
CS 61C L2 Introduction to C (pt 1) (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 2 –

Introduction To C

2004-06-22

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L2 Introduction to C (pt 1) (2) K. Meinz, Summer 2004 © UCB

Review

• Two’s Complement ….

CS 61C L2 Introduction to C (pt 1) (3) K. Meinz, Summer 2004 © UCB

Another Attempt …

• Gedanken: Decimal Car Odometer
00003 00002 00001 00000 99999 99998

• Binary Odometer:
00011 00010 00001 00000 11111 11110

• With no obvious better alternative, pick
representation that makes the math simple!
• 99999ten == -1ten
• 11111two == -1ten 11110two == -2ten

• This representation is Two’s Complement

CS 61C L2 Introduction to C (pt 1) (4) K. Meinz, Summer 2004 © UCB

2’s Complement Properties

• As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒
negative

- 000000...xxx is ≥ 0, 111111...xxx is < 0
- except 1…1111 is -1, not -0 (as in sign & mag.)

• Only 1 Zero!

CS 61C L2 Introduction to C (pt 1) (5) K. Meinz, Summer 2004 © UCB

2’s Complement Number “line”: N = 5

• 2N-1 non-
negatives

• 2N-1 negatives
• one zero
• how many
positives?

00000 00001
00010

11111
11110

10000 0111110001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-411100

CS 61C L2 Introduction to C (pt 1) (6) K. Meinz, Summer 2004 © UCB

Two’s Complement for N=32
0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .
0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . .
1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten

• One zero; 1st bit called sign bit
• 1 “extra” negative:no positive 2,147,483,648ten

CS 61C L2 Introduction to C (pt 1) (7) K. Meinz, Summer 2004 © UCB

Two’s Complement Formula
• Can represent positive and negative numbers
in terms of the bit value times a power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

• Example: 1101two

= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1
= -8 + 5
= -3ten

CS 61C L2 Introduction to C (pt 1) (8) K. Meinz, Summer 2004 © UCB

Two’s Complement shortcut: Negation
• Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result

• Proof*: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ x’ + 1 = -x

• Example: -3 to +3 to -3
x : 1111 1111 1111 1111 1111 1111 1111 1101twox’: 0000 0000 0000 0000 0000 0000 0000 0010two+1: 0000 0000 0000 0000 0000 0000 0000 0011two()’: 1111 1111 1111 1111 1111 1111 1111 1100two+1: 1111 1111 1111 1111 1111 1111 1111 1101two

* Check out www.cs.berkeley.edu/~dsw/twos_complement.html

CS 61C L2 Introduction to C (pt 1) (9) K. Meinz, Summer 2004 © UCB

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep.
using n bits to more than n bits

• Simply replicate the most significant bit
(sign bit) of smaller to fill new bits
•2’s comp. positive number has infinite 0s
•2’s comp. negative number has infinite 1s
•Binary representation hides leading bits;
sign extension restores some of them
•16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

CS 61C L2 Introduction to C (pt 1) (10) K. Meinz, Summer 2004 © UCB

What if too big?
• Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

• Numbers really have an ∞ number of digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 1111111110
unsigned

CS 61C L2 Introduction to C (pt 1) (11) K. Meinz, Summer 2004 © UCB

Number Summary
• We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily

• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

• Overflow: numbers ∞; computers finite, errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

CS 61C L2 Introduction to C (pt 1) (12) K. Meinz, Summer 2004 © UCB

Preview: Signed vs. Unsigned Variables

• Java just declares integers int
• Uses two’s complement

• C has declaration int also
• Declares variable as a signed integer
• Uses two’s complement

• Also, C declaration unsigned int
• Declares a unsigned integer
• Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit

CS 61C L2 Introduction to C (pt 1) (13) K. Meinz, Summer 2004 © UCB

Big Idea

• Next Topic: Numbers can Be Anything!

CS 61C L2 Introduction to C (pt 1) (14) K. Meinz, Summer 2004 © UCB

BIG IDEA: Bits can represent anything!!

• REMEMBER: N digits in base B ⇒ BN values
• For binary in particular: N bits 2N values

• Characters?
• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation
⇒ 7 bits (in 8) (“ASCII”)

• standard code to cover all the world’s
languages ⇒ 16 bits (“Unicode”)

• Logical values?
• 0 ⇒ False, 1 ⇒ True

• colors ? Ex:
• locations / addresses? commands?

Red (00) Green (01) Blue (11)

CS 61C L2 Introduction to C (pt 1) (15) K. Meinz, Summer 2004 © UCB

Example: Numbers represented in memory

• Memory is a place to
store bits

• A word is a fixed
number of bits (eg, 32)
at an address

• Addresses are
naturally represented
as unsigned numbers
in C

0xdeadbeef

11111

00000

10110

CS 61C L2 Introduction to C (pt 1) (16) K. Meinz, Summer 2004 © UCB

New Topic

• Course Administration

CS 61C L2 Introduction to C (pt 1) (17) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Just about everything is in the course
info handout.

• Sec 2: Course is difficult over summer
- Be prepared to commit 12 hrs/week in class

and 20 hrs/week outside of class!
• Sec 3: Textbooks: COD, K&R
• Sec 4: Labs and Discussion

- Go to your own this week
- Log into your account!
- Hand in survey/statement to TA.

