CS61C : Machine Structures

Lecture 2 —
Introduction To C

2004-06-22
Kurt Meinz

Q Inst.eecs.berkeley. edu/~0361(:

CS 61C L2 Introduction to C (pt 1) (1) Meinz, Summer 2004 © UCB

Review

*Two’s Complement

ﬂ CS 61C L2 Introduction to C (pt 1) (2) K. Meinz, Summer 2004 © UCB

Another Attempt ...

e Gedanken: Decimal Car Odometer
00003 = 00002 = 00001 = 00000 = 99999 = 99998

e Binary Odometer:
00011 = 00010 = 00001 = 00000 = 11111 => 11110

* With no obvious better alternative, pick
representation that makes the math simple!

* 99999ten == -1ten
* 11111two == -1ten 11110two == -2ten

* This representation is Two’s Complement

Q CS 61C L2 Introduction to C (pt 1) (3) K. Meinz, Summer 2004 © UCB

2’s Complement Properties

* As with sign and magnitude,
leading 0s = positive, leading 1s =
negative

- 000000...xxx is20, 111111..xxxis <0
- except 1...1111 is -1, not -0 (as in sign & mag.)

*Only 1 Zero!

ﬂ CS 61C L2 Introduction to C (pt 1) (4) K. Meinz, Summer 2004 © UCB

2’s Complement Number “line”: N =35

00000 00001 .2N-1 non-

negatives

11111

« 2N-1 negatives
*One zero

e how manx
positives™

10001 10000 01111

ﬂ CS 61C L2 Introduction to C (pt 1) (5) K. Meinz, Summer 2004 © UCB

Two’s Complement for N=32

= 0

= 1ten—
0000 ... 0000 0000 0000 0010,,, = 20
0111 ... 1111 1111 1111 1101, = 2,147,483,645,
0111..1111 1111 1111 1110, = 47.483.646€

. — / A: oY/

000 . 0000 0000 0000 0000. _ B3 648, |
1000 ... 0000 0000 0000 0001, = —2.147,483.647,_.
1000 ... 0000 0000 0000 OO10,,, = —2,147,483,646,_,,
1111 ... 1111 1111 1111 1101, = —3,.,
1111 1111 1111 1111 1110, = —
1111 ... 1111 1111 1111 111, = —1

* One zero; 1st bit called sign bit

* 1 “extra” negative:no positive 2,147,483,648,_,

Q CS 61C L2 Introduction to C (pt 1) (6) K. Meinz, Summer 2004 © UCB

Two’s Complement Formula

« Can represent positive and negative numbers
in terms _of the bit value times a power of 2:

ds, x©+ dygx 230+ .. +d,x22+d,x2"+d,x 20

 Example: 1101,
= + 1x22 + 0x21 + 1x20°
= + 22+ 0+ 20
=-8+4+0+1
=.3+5

ﬂ CS 61C L2 Introduction to C (pt 1) (7) K. Meinz, Summer 2004 © UCB

Two’s Complement shortcut: Negation

-Chan_clge every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result

* Proof*: Sum of number and its (one’s)
complement must be 111...111

However, 111...111 -1

two

two= ten

Let X’ = one’s complement representation of x
Thenx+xX' =-1=>x+X+1=0=>xX"+1=-Xx

n/ * Check out

CS 61C L2 Introduction to C (pt 1) (8) K. Meinz, Summer 2004 © UCB

Two’s comp. shortcut: Sign extension

e Convert 2’s complement number rep.
using n bits to more than n bits

. Simplg replicate the most significant bit
(sign bit) of smaller to fill new bits

*2’s comp. positive number has infinite Os
«2’s comp. negative number has infinite 1s

Binary representation hides leading bits;
sign extension restores some of them

-16-bit -4, to 32-bit:
1111 1111 1111 1100,
1111 1111 1111 1111 1111 1111 1111 1100,

CS 61C L2 Introduction to C (pt 1) (9) K. Meinz, Summer 2004 © UCB

What if too big?

 Binary bit patterns above are simply
{;IeTpresentatives of numbers. Strictly speaking
ey are called “numerals”.

