CS61C : Machine Structures

Lecture 2.2.1
MIPS Part |l

2004-06-30

Kurt Meinz

inst.eecs.berkeley.edu/~csé6lc

ﬂ CS 61C L2.2.1 MIPS Part 11 (1) K. Meinz, Summer 2004 © UCB

Review

In MIPS Assembly Language:
* Registers replace C variables
* One Instruction (simple operation) per line
e Simpler is Better, Smaller is Faster

e New Instructions:
add, addi, sub

 New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0-$t7
Zero: Szero

CS 61C L2.2.1 MIPS Part 11 (2) K. Meinz, Summer 2004 © UCB

Topic Outline

 Memory Operations

ﬂ CS61C L2.2.1 MIPS Part Il (3) K. Meinz, Summer 2004 © UCB

Anatomy: 5 components of any Computer

/‘ Registers are in the datapath of the
processor; if operands are in memory,

‘ Personal Computer I " we must transfer them to the processor
- to operate on them, and then transfer

back to memory when done.

Computer

Processor

Control
(“brain™)

Datapath
Register

Memory Devices

Input

Output I

Store (to)
v

-
Load (from

These are “data transfer” instructions...

Q CS61C L2.2.1 MIPS Part Il (4) K. Meinz, Summer 2004 © UCB

Data Transfer: Memory to Reqg (1/4)

e Load Instruction Syntax:
lw <regl> <offset>(<reg2>)
where
lw: op name to load a word from memory
regl: register that will receive value
offset: numerical address offset in bytes

reg2: register containing pointer to memory

Equivalent to:
regl € Memory [reg2 + offset |

Q CS61C L2.2.1 MIPS Part Il (5) K. Meinz, Summer 2004 © UCB

Data Transfer: Memory to Reqg (2/4)

< Data flow

Example: 1w $t0,12($s0)

This instruction will take the pointer in $s0, add

12 bytes to it, and then load the value from the

memory pointed to by this calculated sum into
register $t0

e Notes:
Ss0 Is called the base reqgister
e 12 is called the offset

» offset Is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure

Q CS 61C L2.2.1 MIPS Part Il (6)

K. Meinz, Summer 2004 © UCB

Data Transfer: Reg to Memory (3/4)

e Also want to store from register into memory
e Store instruction syntax is identical to Load’s

e MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

Data flow >

 Example:sw $t0,12 ($s0)

This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register
$t0 into that memory address

2- Remember: “Store INTO memory”

CS 61C L2.2.1 MIPS Part 1l (7) K. Meinz, Summer 2004 © UCB

Data Transfer: Pointers v. Values (4/4)

Key Concept: A register can hold any

32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on

|If you write 1w $t2,0($t0)
then $t0 better contain a pointer

Don’t mix these up!

Q CS 61C L2.2.1 MIPS Part 11 (8) K. Meinz, Summer 2004 © UCB

Addressing: What’s a Word? (1/5)

e A word Is the basic unit of the
computer.

e Usually sizeof(word) == sizeof(registers)
e Can be 32 bits, 64 bits, 8 bits, etc.

* Not necessarily the smallest unit in the
machine!

Q CS 61C L2.2.1 MIPS Part 11 (9) K. Meinz, Summer 2004 © UCB

Addressing: Byte vs. word (2/5)

Every word in memory has an address,
similar to an index In an array

e Early computers numbered words like
C numbers elements of an array:

eMemory [Q]&nory [/1] , Memory[2], ...

Called the™address” of a wor

« Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

 Today machines address memory as
bytes, (i.e.,”" Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

Q eMemory[0], Memory[4], Memory[8], ...

