CS61C : Machine Structures
Lecture 2.1.2
Garbage Collection &
Intro to MIPS
2004-06-29

Kurt Meinz

inst._eecs.berkeley.edu/~cs6lc

K Meinz, Summer. 20040 ucs)

Memory Management (2/2)

~ FFFF FFFF,,,

*A program’s address stack
space contains 4 regions: 7

estack: proc frames, grows
downward

*heap: space requested for Z
pointers viamalloc() ;

resizes dynamically, heap
gro‘f\'s upward) static data
e static data: variables
declared outside main, code
does not grow or shrink -o_,

«code: loaded when For now, OS somehow
progfam starts. does not prevents accesses between

stack and heap (gray hash
@ change
CSEICL212 MV and MPS (3)

lines). Wait for virtual memory
K Meing, Summer 2004 © UCa|

Buddy System

eLegend: FREE ALLOCATED SPLIT
[]128: 0

[I]164: 00

:/HE 32: 0010
Z A
I 16: 00000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) = Free(000) & Free(111) > Malloc(16)

@ CS61C 1222 MY aNd MIPS (5) K Meing, Summer 2004 © UCh!

Lecture Outline

*Buddy System Allocator
«Garbage Collection
*MIPS

K. Meinz, Summer 20040,UC8E

Buddy System

*Yet another mem_orK.management
technique (used in Linux kernel)

eLike GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

*Keep separate free lists for each size

*e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

I@c e -

Buddy System

eLegend: FREE ALLOCATED SPLIT
[]128: 0

[I]64: 00

:/\45 32: 0010
A A
I 16: 01000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) =» Malloc(16)

Buddy System

eLegend: FREE ALLOCATED SPLIT
[1128: 0

[//// | \\\\]64: 00

:/HE 32: 0010
A A 16; 11000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) = Free(000) @ Free(111) = Malloc(16)

K. Meinz,_ Summer 2004 © uca]

Buddy System

eLegend: FREE ALLOCATED SPLIT
[1128:0

[//// | \\\\]64: 00

N\ 4N
32:1010
/\

[16: 00000011

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) @ Free(111) =» Malloc(16)

K Meinz, Summer 2004 © UCB!

Buddy System

eLegend: FREE ALLOCATED SPLIT
[]128: 0

i& 64: 01
.\

N\

I 32: 1000

16: 00000000
000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) & Free(111) = Malloc(16)

K Meing, Summer 2004 © UCh!

Buddy System

eLegend: FREE ALLOCATED SPLIT
[1128: 0

[//// | \\\\]164: 00

% 32:1010

"\
[16: 00000010

000 001 010 011 100 101 110 111

Initial State = Free(001) =» Free(000) & Free(111) = Malloc(16)

K. Meinz, Summer 2004 UCE

Buddy System

*Legend: FREE ALLOCATED SPLIT
[1128: 0

[//// | \\\\]164: 00

N\ ZN
32:1011

16: 00000000

000 001 010 011 100 101 110 111

Initial State = Free(001) =» Free(000) & Free(111) = Malloc(16)

Buddy System

eLegend: FREE ALLOCATED SPLIT
[]128: 0

i& 64:01

N\

[— | 32: 0000
A 16: 11000000

000 001 010 011 100 101 110 111

Initial State =» Free(001) = Free(000) = Free(111) =» Malloc(16)

Buddy System

eLegend: FREE ALLOCATED SPLIT
[1128: 0

i; 64: 01

N

[— | 32: 0000
/ -\ _
[| 16: 01000000

000 001 010 011 100 101 110 111

Initial State =» Free(001) = Free(000) @ Free(111) = Malloc(16)

@ s o]

Automatic Memory Management

*Dynamically allocated memory is
difficult to track —why not track it
automatically?

+|f we can keep track of what memory is
in use, we can reclaim everything else.

*Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

*So how do we track what is in use?

K Meinz, Summer 2004 0 uCs|

Tracking Memory Usage

*Again, it depends heavily on the
programming language and compiler.

*Could have only a single type of
dynamically allocated object in memory
*E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)
*Could use a strongly typed language
(e.g., Java)

*Don’t allow conversion (casting) between
arbitrary types.

* C/C++ are not strongly typed.

@Here are 3 schemes to collect garbage

Lecture Outline

*Buddy System Allocator
*Garbage Collection
*MIPS

K. Meinz, Summer 20040,UC8E

@ CS61C 1212 MM and MIPS (14)

Tracking Memory Usage

*Techniques depend heavily on the
ﬁrogrammmg language and rely on
elp from the compiler.

« Start with all pointers in global
variables and local variables (root set).

*Recursively examine dynamically
allocated objects we see a pointer to.
«We can do this in constant space by
reversing the pointers on the way down

*How do we recursively find pointers in
Z dynamically allocated memory?

CS6IC1212 M and MIPS (16) K, Meinz Summer

Scheme 1: Reference Counting

*For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

*When the count reaches 0, reclaim.

*Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

Reference Counting Example

*For every chunk of dynamically
allocated memory, kéep a count of
number of pointers that point to it.

*When the count reaches 0, reclaim.

int *pl, *p2; 1 [
pl = malloc(sizeof(int)); P
p2 = malloc(sizeof(int)); P2

*pl = 10; *p2 = 20;

Reference
count=1

Reference
count=1

K Meinz, Summer. 20040 ucs)

Reference Counting (p1, p2 are pointers)
pl = p2;
eIncrement reference count for p2

«If p1 held a valid value, decrement its
reference count

«If the reference count for plis now O,
reclaim the storage it points to.

«If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on...

*Must also decrement reference count

Reference Counting Example

*For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

*When the count reaches 0, reclaim.
int *pl, *p2; pl
1 = malloc(sizeof(int));

P1 = ((int)) 02

p2 malloc(sizeof(int));
*pl = 10; *p2 = 20; /
Reference

pl = p2;
count =2 count=0

IQwhen local variables cease to exist.

CS61C 1212 MV and MIPS (21) K Meinz, Summer 2004 0 uCs|

Scheme 2: Mark and Sweep Garbage Col.

*Keep allocating new memory until
memory is exhausted, then try to find
unused memory.

*Consider objects in heap a graph, chunks
of memory (objects) are graph nodes,
pointers to memory are graph edges.

*Edge from A to B => A stores pointer to B

«Can start with the root set, perform a
graph traversal, find all usable memory!

*2 Phases: (1) Mark used nodes;(2) Sweep
free ones, returning list of free nodes

@c AC 1222 MV and MIPS (23) K Meing, Summer 2004 © UCh!

@ CS61C 1212 MM and MIPS (20) K. Meinz, Summer 2004

Reference Counting Flaws

*Extra overhead added to assignments,
as well as ending a block of code.

*Does not work for circular structures!
*E.g., doubly linked list:

INERK)3E \Q [z N
@ . o

Mark and Sweep

*Graph traversal is relatively easy to
implement recursively
void traverse(struct graph_node *node) {
/* visit this node */
foreach child in node->children {
traverse(child);
3}
3
°But with recursion, state is stored on
the execution stack.

°Garbage collection is invoked when not
much memory left

°As before, we could traversein
constant space (by reversing pointers)

CS61C1212 MM and MIPS 24)

Scheme 3: Copying Garbage Collection

*Divide memory into two spaces, only
onein use at any time.

*When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

*Only reachable objects are copied!

*Use “forwarding pointers” to keep
consistency
« Simple solution to avoiding having to have a
table of old and new addresses, and to mark
Z , Objects already copied (see bonus slides)

CS61C 12,12 MV and MIPS (25)

K Meinz, Summer. 20040 ucs)

Lecture Outline

*Buddy System Allocator
»Garbage Collection
*MIPS

K Meinz, Summer 2004 0 uCs|

Instruction Set Architectures

*Early trend was to add more and more
instructions to new CPUs to do
elaborate operations

«VAX architecture had an instruction to
multiply polynomials!

*RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) —
Reduced Instruction Set Computing

*Keep the instruction set small and simple,
makes it easier to build fast hardware.

«Let software do complicated operations by
Z , composing simpler ones.

CS61C 1222 M and MIPS (29) K Meing, Summer 2004 © UCh!

Review

*Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

*2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

«Each technique has strengths and

weaknesses, none is definitively best
* Automatic memory management relieves
programmer from managing memory.

* All require help from language and compiler

* Reference Count: not for circular structures

*Mark and Sweep: complicated and slow, works
Copying: move active objects back and forth

CS61C 1212 MM and MIPS (26) K. Meinz, Summer 2004

Assembly Language

*Basic job of a CPU: execute lots of
instructions.

eInstructions are the primitive
operations that the CPU may execute.

«Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).

«Examples: Intel 80x86 (Pentium 4),
IBM/Motorola PowerPC (Macintosh),

MIPS, Intel IA64, ...
@ ... _

ISA Design

*Must Run Fast In Hardware =
Eliminate sources of complexity.

Software Hardware

*«Symbolic Lookup =¥ fixed var names/#
*Strong typing = No Typing

*Nested expressions = Fixed format Inst
*Many operators = small set of insts

Assembly Variables: Registers (1/4)

eUnlike HLL like C or Java, assembly
cannot use variables

*Why not? Keep Hardware Simple

«Assembly Operands are registers
«limited number of special locations built
directly into the hardware

eoperations can only be performed on
these!

*Benefit: Since registers are directly in
hardware, thei/)_a[e very fast
z (faster than 1 billionth of a second)

K Meinz, Summer. 20040 ucs)

Assembly Variables: Registers (3/4)

*Registers are numbered from 0 to 31

*Each register can be referred to by
number or name

*Number references:
$0, $1, $2, .. $30, $31

K Meinz, Summer 2004 0 uCs|

C, Java variables vs. registers

*In C (and most High Level Languages)
variables declared first and given a type

*Example: }
int fahr, celsius;
char a, b, c, d, e;

*Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

*In Assembly Language, the registers
have no type; operation determines how

@register contents are treated

CS61C 1242 MY and MIPS (35) K Meing, Summer 2004 © UCh!