 Numbers really have an «« number of digits

« with almost all being same (00...0 or 11...1) except
for a few of the rightmost digits

* Just don’t normally show leading digits
* If result of add (or -, *, /) cannot be

represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 11110 11111

' d
> Iu nsigne
=
CS 61C L2 Introduction to C (pt 1) (10) K. Meinz, Summer 2004 © UCB

Number Summary

 We represent “things” in computers as
particular bit patterns: N bits — 2N

* Decimal for human calculations, binary for
computers, hex to write binary more easily

*1’s complement - mostly abandoned

00000 00001 ... 01111

D o
10000 ...1111011111

* 2’s complement universal in computing:
cannot avoid, so learn

00000 00001 ... 01111

D o
10000 ... 1111011111

Overflow: numbers «; computers finite, errors!

CS 61C L2 Introduction to C (pt 1) (11) K. Meinz, Summer 2004 © UCB

Preview: Signhed vs. Unsigned Variables

e Java just declares integers Int
* Uses two’s complement

 C has declaration 1nt also

* Declares variable as a signed integer
* Uses two’s complement

e Also, C declaration unsigned iInt

* Declares a unsigned integer

* Treats 32-bit number as unsigned
integer, so most significant bit is part of
Z the number, not a sign bit

CS 61C L2 Introduction to C (pt 1) (12) K. Meinz, Summer 2004 © UCB

Big Idea

* Next Topic: Numbers can Be Anything!

ﬂ CS 61C L2 Introduction to C (pt 1) (13) K. Meinz, Summer 2004 © UCB

BIG IDEA: Bits can represent anything!!

- REMEMBER: N digits in base B = BN values
e For binary in particular: N bits = 2N values

e Characters?

« 26 letters = 5 bits (2° = 32)

e upper/lower case + punctuation
= 7 bits (in 8) (“ASCII”)

» standard code to cover all the world | +
languages = 16 bits (“Unicode”) . A

e Logical values?
0 = False, 1 = True

- colors ? Ex: |l SN SRS

locations / addresses? commands?

CS 61C L2 Introduction to C (pt 1) (14) K. Meinz, Summer 2004 © UCB

Example: Numbers represented in memory

11111

Oxdeadbeef 10110

A

00000

ﬂ CS 61C L2 Introduction to C (pt 1) (15)

*Memory is a place to
store bits

e Aword is a fixed
number of bits (eg, 32)
at an address

*Addresses are
naturally represented
_ascl:m3|gned numbers
in

K. Meinz, Summer 2004 © UCB

New Topic

e Course Administration

ﬂ CS 61C L2 Introduction to C (pt 1) (16) K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

« Just about everything is in the course
info handout.

e Sec 2: Course is difficult over summer

- Be prepared to commit 12 hrs/week in class
and 20 hrs/week outside of class!

Sec 3: Textbooks: COD, K&R

* Sec 4: Labs and Discussion
- Go to your own this week
- Log into your account!
- Hand in survey/statement to TA.

ﬂ CS 61C L2 Introduction to C (pt 1) (17) K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

*Sec 10: Assignments:

- 1) Online Pre-lecture Quizzes:
— Mandatory (Effort)
— About 20 over the semester
— Wednesday'’s is up now (or very soon)
— In general, will be up at least two days in advance
— No late quizzes; no partners

- 2) Labs
— Mandatory (Correctness)
— 2 per week
— “Checked-off” by TA during section
» TA will ask questions — you answer them!
— No late labs; “no partners”

Q CS 61C L2 Introduction to C (pt 1) (18) K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

*Sec 10: Assignments:

- 3) Homeworks
— Mandatory Online Turnin
» Graded once on correctness
» Chance to get back points
— 2 Per week
— Both due on Sunday 8:00pm after assigned
— No late homeworks; no partners

- 4) Projects
— Mandatory (Correctness) Online Turnin
» Probably graded face-to-face.
— 1 Project roughly every 4 weeks
— No late projects; “no partners”

Q CS 61C L2 Introduction to C (pt 1) (19) K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

* Sec 11: Grading:

