CS61C : Machine Structures

Lecture 2.1.1
Memory Management

2004-06-28

Kurt Meinz

inst.eecs.berkeley.edu/~cs6lc

ﬂ CS 61C L2.1.1 Memory Management (1) K. Meinz, Summer 2004 © UCB

Memory Management (1/2)

e Variable declaration allocates memory
eQuUtsIde a procedure -> static storage

einside procedure -> stack
- freed when procedure returns.

 Malloc request int myGlobal;
e Pointer: static or stack main() {

e Content: on heap int myTemp;
Int *f=
malloc(16);
}

Q CS 61C L2.1.1 Memory Management (2) K. Meinz, Summer 2004 © UCB

Memory Management (2/2)

~ FFFF FFFF,

* A program’s address
space contains 4 regions:

e stack: proc frames, grows
downward

*heap: space requested for

pointers viamalloc() ;
resizes dynamically, heap
grows upward static data
e Static data: variables
declared outside main, code
does not grow or shrink -o_
ecode’ loaded when For now, OS somehow

tarts. d i prevents accesses between
program starts, does no stack and heap (gray hash
ﬂ Change lines). Wait for virtual memory

CS 61C L2.1.1 Memory Management (3) K. Meinz, Summer 2004 © UCB

The Stack (1/4)

 Environment frames from 61la =
e Really exist in memory
e Laid out using stack structure from
61b
e Terminology:
e Stack Is composed of frames

A frame corresponds to one
procedure invocation

e Stack frame includes:
- Return address of caller
- Space for other local variables ggp)

Q CS 61C L2.1.1 Memory Management (4) K. Meinz, Summer 2004 © UCB

The Stack (2/4)

 Implementation:

By convention, stack grows down
In memory.

e Stack pointer ($SP) points to next
available address

e PUSH: On invocation, callee moves
$SP down to create new frame to
hold callee’s local variables and RA

- (old SP — new SP) = size of frame

 POP: On return, callee moves $SP
back to original, returns to caller

$SP ~»

ﬂ CS 61C L2.1.1 Memory Management (5) K. Meinz, Summer 2004 © UCB

The Stack (3/4)

e Last In, First Out (LIFO) memory usage

stack

main

{ a(0);

void a (int m)
{ b(1);

:}void b (int n)

{ c(2);
}

void d (int p)
{

¥ Stack Pointer —»

ﬂ CS 61C L2.1.1 Memory Management (6) K. Meinz, Summer 2004 © UCB

The Stack (4/4): Dangling Pointers

* Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !

int *ptr O {
S

int y;
y = 3;
return &y;
Sk

¥

_ SR>
main () {
Int *stackAddr;
stackAddr = ptr();
printf("'%d", *stackAddr);

printf("%d", *stackAddr);

Q CS 61C L2.1.1 Memory Management (7) K. Meinz, Summer 2004 © UCB

Static and Code Segments

* Code (Text Segment)
e Holds Instructions to be executed
e Constant size

e Static Segment

* Holds global variables whose addresses
are known at compile time

- Cf. Heap (malloc calls) where address isn’t
known

ﬂ CS 61C L2.1.1 Memory Management (8) K. Meinz, Summer 2004 © UCB

The Heap (Dynamic memory)

*Large pool of memory,
not allocated in contiguous order

* back-to-back requests for heap memory
could result blocks very far apart

where Java new command allocates memory

*In C, specify number of bytes of memory

explicitly to allocate item
int *ptr;

ptr = (int *) malloc(4);

emalloc(): Allocates raw, uninitialized
memory from heap

CS 61C L2.1.1 Memory Management (9) K. Meinz, Summer 2004 © UCB

Memory Management

How do we manage memory?

*Code, Static storage are easy:
they never grow or shrink

e Stack space is also easy:
stack frames are created and
degtroyed In last-in, first-out (LIFO)
order

 Managing the heaF IS tricky:
0

memory can be allocated / deallocated
at any time

Q CS 61C L2.1.1 Memory Management (10) K. Meinz, Summer 2004 © UCB

Heap Management Requirements

 Want malloc() and free() to run
quickly.

