, in the secondinitial block.
At the same time the input is set to the value of decimal 1 (0001 in binary) and held at that value for
the remainder of the simulation. Meanwhile in the firstinitial block the clock signal is forced to
oscillate for 10 cycles. The output should be a sequence of numbers 0,1,2,... for 10 clock cycles.

7 Specifying Finite State Machines

A common type of sequential circuit used in digital design is the finite state machine (FSM). A simple
FSM specification in Verilog is shown below. This example is a bit-serial parity checker; it computes
the parity of a string of bits sequentially, finding the exclusive-or of all the bits (Parity of “1” means
that the string has anoddnumber of 1’s.) On every clock cycle, the circuit accepts a new input bit and
outputs the parity of all the bits seen since the previous reset. The reset signal forces the FSM back to
the EVEN state. The state transition diagram and the hardware implementation for the bit-serial parity
checker is shown in figure 4.

Our Verilog specification ofparityChecker is preceded by the specification of a D-type flip-flop.
This is essentially a one-bit wide version of the register used in our previous example.

TheparityChecker module is the FSM specification. It instantiates one flip-flop used to hold the
present state of the FSM. We have chosen to represent the “EVEN” state with logic 0, and the “ODD”
state with logic 1. The module also instantiates a single exclusive-or gate, used to compute the next state
and output values. (The Verilog name for the exclusive-or gate is “xor ”.) We preceed the specification
of the xor gate with “#1” to indicate a 1ns logic delay for the xor. One extra “gate”,buf , is needed to
connect the output of the flip-flop to the output port of the module,OUT. The Verilogbuf gate is similar
to anot gate (inverter) in that it has a single input and a single output, except that it does not invert its

16 Wawrzynek 2003 c©UCB

input signal, but merely passes it through to its output. (This gate serves no real function, other than to
get around a limitation in Verilog which prohibits feeding outputs back internally within a module). We
assume that it has no delay.

//Behavioral model of D-type flip-flop:
// positive edge-triggered,
// synchronous active-high reset.
module DFF (CLK,Q,D,RST);

input D;
input CLK, RST;
output Q;
reg Q;
always @ (posedge CLK)

if (RST) #1 Q = 0; else #1 Q = D;
endmodule // DFF

//Structural model of serial parity checker.
module parityChecker (OUT, IN, CLK, RST);

output OUT;
input IN;
input CLK, RST;
wire currentState, nextState;

DFF state (CLK, currentState, nextState, RST);
#1 xor (nextState, IN, currentState);
buf (OUT, nextState);

endmodule // parity

8 Testing Finite State Machines

A test-bench for the parity checker module is shown below. The best testing strategy for finite state
machines is to test the response of the FSM to every input in every state. In other words, we would like
to force the FSM to traverse every arc emanating from every state in the state transistion diagram. The
comment block in the test-bench preceding the specification lists the set of tests needed to completely
test the FSM. After reset, each test forces the circuit to traverse one arc in the state transistion diagram.
The expected output is written in square brackets, “[]”.

In these tests we assume that the reset signal works correctly. This is a good assumption, given that
the reset action is implemented as a built-in input to the flip-flop, and can assume that the behavior of
the flip-flop was independently verified.

CS61c Lecture Notes 17

//Test-bench for parityChecker.
//
// Reset to EVEN. RST=1 [OUT=x]
// Set IN=0. Self-loop in EVEN. IN=0, RST=0 [OUT=0]
// Set IN=1. Arc to ODD. IN=1 [OUT=1]
// Set IN=0. Self-loop in ODD. IN=0 [OUT=1]
// Set IN=1. Arc back to EVEN. IN=1 [OUT=0]
//
module testParity0;

reg IN;
wire OUT;
reg CLK=0, RST;
reg expect;

parityChecker myParity (OUT, IN, CLK, RST);

always #5 CLK = ˜CLK;

initial
begin

RST=1;
#10 IN=0; RST=0; expect=0;
#10 IN=1; RST=0; expect=1;
#10 IN=0; RST=0; expect=1;
#10 IN=1; RST=0; expect=0;
#10 $finish;

end

always
begin

#4 $strobe($time," IN=%b, RST=%b, expect=%b OUT=%b",
IN, RST, expect, OUT);

#6 ;
end

endmodule // testParity0

This module demonstrates a variation on clock generation. In this example, the clock signalCLK is
initially set equal to 0 when it is declared. Therefore, when simulation beginsCLK will be equal to 0.
The block specified by “always #5 CLK = CLK; ” continuously inverts the value ofCLKevery 5ns,
resulting in a clock period of 10ns.

Inputs are forced to change every 10ns, synchronously with the high-to-low transition of the clock.

18 Wawrzynek 2003 c©UCB

Once again, we use the$strobe system command to print the results of our simulation. The first
invocation of$strobe occurs at 4ns, and is repeated every 10ns, just before each rising edge of the
clock. Execution of thetestParity0 results in the following:

4 IN=x, RST=1, expect=x OUT=x
14 IN=0, RST=0, expect=0 OUT=0
24 IN=1, RST=0, expect=1 OUT=1
34 IN=0, RST=0, expect=1 OUT=1
44 IN=1, RST=0, expect=0 OUT=0

The circuit functions correctly and passes all tests.

