
CS 61C L2.2.1 MIPS Part II (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 2.2.1
MIPS Part II

2004-06-30

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L2.2.1 MIPS Part II (2) K. Meinz, Summer 2004 © UCB

Review

• In MIPS Assembly Language:
• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is Better, Smaller is Faster

• New Instructions:
add, addi, sub

• New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t7
Zero: $zero

CS 61C L2.2.1 MIPS Part II (3) K. Meinz, Summer 2004 © UCB

Topic Outline

• Memory Operations

• Decisions

• More Instructions

CS 61C L2.2.1 MIPS Part II (4) K. Meinz, Summer 2004 © UCB

Anatomy: 5 components of any Computer

Personal Computer

Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

OutputLoad (from)Load (from)

Store (to)Store (to)

These are “data transfer” instructions…

Registers are in the datapath of the
processor; if operands are in memory,
we must transfer them to the processor
to operate on them, and then transfer
back to memory when done.

CS 61C L2.2.1 MIPS Part II (5) K. Meinz, Summer 2004 © UCB

Data Transfer: Memory to Reg (1/4)

• Load Instruction Syntax:
lw <reg1> <offset>(<reg2>)

• where
lw: op name to load a word from memory
reg1: register that will receive value
offset: numerical address offset in bytes
reg2: register containing pointer to memory

Equivalent to:
reg1 Memory [reg2 + offset]

CS 61C L2.2.1 MIPS Part II (6) K. Meinz, Summer 2004 © UCB

Data Transfer: Memory to Reg (2/4)

Example:lw $t0,12($s0)
This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

• Notes:
•$s0 is called the base register
• 12 is called the offset
• offset is generally used in accessing elements

of array or structure: base reg points to
beginning of array or structure

Data flow

CS 61C L2.2.1 MIPS Part II (7) K. Meinz, Summer 2004 © UCB

Data Transfer: Reg to Memory (3/4)

• Also want to store from register into memory
• Store instruction syntax is identical to Load’s

• MIPS Instruction Name:
sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

• Example:sw $t0,12($s0)
This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register
$t0 into that memory address

• Remember: “Store INTO memory”

Data flow

CS 61C L2.2.1 MIPS Part II (8) K. Meinz, Summer 2004 © UCB

Data Transfer: Pointers v. Values (4/4)

• Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on

• If you write lw $t2,0($t0)
then $t0 better contain a pointer

• Don’t mix these up!

CS 61C L2.2.1 MIPS Part II (9) K. Meinz, Summer 2004 © UCB

Addressing: What’s a Word? (1/5)

• A word is the basic unit of the
computer.

• Usually sizeof(word) == sizeof(registers)
• Can be 32 bits, 64 bits, 8 bits, etc.
• Not necessarily the smallest unit in the
machine!

CS 61C L2.2.1 MIPS Part II (10) K. Meinz, Summer 2004 © UCB

Addressing: Byte vs. word (2/5)

• Every word in memory has an address,
similar to an index in an array

• Early computers numbered words like
C numbers elements of an array:

•Memory[0], Memory[1], Memory[2], …
Called the “address” of a word

• Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

• Today machines address memory as
bytes, (i.e.,“Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

•Memory[0], Memory[4], Memory[8], …

CS 61C L2.2.1 MIPS Part II (11) K. Meinz, Summer 2004 © UCB

Addressing: The Offset Field (3/5)
• What offset in lw to select A[8] in C?
• 4x8=32 to select A[8]: byte v. word
• Compile by hand using registers:

g = h + A[8];

• g: $s1, h: $s2, $s3:base address of A

• 1st transfer from memory to register:
lw $t0,32($s3) # $t0 gets A[8]

• Add 32 to $s3 to select A[8], put into $t0

• Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[8]

CS 61C L2.2.1 MIPS Part II (12) K. Meinz, Summer 2004 © UCB

Addressing: Pitfalls (4/5)
• Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

• Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

• So remember that for both lw and sw, the
sum of the base address and the offset
must be a multiple of 4 (to be word
aligned)

CS 61C L2.2.1 MIPS Part II (13) K. Meinz, Summer 2004 © UCB

Addressing: Memory Alignment (5/5)

0 1 2 3
Aligned

Not
Aligned

• MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

• Called Alignment: objects must fall on
address that is multiple of their size.

0, 4, 8, or Chex

Last hex digit
of address is:

1, 5, 9, or Dhex
2, 6, A, or Ehex
3, 7, B, or Fhex

CS 61C L2.2.1 MIPS Part II (14) K. Meinz, Summer 2004 © UCB

Role of Registers vs. Memory
• What if more variables than registers?