 Want minimal memory overhead

Want to avoid fragmentation —
when most of our free memory Is In
many small chunks

In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

Q CS 61C L2.1.1 Memory Management (11) K. Meinz, Summer 2004 © UCB

Heap Management

 An example

 Request R1 for 100
oytes

 Request R2 for 1 byte

e Memory from R1is R2(lbyte
freed

 Request R3 for 50
bytes

Q CS 61C L2.1.1 Memory Management (12) K. Meinz, Summer 2004 © UCB

Heap Management

 An example

 Request R1 for 100
oytes

 Request R2 for 1 byte

e Memory from R1lis Rz2(byte&
freed

 Request R3 for 50
bytes

Q CS 61C L2.1.1 Memory Management (13) K. Meinz, Summer 2004 © UCB

K&R Malloc/Free Implementation

eFrom Section 8.7 of K&R

 Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

 Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

e All free blocks are kept in a linked list,
the pointer field Is unused In an

2 ,allocated block
CS 61C L2.1.1 Memory Management (14) K. Meinz, Summer 2004 © UCB

K&R Implementation

mal loc() searches the free list for a

block that is big enough. If none is
found, more memory Is requested from
the operating system.

 free() checks if the blocks adjacent to
the freed block are also free

e If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

 Otherwise, the freed block is just added to
the free list

ﬂ CS 61C L2.1.1 Memory Management (15) K. Meinz, Summer 2004 © UCB

Choosing a block in malloc()

o If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use”?

e pest-fit: choose the smallest block that Is
big enough for the request

e first-fit: choose the first block we see
that is big enough

e next-fit: like first-fit but remember where
we finished searching and resume
searching from there

ﬂ CS 61C L2.1.1 Memory Management (16) K. Meinz, Summer 2004 © UCB

Tradeoffs of allocation policies

e Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc%\.
Leaves lots of small blocks (why?)

* First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

* Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

Q CS 61C L2.1.1 Memory Management (17) K. Meinz, Summer 2004 © UCB

Administrivia (1/2)

HW Grading:
e Submit by 8pm Sundays
e Solutions on Monday
 Graded by Tuesday Lecture

e Sign up for f2f in lab
- <40/100: 30 Minutes
- <90/100: 15 Minutes

- Bring paper copy and understanding of
what you got wrong.

- Reader will give you points for your
demonstration of better

ﬂ understanding/effort. (up to 90/100)

CS 61C L2.1.1 Memory Management (18) K. Meinz, Summer 2004 © UCB

Administrivia (2/2)

* Projects will be similar

* No cheating the system!
 YOou have to earn the points back.

» Getting points back is dependent on you
trying on the initial submission.

- If you submit garbage thinking that you’ll
get all the points back in f2f, you are wrong!

e Office Hours 1- 2pm | House

ﬂ CS 61C L2.1.1 Memory Management (19) K. Meinz, Summer 2004 © UCB

Slab Allocator

A different aPproach to memory
management (used in GNU li1bc)

*Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).

* For small blocks, allocate blocks In
sizes that are powers of 2

*e.g., If program wants to allocate 20
bytes, actually give it 32 bytes

ﬂ CS 61C L2.1.1 Memory Management (20) K. Meinz, Summer 2004 © UCB

Slab Allocator

Bookkeeping for small blocks is
relatively eas%/: lust use a bitmap for
each range of blocks of the same size

e Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.

*Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

Q CS 61C L2.1.1 Memory Management (21) K. Meinz, Summer 2004 © UCB

Slab Allocator

16 byte blocks: -

32 Dyt locks:

64 byte blocks:

16 byte block bitmap: 11011000
32 byte block bitmap: 0111

64 byte block bitmap: 00

Q CS 61C L2.1.1 Memory Management (22) K. Meinz, Summer 2004 © UCB

Slab Allocator Tradeoffs

* Extremely fast for small blocks.

e Slower for large blocks

e But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

 Minimal space overhead

*No fragmentation ﬁas we defined It
before) for small blocks, but still have
wasted space!

ﬂ CS 61C L2.1.1 Memory Management (23) K. Meinz, Summer 2004 © UCB

Internal vs. External Fragmentation

* With the slab allocator, difference
between requested size and next
power of 2 is wasted

*e.g., If program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

*\We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.

e External fragmentation: wasted space
2 ?between allocated blocks.