CS 61C L2 Introduction to C (pt 1) (18) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 10: Assignments:
- 1) Online Pre-lecture Quizzes:

– Mandatory (Effort)
– About 20 over the semester
– Wednesday’s is up now (or very soon)
– In general, will be up at least two days in advance
– No late quizzes; no partners

- 2) Labs
– Mandatory (Correctness)
– 2 per week
– “Checked-off” by TA during section

» TA will ask questions – you answer them!
– No late labs; “no partners”

CS 61C L2 Introduction to C (pt 1) (19) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 10: Assignments:
- 3) Homeworks

– Mandatory Online Turnin
» Graded once on correctness
» Chance to get back points

– 2 Per week
– Both due on Sunday 8:00pm after assigned
– No late homeworks; no partners

- 4) Projects
– Mandatory (Correctness) Online Turnin

» Probably graded face-to-face.
– 1 Project roughly every 4 weeks
– No late projects; “no partners”

CS 61C L2 Introduction to C (pt 1) (20) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 11: Grading:

• Midterms/Final: On Fridays, 3 hours,
cover two weeks at a time

CS 61C L2 Introduction to C (pt 1) (21) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 11: Grading

- I may adjust it in your favor

CS 61C L2 Introduction to C (pt 1) (22) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 12: Assignment Grading
- Labs: checkoff by TA
- Quizzes: submit via www
- HW:

– Submit via ‘submit’ program
– Graded on correctness
– If it appears that you put in honest effort, but got less

than 90/100 ….
» Sign up for face-to-face session with grader
» Look up solutions, understand them, figure out

what you did wrong
» Convince grader that you now understand what

you got wrong
» Grader will give you up to 90/100 points back!

CS 61C L2 Introduction to C (pt 1) (23) K. Meinz, Summer 2004 © UCB

Administrivia – Read the course handout

• Sec 13: Cheating
- Don’t do it.
- Detection:

– Automated programs,
– Staff suspicions
– Understanding of material

- Penalty:
– If you confess zero on assignment, “faculty

disposition” to OSC (not noted in record)
– If you don’t “Faculty referral” to OSC (noted in

record if OSC finds against you)

- Please sign the “Statement on Cheating”.

CS 61C L2 Introduction to C (pt 1) (24) K. Meinz, Summer 2004 © UCB

Big Idea

• Next Topic: Intro to C

CS 61C L2 Introduction to C (pt 1) (25) K. Meinz, Summer 2004 © UCB

Disclaimer

• Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

• K&R is a must-have reference.
- Check online for more sources.

• “JAVA in a Nutshell,” O’Reilly.
- Chapter 2, “How Java Differs from C”.

CS 61C L2 Introduction to C (pt 1) (26) K. Meinz, Summer 2004 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent bytecode.

• Unlike most Scheme environments which
interpret the code.

• Generally a 2 part process of compiling
.c files to .o files, then linking the .o files
into executables

CS 61C L2 Introduction to C (pt 1) (27) K. Meinz, Summer 2004 © UCB

Compilation : Advantages

• Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)

• OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled

CS 61C L2 Introduction to C (pt 1) (28) K. Meinz, Summer 2004 © UCB

Compilation : Disadvantages

• All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

• Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

• The “change→compile→run [repeat]”
iteration cycle is slow

CS 61C L2 Introduction to C (pt 1) (29) K. Meinz, Summer 2004 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS 61C L2 Introduction to C (pt 1) (30) K. Meinz, Summer 2004 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
/* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax:
/* comment */
printf

CS 61C L2 Introduction to C (pt 1) (31) K. Meinz, Summer 2004 © UCB

C Syntax: Variable Declarations
• Very similar to Java, but with a few minor
but important differences

• All variable declarations must go before
they are used (at the beginning of the
block).

• A variable may be initialized in its
declaration.

• Examples of declarations:
• correct: {

int a = 0, b = 10;

...
• incorrect: for (int i = 0; i < 10; i++)

CS 61C L2 Introduction to C (pt 1) (32) K. Meinz, Summer 2004 © UCB

C Syntax: True or False?

• What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean

• What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

CS 61C L2 Introduction to C (pt 1) (33) K. Meinz, Summer 2004 © UCB

C syntax : flow control

• Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control

•if-else

•switch

•while and for

•do-while

CS 61C L2 Introduction to C (pt 1) (34) K. Meinz, Summer 2004 © UCB

C Syntax: main

• To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

• What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile
•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS 61C L2 Introduction to C (pt 1) (35) K. Meinz, Summer 2004 © UCB

Address vs. Value

• Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value.

23 42
101 102 103 104 105 ...

• Don’t confuse the address referring to
a memory location with the value
stored in that location.

CS 61C L2 Introduction to C (pt 1) (36) K. Meinz, Summer 2004 © UCB

Pointers

• An address refers to a particular
memory location. In other words, it
points to a memory location.

• Pointer: A variable that contains the
address of a variable.

23 42
101 102 103 104 105 ...

x y

Location (address)

name

p
104

CS 61C L2 Introduction to C (pt 1) (37) K. Meinz, Summer 2004 © UCB

Pointers
• How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

• How get a value pointed to?
* “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

CS 61C L2 Introduction to C (pt 1) (38) K. Meinz, Summer 2004 © UCB

Pointers
• How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS 61C L2 Introduction to C (pt 1) (39) K. Meinz, Summer 2004 © UCB

Pointers and Parameter Passing
• Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
void addOne (int x) {

x = x + 1;
}

int y = 3;

addOne(y);

•y is still = 3

CS 61C L2 Introduction to C (pt 1) (40) K. Meinz, Summer 2004 © UCB

Pointers and Parameter Passing
• How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;

}

int y = 3;

addOne(&y);

•y is now = 4

CS 61C L2 Introduction to C (pt 1) (41) K. Meinz, Summer 2004 © UCB

Pointers

• Normally a pointer can only point to
one type (int, char, a struct, etc.).

•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs!

CS 61C L2 Introduction to C (pt 1) (42) K. Meinz, Summer 2004 © UCB

And in conclusion…

• All declarations go at the beginning of
each function.

• Only 0 and NULL evaluate to FALSE.
• All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

• A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value