• Compiler tries to keep most frequently
used variable in registers

• Less common in memory: spilling

• Why not keep all variables in memory?
• registers are faster than memory

• Why not have arith insts to operate on
memory addresses?

• E.g. “addmem 0($s1) 0($s2) 0($s3)”
• Some ISAs do things like this (x86)
• Keep the common case fast.

CS 61C L2.2.1 MIPS Part II (15) K. Meinz, Summer 2004 © UCB

Topic Outline

• Memory Operations

• Decisions

• More Instructions

CS 61C L2.2.1 MIPS Part II (16) K. Meinz, Summer 2004 © UCB

So Far...

• All instructions so far only manipulate
data…we’ve built a calculator.

• In order to build a computer, we need
ability to make decisions…

• C (and MIPS) provide labels to support
“goto” jumps to places in code.

• C: Horrible style; MIPS: Necessary!
• Speed over ease-of-use (again!)

CS 61C L2.2.1 MIPS Part II (17) K. Meinz, Summer 2004 © UCB

Decisions: C if Statements (1/3)

• 2 kinds of if statements in C
•if (condition) clause
•if (condition) clause1 else clause2

• Rearrange 2nd if into following:
if (condition) goto L1;

clause2;
goto L2;

L1: clause1;
L2:

• Not as elegant as if-else, but same
meaning

CS 61C L2.2.1 MIPS Part II (18) K. Meinz, Summer 2004 © UCB

Decisions: MIPS Instructions (2/3)

• Decision instruction in MIPS:
•beq register1, register2, L1

•beq is “Branch if (registers are) equal”
Same meaning as (using C):
if (register1==register2) goto L1

• Complementary MIPS decision instruction
•bne register1, register2, L1

•bne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (register1!=register2) goto L1

• Called conditional branches

CS 61C L2.2.1 MIPS Part II (19) K. Meinz, Summer 2004 © UCB

Decisions: MIPS Goto Instruction (3/3)
• In addition to conditional branches,
MIPS has an unconditional branch:

j label

• Called a Jump Instruction: jump (or
branch) directly to the given label
without needing to satisfy any condition

• Same meaning as (using C):
goto label

• Technically, it’s the same* as:
beq $0,$0,label

since it always satisfies the condition.
CS 61C L2.2.1 MIPS Part II (20) K. Meinz, Summer 2004 © UCB

Example: Compiling C if into MIPS (1/2)
•Compile by hand

if (i == j) f=g+h;
else f=g-h;

•Use this mapping:

f: $s0
g: $s1
h: $s2
i: $s3
j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS 61C L2.2.1 MIPS Part II (21) K. Meinz, Summer 2004 © UCB

Example: Compiling C if into MIPS (2/2)

•Final compiled MIPS code:
beq $s3,$s4,True # branch i==j
sub $s0,$s1,$s2 # f=g-h(false)
j Fin # goto Fin

True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels
to handle decisions (branches).
Generally not found in HLL code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

•Compile by hand
if (i == j) f=g+h;
else f=g-h;

CS 61C L2.2.1 MIPS Part II (22) K. Meinz, Summer 2004 © UCB

Topic Outline

• Memory Operations

• Decisions

• More Instructions
• Memory
• Unsigned
• Logical
• Inequalities

CS 61C L2.2.1 MIPS Part II (23) K. Meinz, Summer 2004 © UCB

More Memory Ops: Byte Ops 1/2

• In addition to word data transfers
(lw, sw), MIPS has byte data transfers:

• load byte: lb
• store byte: sb
• same format as lw, sw

•What’s the alignment for byte
transfers?

CS 61C L2.2.1 MIPS Part II (24) K. Meinz, Summer 2004 © UCB

x

More Memory Ops: Byte Ops 2/2

• What do with other 24 bits in the 32 bit
register?

•lb: sign extends to fill upper 24 bits

byte
loaded…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

• Normally don't want to sign extend chars
• MIPS instruction that doesn't sign extend
when loading bytes:

load byte unsigned: lbu

CS 61C L2.2.1 MIPS Part II (25) K. Meinz, Summer 2004 © UCB

Overflow in Arithmetic (1/2)

• Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.

• Example (4-bit unsigned numbers):
+15 1111

+3 0011
+18 10010

• But we don’t have room for 5-bit
solution, so the solution would be 0010,
which is +2, and wrong.