CS 61C L2.2.1 MIPS Part 1l (10) K. Meinz, Summer 2004 © UCB

Addressing: The Offset Field (3/5)
* What offset in 1w to select A[8] In C?

e 4x8=32 to select A[8]: byte v. word

« Compile by hand usmg registers:
g = A[8];

e g: $s1, h: $s2, $s3:base address of A

e 1st transfer from memory to register:

1w $t0,§g($53)
*Add 32 to $s3 to select A[8], putinto $t0

* Next add it to h and placein g
dd $sl1,$s2,S$t0

CS 61C L2.2.1 MIPS Part Il (11) K. Meinz, Summer 2004 © UCB

Addressing: Pitfalls (4/5)

e Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

« Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
In bytes.

e SO0 remember that for both 1w and sw, the

sum of the base address and the offset
must be a multiple of 4 (to be word
aligned)

Q CS 61C L2.2.1 MIPS Part 1l (12) K. Meinz, Summer 2004 © UCB

Addressing: Memory Alignment (5/5)

* MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit
of address Is:

0:i1:2

Alignhed
Not 1, 5, 9, Or Dhex
Aligned 2,6, A, or E,
3, 7,B, 0r F

e Called Alignment: objects must fall on
address that 1s multiple of their size.

ﬂ CS 61C L2.2.1 MIPS Part 1l (13) K. Meinz, Summer 2004 © UCB

Role of Registers vs. Memory

 \What If more variables than registers?

« Compiler tries to keep most frequently
used variable in registers

Less common in memory: spilling

 Why not keep all variables in memory?
eregisters are faster than memory
 \Why not have arith insts to operate on
memory addresses?
*E.g. “addmem 0($s1) 0($s2) 0($s3)”
« Some ISAs do things like this (x86)
ﬂ « Keep the common case fast.

CS 61C L2.2.1 MIPS Part Il (14) K. Meinz, Summer 2004 © UCB

Topic Outline

e Memory Operations

e Decisions

ﬂ CS 61C L2.2.1 MIPS Part Il (15) K. Meinz, Summer 2004 © UCB

So Far...

* All instructions so far only manipulate
data...we’ve built a calculator.

*In order to build a computer, we need
ability to make decisions...

*C (and MIPS) provide labels to support
“*goto” jumps to places in code.

e C: Horrible style; MIPS: Necessary!
e Speed over ease-of-use (again!)

ﬂ CS 61C L2.2.1 MIPS Part Il (16) K. Meinz, Summer 2004 © UCB

Decisions: C if Statements (1/3)

2 kKinds of if statements in C
eif (condition) clause
eif (condition) clausel else clause?

 Rearrange 2nd if into following:

if (condition) goto L1;
clause?2;
goto L2;

L1: clausel;

L2:

* Not as elegant as if-else, but same

2 ?1 eaning
CS 61C L2.2.1 MIPS Part Il (17) K. Meinz, Summer 2004 © UCB

Decisions: MIPS Instructions (2/3)

e Decision instruction in MIPS:
*beq registerl, register2, L1
ebeq Is “Branch if (registers are) equal”
Same meaning as (using C):
if (registerl==register2) goto L1
« Complementary MIPS decision instruction
*bne registerl, register2, Ll

ebne Is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerl'!'=register2) goto L1l

Qalled conditional branches

CS 61C L2.2.1 MIPS Part 11 (18) K. Meinz, Summer 2004 © UCB

Decisions: MIPS Goto Instruction (3/3)

*|n addition to conditional branches,
MIPS has an unconditional branch:

] label

e Called a Jump Instruction: jump ﬁor
branch) directly to the given label
without needing to satisfy any condition

« Same meaning as (using C):
goto label

 Technically, it’s the same* as:
beq $0,$0,1label
since It always satisfies the condition.

CS 61C L2.2.1 MIPS Part 11 (19) K. Meinz, Summer 2004 © UCB

Example: Compiling C if into MIPS (1/2)

Compile by hand (true) e (false)

else f=g-h;

f=g+h f=g-h

l

*Use this mapping: Exit

f: $s0
g. Ssl
h: $s2
i: $s3
j: Ss4

Q CS 61C L2.2.1 MIPS Part Il (20) K. Meinz, Summer 2004 © UCB

Example: Compiling C if into MIPS (2/2)

Compile by hand (true) e (false)

else f=g-h;

f=g+h f=g-h

Final compiled MIPS code: l

Exit
beq $s3,$s4,True
sub $s0,$sl,$s2
] Fin
True: add $s0,$sl,$s2
Fin:

Note: Compiler automatically creates labels
to handle decisions (branches).
éGeneraIIy not found in HLL code.