CS 61C L2.1.1 Memory Management (24) K. Meinz, Summer 2004 © UCB

Buddy System

*Yet another memory management
technique (used in Linux kernel)

e Like GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

 Keep separate free lists for each size

*e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

ﬂ CS 61C L2.1.1 Memory Management (25) K. Meinz, Summer 2004 © UCB

Buddy System

*|f no free block of size n is available, find a
nlock of size 2n and split it in to two
pnlocks of size n

*When a block of size nis freed, If its
neighbor of size nis also free, combine
the blocks in to a single block of size 2n

 Buddy Is block in other half larger block
buddies NOT buddies
P P
N T T T]
I I | |
| | |

e Same speed advantages as slab allocator

ﬂ CS 61C L2.1.1 Memory Management (26) K. Meinz, Summer 2004 © UCB

Allocation Schemes

*So which memory management
scheme (K&R, slab, buddy) is
best?

There is no single best approach for
every application.

e Different applications have different
allocation / deallocation patterns.

A scheme that works well for one
application may work poorly for
another application.

Q CS 61C L2.1.1 Memory Management (27) K. Meinz, Summer 2004 © UCB

Automatic Memory Management

 Dynamically allocated memory is
difficult to track —why not track it
automatically?

*|f we can keep track of what m_emorly 1S
In use, we can reclaim everything else

 Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

eSo how do we track what is In use?

ﬂ CS 61C L2.1.1 Memory Management (28) K. Meinz, Summer 2004 © UCB

Tracking Memory Usage

* Techniques depend heavily on the
ﬁrogrammlng language and rely on
elp from the compiler.

 Start with all pointers in global
variables and local variables (root set).

* Recursively examine dynamically
allocated objects we see a pointer to.

 We can do this in constant space by
reversing the pointers on the way down

How do we recursively find pointers in
dynamically allocated memory?

ﬂ CS 61C L2.1.1 Memory Management (29) K. Meinz, Summer 2004 © UCB

Tracking Memory Usage

* Again, it depends heavily on the
programming language and compiler.

* Could have only a single type of
dynamically allocated object in memory
E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)
* Could use a strongly typed language
(e.qg., Java)

 Don’t allow conversion (casting) between
arbitrary types.

« C/C++ are not strongly typed.
ﬂ Here are 3 schemes to collect garbage

CS 61C L2.1.1 Memory Management (30) . Meinz, Summer 2004 © UCB

Bonus Slides

* The following material wasn’t covered
In lecture, but | leave it here for your
enjoyment.

ﬂ CS 61C L2.1.1 Memory Management (31) K. Meinz, Summer 2004 © UCB

Intel 80x86 C Memory Management

«A C program’s 80x86 7

address space :

*heap: space requested for
pointers viamalloc();

resizes dynamically,
grows upward

.

heap

e Static data: variables

static data

declared outside main,
does not grow or shrink

code

~ 08000000,

ecode: loaded when

program starts, does not m
change

e stack: local variables,
grows downward

CS 61C L2.1.1 Memory Management (32)

stack

K. Meinz, Summer 2004 © UCB

Linked List Example

e _et’s look at an example of using
structures, pointers, mal_locé)_, and
free() to implement a linked list of

strings.
struct Node {
char *value;
struct Node *next;
}
typedef Node *List;

List ListNew(void)
{ return NULL; }

CS 61C L2.1.1 Memory Management (33) K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

ﬂ CS 61C L2.1.1 Memory Management (34)

K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

list:

node%’ : _-‘——»

string:
‘ I “abC11
Q CS 61C L2.1.1 Memory Management (35)

NULL

K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)

{

struct Node *node

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);

strcpy(node->value, string);

node->next = list;

return node;

}

node;:

—

?

“????11

Q CS 61C L2.1.1 Memory Management (36)

list:

_-‘—-—V

string:

NULL

-%—-—»“abc”

K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

list:
node: ___T-—#'
5 string:
- N “abC11
abc ‘
Q CS 61C L2.1.1 Memory Management (37)

NULL

K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

list:

node;___r" A;:::I::j:

-1 string:

- N “abC11
abc ‘
Q CS 61C L2.1.1 Memory Management (38)

NULL

K. Meinz, Summer 2004 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc(sizeof(struct Node));
node->value =
(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

node:
‘ NULL

—

“abc”

Q CS 61C L2.1.1 Memory Management (39) K. Meinz, Summer 2004 © UCB