Assembly Variables: Registers (2/4)

*Drawback: Since registers are in
hardware, there are a predetermined
number of them

« Solution: MIPS code must be very

carefully put together to efficiently use
registers

*32 registers in MIPS
*Why 32?7 Smaller is faster

eEach MIPS register is 32 bits wide
*Groups of 32 bits called a word in MIPS

Assembly Variables: Registers (4/4)
*By convention, each register also has
aname to make it easier to code
*For now:
$16 - $23 > $s0 - $s7

(correspond to C variables)
$8 - $15 > $t0 - $t7

(correspond to temporary variables)
Later will explain other 16 register names

°In general, use names to make your
Z code more readable

Comments in Assembly

*Another way to make your code more
readable: comments!

*Hash (#) is used for MIPS comments

«anything from hash mark to end of line is
a comment and will be ignored

*Note: Different from C.

*«C comments have format
/* comment */

so they can span many lines

Assembly Instructions

*In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

*Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

eInstructions are related to operations
(= +, - % /NinCorJava

ﬁ&ggmmmmmmn s o]

Addition and Subtraction of Integers (2/4)

*Addition in Assembly
«Example: add $s0,$s1,$s2 (in MIPS)
Equivalent to: sO = s1 + s2(inC)
where MIPS registers $s0,$s1,$s2 are
associated with C variables sO, sl1, s2
*Subtraction in Assembly
«Example: sub $s3,$s4,$s5 (in MIPS)
Equivalent to: d=e - f(@nC)

where MIPS registers $s3,%$s4,$s5 are
associated with C variables d, e, f

CS61C 1212 MV and MIPS (39)

MIPS Addition and Subtraction (1/4)

* Syntax of Instructions:
“<op> <dest> <srcl><src2>
where:
op) operation by name
dest) operand getting result (“destination”)
srcl) 1st operand for operation (“sourcel”)
src2) 2nd operand for operation (“source2”)
e Syntax is rigid:
1 operator, 3 operands

Z , *Why? Keep Hardware simple via regularity

CS61C 1212 MM and MIPS (38) K, Meinz_Summer 20040UC8

K Meinz, Summer 2004 0 uCs|

Addition and Subtraction of Integers (4/4)
*How do we do this?
f=@+h) -qG+]J);
*Use intermediate temporary register
add $t0,$s1,$s2 # temp = g + h

add $tl1,%$s3,%$s4 # temp = i + j
sub $s0,$t0,$t1 # f=(g+h)-(i+j)

Addition and Subtraction of Integers (3/4)

*How do the following C statement?
a=b+c+d-e;

*Break into multiple instructions
add $t0, $s1, $s2 # temp = b + ¢
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

*Notice: A single line of C may break up
into several lines of MIPS.

*Notice: Everything after the hash mark
on each line’is ignored (comments)

CS61C 1212 M and MIPS (40) K, Meinz Summer

@ CS61C 1222 MV and MIPS (41) K Meing, Summer 2004 © UCh!

Register Zero

*One particular immediate, the number
zero (0), appears very often in code.

*So we define register zero ($0 or
$zero) to always have the value 0; eg
add $s0,$s1,%$zero (in MIPS)
f =g (nC)
where MIPS registers $s0,$s1 are
associated with C variables ¥, g
«defined in hardware, so an instruction
add $zero,$zero,$s0

will not do anything!

CS61C1212 MM and MIPS (42)

Immediates

*Immediates are numerical constants.

*They appear often in code, so there
are special instructions for them.

*Add Immediate:
addi $s0,$s1,10 (in MIPS)
f =g+ 10 (inC)
where MIPS registers $s0,$s1 are
associated with C variables f, g

*Syntax similar to add instruction,

except that last argument is a number
@lnstead of aregister.

CS61C 1212 MV and MIPS (43)

K Meinz, Summer. 20040 ucs)

Immediates

*There is no Subtract Immediate in
MIPS: Why?

*Limit types of operations that can be
done to absolute minimum

«if an operation can be decomposed into a
simpler operation, don’t include it

eaddi ..., -X =subi ..., X=>s0 no subi

. addi $s0,%$s1,-10 (in MIPS)

f=9g-10 (inC)
where MIPS registers $s0,$s1 are

@ associated with C variables ¥, g

CS61C 1212 MM and MIPS (44)

“And in Conclusion...”

*In MIPS Assembly Language:
* Registers replace C variables
*One Instruction (simple operation) per line
«Simpler is Better
*Smaller is Faster

*New Instructions:
add, addi, sub

*New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9
Zero: $zero

CS61C 1212 MV and MIPS (45)

K Meinz, Summer 2004 0 uCs|