20 reading quizzes @ 0.5 polnts
15 labs @ 2 polnts
1% homeworks @ 4 polnts
4 projects @ 12.5 points
2 midterms @ 30 peolnts
1 final

58 assignments

each
each
each
each
each

10 pts
30 pts
60 pts
50 pts
90 pts
60 pts

300 pts

* Midterms/Final: On Fridays, 3 hours,

cover two weeks at a time

Q CS 61C L2 Introduction to C (pt 1) (20)

K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

* Sec 11: Grading

A+ 280-300
B+ 250-259
C+ 220-229
D+ 190-199

- | may adjust it in your favor

ﬂ CS 61C L2 Introduction to C (pt 1) (21)

A
E
C
D

270-279
240-249
210-219

180-189

260-269
230-239
200-209

170-173

K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

* Sec 12: Assignment Grading
- Labs: checkoff by TA
- Quizzes: submit via www
- HW:

— Submit via ‘submit’ program
— Graded on correctness

— If it appears that you put in honest effort, but got less
than 90/100

» Sign up for face-to-face session with grader

» Look up solutions, understand them, figure out
what you did wrong

» Convince grader that you now understand what
you got wrong

ﬂ » Grader will give you up to 90/100 points back!

CS 61C L2 Introduction to C (pt 1) (22) K. Meinz, Summer 2004 © UCB

Administrivia — Read the course handout

* Sec 13: Cheating
- Don’tdolit.

- Detection:
— Automated programs,
— Stalff suspicions
— Understanding of material

- Penalty:

— If you confess =» zero on assignment, “faculty
disposition” to OSC (not noted in record)

— If you don’t = “Faculty referral” to OSC (noted in
record if OSC finds against you)

- Please sign the “Statement on Cheating”.

ﬂ CS 61C L2 Introduction to C (pt 1) (23) K. Meinz, Summer 2004 © UCB

Big Idea

* Next Topic: Intro to C

Q CS 61C L2 Introduction to C (pt 1) (24) K. Meinz, Summer 2004 © UCB

Disclaimer

* Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

 K&R is a must-have reference.
- Check online for more sources.

« “JAVA in a Nutshell,” O’Reilly.
- Chapter 2, “How Java Differs from C”.

ﬂ CS 61C L2 Introduction to C (pt 1) (25) K. Meinz, Summer 2004 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

* Unlike Java which converts to
architecture independent bytecode.

 Unlike most Scheme environments which
interpret the code.

* Generally a 2 part process of compiling
.C files to .o files, then linking the .o files
into executables

Q CS 61C L2 Introduction to C (pt 1) (26) K. Meinz, Summer 2004 © UCB

Compilation : Advantages

* Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)

 OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled

ﬂ CS 61C L2 Introduction to C (pt 1) (27) K. Meinz, Summer 2004 © UCB

Compilation : Disadvantages

« All com%iled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

 Executable must be rebuilt on each
new system.

e Called “porting your code” to a new
architecture.

* The “change—~>compile—run [repeat]”
iteration cycle is slow

ﬂ CS 61C L2 Introduction to C (pt 1) (28) K. Meinz, Summer 2004 © UCB

C vs. Java™ Overview (1/2)

Java

* Object-oriented
(OOP)

e “Methods”

e Class libraries of
data structures

 Automatic
memory
management

ﬂ CS 61C L2 Introduction to C (pt 1) (29)

C

* No built-in object
abstraction. Data
separate from
methods.

e “Functions”

e C libraries are
lower-level

 Manual
memory
management

e Pointers

K. Meinz, Summer 2004 © UCB

C vs. Java™ Overview (2/2)

Java C
 High memory Low memory
overhead from overhead
class libraries
* Relatively Slow * Relatively Fast
* Arrays initialize e Arrays initialize
to zero to garbage
e Syntax: « Syntax:
printf

System.out.print

Q CS 61C L2 Introduction to C (pt 1) (30) K. Meinz, Summer 2004 © UCB

C Syntax: Variable Declarations

* Very similar to Java, but with a few minor
but' important differences

 All variable declarations must go before
meyka)re used (at the beginning of the
ock).