CS 61C L2.2.1 MIPS Part Il (21) K. Meinz, Summer 2004 © UCB

Topic Outline

* Memory Operations
* Decisions

 More Instructions
e Memory
e Unsigned
e Logical

ﬂ * Inequalities
CS 61C L2.2.1 MIPS Part Il (22)

K. Meinz, Summer 2004 © UCB

More Memory Ops: Byte Ops 1/2

e|n addition to word data transfers
(1w, sw), MIPS has byte data transfers:

e load byte: 1b
estore byte: sb
esame format as lw, sw

What’s the alignment for byte
transfers?

ﬂ CS 61C L2.2.1 MIPS Part 1l (23) K. Meinz, Summer 2004 © UCB

More Memory Ops: Byte Ops 2/2

 What do with other 24 bits in the 32 bit
register?

e1lb: sign extends to fill upper 24 bits

XXX XXXX XXXX XXXX XXXX XXXX XZZZ ZZZZ

T T
‘ byte
...Is copled to “signh-extend” loaded
This bit

 Normally don't want to sign extend chars

 MIPS Instruction that doesn't sign extend
when loading bytes:

ﬂ load byte unsigned: 1bu

CS 61C L2.2.1 MIPS Part 1l (24) K. Meinz, Summer 2004 © UCB

Overflow in Arithmetic (1/2)

 Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.

 Example (4-bit unsigned numbers):

+15 1111
43 0011
+18 10010

e But we don’'t have room for 5-bit
solution, so the solution would be 0010,
which Is +2, and wrong.

ﬂ CS 61C L2.2.1 MIPS Part Il (25) K. Meinz, Summer 2004 © UCB

Overflow in Arithmetic (2/2)

*Some languages detect overtflow (Ada),
some don't (C)

* MIPS solution is 2 kinds of arithmetic
Instructions to recognize 2 choices:

add (add), add immediate ﬁaddl) and
subtract (sub) cause overflow to be detected

eadd unsC?ned (addu), add immediate
unsigned (addiu) and subtract unsigned
(subu) do not cause overflow detection

« Compiler selects appropriate arithmetic

« MIPS C compilers produce
addu, addiu, subu

ﬂ CS 61C L2.2.1 MIPS Part Il (26) K. Meinz, Summer 2004 © UCB

Two Logic Instructions (1/1)
 More Arithmetic Instructions

e Shift Left: s11 $s1,$s2,2 #sl=s2<<2

e Store in $sl the value from $s2 shifted 2
bits to the left, inserting 0's on right; <<'Iin C

-Before: 0000 0002,
0000 0000 0000 0000 0000 0000 0000 0010

. After: 0000 0008,
0000 0000 0000 0000 0000 0000 0000 1000

—two

e What arithmetic effect does shift left have?

two

* Shift Right: srl is opposite shift; >>

ﬂ CS 61C L2.2.1 MIPS Part 1l (27) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (1/3)

e Until now, we've only tested equalities
(==and '=1n C). General programs need
to test <and > as well.

* Create a MIPS Inequality Instruction:

«“Set on Less Than”
e Syntax: slt regl,reg2,reg3
* Meaning: regl = (reg2 < reg3);

if (reg2 < reg3)
regl = 1;
else regl = O;

*“set” means “setto 1”,

ﬂ “reset” means “set to 0”.
CS 61C L2.2.1 MIPS Part Il (28) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (2/3)
« How do we use this?

if (g < h) goto Less;

slt $t0,$s0,S$sl
bne $t0,$0,Less

eBranch if $t0!=0=» (g <h)

* Register $0 always contains the value 0, so
bne and beq often use it for comparison
after an sltinstruction.