CS 61C L2.2.1 MIPS Part II (26) K. Meinz, Summer 2004 © UCB

Overflow in Arithmetic (2/2)
• Some languages detect overflow (Ada),
some don’t (C)

• MIPS solution is 2 kinds of arithmetic
instructions to recognize 2 choices:

• add (add), add immediate (addi) and
subtract (sub) cause overflow to be detected

• add unsigned (addu), add immediate
unsigned (addiu) and subtract unsigned
(subu) do not cause overflow detection

• Compiler selects appropriate arithmetic
• MIPS C compilers produce
addu, addiu, subu

CS 61C L2.2.1 MIPS Part II (27) K. Meinz, Summer 2004 © UCB

Two Logic Instructions (1/1)
•More Arithmetic Instructions
•Shift Left: sll $s1,$s2,2 #s1=s2<<2

• Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0’s on right; << in C

• Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

• After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

• What arithmetic effect does shift left have?

•Shift Right: srl is opposite shift; >>

CS 61C L2.2.1 MIPS Part II (28) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (1/3)
• Until now, we’ve only tested equalities
(== and != in C). General programs need
to test < and > as well.

• Create a MIPS Inequality Instruction:
• “Set on Less Than”
• Syntax: slt reg1,reg2,reg3

• Meaning:
if (reg2 < reg3)

reg1 = 1;
else reg1 = 0;

• “set” means “set to 1”,
“reset” means “set to 0”.

reg1 = (reg2 < reg3);

CS 61C L2.2.1 MIPS Part II (29) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (2/3)
• How do we use this?

if (g < h) goto Less; #g:$s0, h:$s1

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less

if $t0!=0
(if (g<h)) Less:

• Branch if $t0 != 0 (g < h)
• Register $0 always contains the value 0, so
bne and beq often use it for comparison
after an slt instruction.

CS 61C L2.2.1 MIPS Part II (30) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (3/3)
• Now, we can implement <, but how do
we implement >, ≤ and ≥ ?

• We could add 3 more instructions, but:
• MIPS goal: Simpler is Better

• Can we implement ≤ in one or more
instructions using just slt and the
branches?

• What about >?
• What about ≥?

CS 61C L2.2.1 MIPS Part II (31) K. Meinz, Summer 2004 © UCB

Immediates in Inequalities (1/1)

• There is also an immediate version of
slt to test against constants: slti

• Helpful in for loops

if (g >= 1) goto Loop

Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1 (g<1)

beq $t0,$0,Loop # goto Loop
if $t0==0
(if (g>=1))

C

M
I
P
S

CS 61C L2.2.1 MIPS Part II (32) K. Meinz, Summer 2004 © UCB

What about unsigned numbers?

• Also unsigned inequality instructions:
sltu, sltiu

…which set result to 1 or 0 depending
on unsigned comparisons

• What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS 61C L2.2.1 MIPS Part II (33) K. Meinz, Summer 2004 © UCB

MIPS Signed vs. Unsigned – diff meanings!

•MIPS Signed v. Unsigned is an
“overloaded” term

•Do/Don't sign extend
(lb, lbu)

•Don't overflow (but still 2s-comp)
(addu, addiu, subu, multu, divu)

•Do signed/unsigned compare
(slt,slti/sltu,sltiu)

CS 61C L2.2.1 MIPS Part II (34) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (1/3)
• Simple loop in C; A[] is an array of ints

do {
g = g + A[i];
i = i + j;

} while (i != h);

• Rewrite this as:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

• Use this mapping:
g, h, i, j, base of A

$s1, $s2, $s3, $s4, $s5

CS 61C L2.2.1 MIPS Part II (35) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (2/3)

• Final compiled MIPS code:
Loop: sll $t1,$s3,2 #$t1= 4*I

add $t1,$t1,$s5 #$t1=addr A
lw $t1,0($t1) #$t1=A[i]
add $s1,$s1,$t1 #g=g+A[i]
add $s3,$s3,$s4 #i=i+j
bne $s3,$s2,Loop# goto Loop

if i!=h

• Original code:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

CS 61C L2.2.1 MIPS Part II (36) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (3/3)
• There are three types of loops in C:

•while

•do… while

•for

• Each can be rewritten as either of the
other two, so the method used in the
previous example can be applied to
while and for loops as well.

• Key Concept: Though there are multiple
ways of writing a loop in MIPS, the key
to decision making is conditional branch

CS 61C L2.2.1 MIPS Part II (37) K. Meinz, Summer 2004 © UCB

“And in conclusion…”

• In order to help the conditional branches
make decisions concerning inequalities,
we introduce a single instruction: “Set
on Less Than”called slt, slti, sltu,
sltiu

• One can store and load (signed and
unsigned) bytes as well as words

• Unsigned add/sub don’t cause overflow
• New MIPS Instructions:

sll, srl
slt, slti, sltu, sltiu
addu, addiu, subu