* A variable may be initialized in its
declaration.

 Examples of declarations:

ecorrect: {
int a =0, b= 10;

Z eincorrect: for (int i = 0; i < 10; i++)

CS 61C L2 Introduction to C (pt 1) (31) K. Meinz, Summer 2004 © UCB

C Syntax: True or False?

 What evaluates to FALSE in C?
0 (integer)
* NULL (pointer: more on this later)
* no such thing as a Boolean

e What evaluates to TRUE in C?

e everything else...

e (same idea as in scheme: only #T is
false, everything else is true!)

ﬂ CS 61C L2 Introduction to C (pt 1) (32) K. Meinz, Summer 2004 © UCB

C syntax : flow control

Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control

ei1f-else
eswitch

swhile and for
edo-while

ﬂ CS 61C L2 Introduction to C (pt 1) (33) K. Meinz, Summer 2004 © UCB

C Syntax: main

* To get the main function to accept
arguments, use this:

int main (int argc, char *argv|])

e What does this mean?

eargc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile

eargyv is a pointer to an array containing
the arguments as strings (more on

pointers later).
ﬂ CS 61C L2 Introduction to C (pt 1) (34) K. Meinz, Summer 2004 © UCB

Address vs. Value

 Consider memory to be a single huge
array:

* Each cell of the array has an address
associated with it.

e Each cell also stores some value.

 Don’t confuse the address referring to
a memory location with the value
stored in that location.

101 102 103 104 105 ...
23 42

ﬂ CS 61C L2 Introduction to C (pt 1) (35) K. Meinz, Summer 2004 © UCB

Pointers

* An address refers to a particular
me_mor%/ location. In other words, it
points to a memory location.

 Pointer: A variable that contains the
address of a variable.

Location (address) /_\
\» 101 102 103 104 105 ...
23 42 104

X y P
name f

ﬂ CS 61C L2 Introduction to C (pt 1) (36) K. Meinz, Summer 2004 © UCB

Pointers

 How to create a pointer:
& operator: get address of a variable

= > - > > Note the “*” gets used
int p » X, P ' X ' 2 different ways in

this example. In the

declaration to indicate
f)
P : X 3 that p is going to be a

_ 7‘ N\ pointer, and in the
p — &X, 3 printf to get the
P X value pointed to by p.
 How get a value pointed to?

* “dereference operator”: get value pointed to

printf(“p points to %d\n”’,*p);

ﬂ CS 61C L2 Introduction to C (pt 1) (37) K. Meinz, Summer 2004 © UCB

X = 3;

Pointers

 How to change a variable pointed to?
 Use dereference * operator on left of =

P

ﬂ CS 61C L2 Introduction to C (pt 1) (38)

dRE

7"\)(1 -

K. Meinz, Summer 2004 © UCB

Pointers and Parameter Passing

Java and C pass a parameter “by value”

e procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original

void addOne (Int x) {
X = X + 1;

}

int y = 3;
addOne(y);
ey is still=3

ﬂ CS 61C L2 Introduction to C (pt 1) (39) K. Meinz, Summer 2004 © UCB

Pointers and Parameter Passing

 How to get a function to change a value?

void addOne (int *p) {
*p:*p+l;

}
int y = 3;
addOne(&y);

ey is how =4

Q CS 61C L2 Introduction to C (pt 1) (40) K. Meinz, Summer 2004 © UCB

Pointers

* Normally a pointer can only point to
one type (1nt, char, a struct, etc.).

vold *is atype that can point to
anything (generic pointer)

* Use sparingly to help avoid program
bugs!

ﬂ CS 61C L2 Introduction to C (pt 1) (41) K. Meinz, Summer 2004 © UCB

And in conclusion...

 All declarations go at the beginning of
each function.

*Only 0 and NULL evaluate to FALSE.

 All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

A pointer is a C version of the
address.

o * “follows” a pointer to its value
* & gets the address of a value

ﬂ CS 61C L2 Introduction to C (pt 1) (42) K. Meinz, Summer 2004 © UCB

