CS61C : Machine Structures

Lecture 1.2.2
C Structs

2004-06-24

Kurt Meinz

inst.eecs.berkeley.edu/~cs6lc

ﬂ CS 61C L1.2.2 C Structs (1) K. Meinz, Summer 2004 © UCB

Review: Arrays

* Arrays are (almost) identical to
pointers

echar *string and char string[] are
nearly identical declarations

- They differ in very subtle ways:
Incrementing, declaration of filled arrays

- Key Difference: an array variable is a
CONSTANT pointer to the first element.

car[i] €= *(ar+i)

ﬂ CS61C L1.2.2 C Structs (2)

K. Meinz, Summer 2004 © UCB

Review: Arrays and Pointers

e Array size n; want to access from 0 to n-1:

Array Indexing Versions: Pointer Indexing Version:

#define ARSIZE 10 #define ARSIZE 10

int ar[ARSIZE]; int ar[ARSIZE];

int i=0, sum = 0; Int *p = ar, *q = &ar[10]*;
Int sum = 0;

while (i < ARSIZE)
sum += ar[i++]; while (p < q)
sum += *p++;
or

while (i < ARSIZE) * C allows 1 past end of array!

sum +=*(ar + i++);
Q CS 61C L1.2.2 C Structs (3) K. Meinz, Summer 2004 © UCB

Review: Pointer Arithmetic

eint v

10, *p =

&V

e (*ptr)+1lvVs. *ptr++ VS (*ptr) ++ VS.

Ox2 V'

0x0 P:

RVal:

ﬂ CS 61C L1.2.2 C Structs (4)

99

10

99

110

2

11

2= 3

10

99 99
10=>11 vil0
;2 P 2

10 99

K. Meinz, Summer 2004 © UCB

Topic Outline

e Strings
e Ptrs to Ptrs
e Structs

 Heap Allocation Intro

ﬂ CS 61C L1.2.2 C Structs (5) K. Meinz, Summer 2004 © UCB

C Strings (1/3)

e A string In Cis just an array of
characters.

char string[] = "abc";

 How do you tell how long a string is?

e Last character iIs followed by a O byte
(null terminator)

iInt strlen(char s|[])

1
int n = 0;
while (s[n] = 0) n++; /* “\0* */
return n;

ﬂ CS 61C L1.2.2 C Structs (6) K. Meinz, Summer 2004 © UCB

C Strings Headaches (2/3)

« One common mistake is to forget to allocate an
extra byte for the null terminator.

 More generally, C requires the programmer to
manage memory manually (unlike Java or C++).

 When creating a long string by concatenating several smaller
strings, the programmer must insure there is enough space to
store the full string!

. \évr])at if you don’t know ahead of time how big your string will
e:
» String constants are immutable:
o char *f ="abc”; f[0]++; [*illegal */
Because section of mem where “abc” lives is immutable.
e charf[]="abc”; f[0]++; /[*Works!*/
Because, in decl, c copies abc into space allocated for f.

Q CS 61C L1.2.2 C Structs (7) K. Meinz, Summer 2004 © UCB

C String Standard Functions (3/3)

o Int strlen(char *string);
e« compute the length of string (excluding \0)

e INt strcmp(char *strl, char *str2);

e return O If strl and str2 are identical (how Is
this different from strl == str2?)

char *strcpy(char *dst, char *src);

e copy the contents of string src to the memory
at dst and return dst. The caller must ensure
that dst has enough memory to hold the data to

be copied.

ﬂ CS 61C L1.2.2 C Structs (8) K. Meinz, Summer 2004 © UCB

Pointers to pointers (1/4) ...review...

e Sometimes you want to have a
procedure increment a variable?

 \What gets printed?

void AddOne(int Xx) y =5
{ X = X + 1; }
inty =5;

AddOne(y);
printf(*y = %d\n”, y);

ﬂ CS 61C L1.2.2 C Structs (9) K. Meinz, Summer 2004 © UCB

Pointers to pointers (2/4) ...review...

* Solved by passing in a pointer to our
subroutine.

* Now what gets printed?

void AddOne(int *p)
{ "p=*p+1; 1}

<
|
o

inty =5;
AddOne(&y) ;
printf(*y = %d\n”, y);

Q CS 61C L1.2.2 C Structs (10) K. Meinz, Summer 2004 © UCB

Pointers to pointers (3/4)

« But what If what you want changed Is
a pointer?

 \What gets printed?

voild IncrementPtr(int *p) *g = 50

{ p= p+1; } AQ

int A[3] = {650, 60, 70}, 1 1

Int *q = A;

IncrementPtr(q); 50 60 70

printf(*“*q = %d\n”, *q);

Q CS 61C L1.2.2 C Structs (11) K. Meinz, Summer 2004 © UCB

Pointers to pointers (4/4)

e Solution! Pass a pointer to a pointer,
called a handle, declared as **h

 Now what gets printed?

voild IncrementPtr(int **h) *g = 60

{ *h=%*h+1; } AQ (

int A[3] = {50, 60, 70}; 1 1 1

Int *q = A;

IncrementPtr(&q); 50 | 60 | 70

printf(*“*q = %d\n”, *q);

Q CS 61C L1.2.2 C Structs (12) K. Meinz, Summer 2004 © UCB

C structures . Overview (1/3)

*A structis a data structure
composed for simpler data types.

e Like a class Iin Java/C++ but without
methods or inheritance.

struct point {

INt X;

int y;
}-
voild PrintPoint(struct point p)
{

prantf(“(%d,%d)”, p-x, p.y);

ﬂ CS 61C L1.2.2 C Structs (13) K. Meinz, Summer 2004 © UCB

C structures: Pointers to them (2/3)

*The C arrow operator (->)

dereferences and extracts a structure
field with a single operator.

 The following are equivalent:

struct point *p;

printf(“x is %d\n”, (*p).x);
printf(““x 1s %d\n”, p->x);

Q CS 61C L1.2.2 C Structs (14) K. Meinz, Summer 2004 © UCB

How big are structs? (3/3)

* Recall C operator sizeof () which
gives size in bytes (of type or variable)

e How big Is s1zeof(p)?

struct p {
char X;
int y;
}>
5 bytes? 8 bytes?
« Compiler may word align integer y

ﬂ CS 61C L1.2.2 C Structs (15) K. Meinz, Summer 2004 © UCB

Dynamic Memory Allocation (1/3)

* C has operator sizeof () which gives
size in bytes (of type or variable)

« Assume size of objects can be
misleading & Is bad style, so use
si1zeof(type)

 Many years ago an int was 16 bits, and
programs assumed it was 2 bytes

ﬂ CS 61C L1.2.2 C Structs (16) K. Meinz, Summer 2004 © UCB

Dynamic Memory Allocation (2/3)

To allocate room for some_thin% new to
point to, use mal loc() (with the help of a
typecast and sizeof):

ptr = (int *) malloc (sizeof(int));

 Now, ptr points to a space somewhere in
memory of size (si1zeof(iInt)) in bytes.

e(Int *) simply tells the compiler what will
go into that space (called a typecast).

emal loc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));
ﬂ * This allocates an array of n integers.

CS 61C L1.2.2 C Structs (17) K. Meinz, Summer 2004 © UCB

Dynamic Memory Allocation (3/3)

*Once malloc() is called, the memory

location might contain anything, so
don’t use it until you've set Iits value.

« After dynamically allocating space, we
must dynamically free it:

free(ptr);

e Use this command to clean up.
* OS keeps track of size to free.

Q CS 61C L1.2.2 C Structs (18) K. Meinz, Summer 2004 © UCB