ﬂ CS 61C L2.2.1 MIPS Part 1l (29) K. Meinz, Summer 2004 © UCB

Inequalities in MIPS (3/3)

Now, we can implement <, but how do
we implement >, < and 2 ?

*\We could add 3 more instructions, but:
 MIPS goal: Simpler is Better

*Can we implement £ in one or more
Instructions using just s1t and the

branches?

W
W

nat a

nat a

oout >7?

oout 2?

ﬂ CS 61C L2.2.1 MIPS Part 11 (30) K. Meinz, Summer 2004 © UCB

Immediates in Inequalities (1/1)

There is also an immediate version of
slt to test against constants: s1ti

e Helpful In for loops

if (g >>= 1) goto Loop

Loop: . . .

slti $t0,$s0,1 # $t0 = 1 1Ff
$s0<1 (g<l1)
beq $t0,$0,Loop # QgOtO Loo
1T $t0==

(1f (g>=1))

ﬂ CS 61C L2.2.1 MIPS Part Il (31) K. Meinz, Summer 2004 © UCB

C
M
|
P
S

What about unsigned numbers?

e Also unsigned inequality instructions:
sltu, sltiu

...which set result to 1 or O depending
on unsigned comparisons

What is value of $t0, $t17?

($s0 = FFFF FFFA, ., $s1 = 0000 FFFA,)
slt $t0, $s0, $sl
sltu $tl1, $s0, Ssl

Q CS 61C L2.2.1 MIPS Part 1l (32) K. Meinz, Summer 2004 © UCB

MIPS Signed vs. Unsigned — diff meanings!

*MIPS Signed v. Unsigned Is an
“overloaded” term

Do/Don't sign extend
(Ib, lbu)

Don't overflow (but still 2s-comp)
(addu, addiu, subu, multu, divu)

Do sighed/unsigned compare
(slt,slti/sltu,sltiu)

ﬂ CS 61C L2.2.1 MIPS Part 1l (33) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (1/3)

eSimple loop In C; A[] Is an array of ints

do {
g =g + A[i];
1 i+ 7;
} while (i1 !'= h);

* Rewrite this as:
Loop: g g + A[i];
i i+ 9;
if (i '= h) goto Loop;

e Use this mapping:
g, h, 1, 7, base of A
@sl, Ss2, $s3, S$s4, $s5

S 61C L2.2.1 MIPS Part Il (34) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (2/3)

e Final compiled MIPS code:

Loop: sll $tl1,S$s3,2 #Pt1= 4*1I
add $t1,$tl1,$s5 #Stl=addr A
lw $t1,0(Stl) #$t1:A[!]
add $s1,$s1,8tl #g=g+A|
add $s3,S$s3,$s4 #i=1+)
bne $s3,$s2,Loop# goto Loop

1T 11=h

*Original code:
Loop: g = g + A[1];
i i+ 7j;
if (1 '= h) goto Loop;

ﬂ CS 61C L2.2.1 MIPS Part Il (35) K. Meinz, Summer 2004 © UCB

Bonus: Loops in C/Assembly (3/3)

There are three types of loops in C:

ewhile
edo... while

efor

*Each can be rewritten as either of the
other two, so the method used in the

previous example can be applied to
while and for loops as well.

*Key Concept:

hough there are multiple

ways of writing a loop In MIPS, the key
to decision making is conditional branch

ﬂ CS 61C L2.2.1 MIPS Part Il (36)

K. Meinz, Summer 2004 © UCB

“And In conclusion...”

*In order to help the conditional branches
make decisions concerning inequalities,

we introduce a single instruction: “ Set
on Less Than”called slt, slti, sltu,

sltiu

*One can store and load (signed and
unsigned) bytes as well as words

Unsigned add/sub don’t cause overflow

e New MIPS Instructions:
sll, srl

slt, slti, sltu, sltiu
2 . addu, addiu, subu

CS 61C L2.2.1 MIPS Part 1l (37) K. Meinz, Summer 2004 © UCB

