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Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as data.
2) Therefore, entire programs can be 

stored in memory to be read or 
written just like data.
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Consequence: Everything Addressed

• Everything has a memory address: 
instructions, data words

• One register keeps address of instruction 
being executed: “Program Counter” (PC)

• Basically a pointer to memory: Intel calls it 
Instruction Address Pointer, a better name

• Computer “brain” executes the instruction at PC
• Jumps and branches modify PC
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Instructions as Numbers (1/2)

• Currently all data we work with is in 
words (32-bit blocks):

• Each register is a word.
•lw and sw both access memory one word 
at a time.

• So how do we represent instructions?
• Remember: Computer only understands 
1s and 0s, so “add $t0,$0,$0” is 
meaningless.

• MIPS wants simplicity: since data is in 
words, make instructions be words too
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Instructions as Numbers (2/2)

• One word is 32 bits, so divide 
instruction word into “fields”.

• Each field tells computer something 
about instruction.

• 3 basic types of instruction formats:
• R-format
• I-format
• J-format
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Instruction Formats

• I-format: used for instructions with 
immediates, lw and sw (since the offset 
counts as an immediate), and the 
branches (beq and bne), 

• (but not the shift instructions; later)

• J-format: used for j and jal
• R-format: used for all other instructions
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R-Format Instructions (1/5)
• Define “fields” of the following number 
of bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32
6 5 5 5 65

opcode rs rt rd functshamt

• For simplicity, each field has a name:

• Important: On these slides and in book, each field 
is viewed as a 5- or 6-bit unsigned integer, not as 
part of a 32-bit integer.

5-bit fields 0-31, 6-bit fields 0-63.
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R-Format Instructions (2/5)
• What do these field integer values tell us?

•opcode: partially specifies what instruction 
it is 

- Note: This number is equal to 0 for all R-Format 
instructions.

•funct: combined with opcode, this number 
exactly specifies the instruction
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R-Format Instructions (3/5)

• More fields:
•rs (Source Register): generally used to 
specify register containing first operand

•rt (Target Register): generally used to 
specify register containing second 
operand (note that name is misleading)

•rd (Destination Register): generally used 
to specify register which will receive 
result of computation
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R-Format Instructions (4/5)

• Notes about register fields:
• Each register field is exactly 5 bits, which 
means that it can specify any unsigned 
integer in the range 0-31.  Each of these 
fields specifies one of the 32 registers by 
number.

• The word “generally” was used because 
there are exceptions that we’ll see later. 
E.g.,

- mult and div have nothing important in the 
rd field since the dest registers are hi and lo

- mfhi and mflo have nothing important in the 
rs and rt fields since the source is 
determined by the instruction (p. 264 P&H)
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R-Format Instructions (5/5)

• Final field:
•shamt: This field contains the amount a 
shift instruction will shift by.  Shifting a 
32-bit word by more than 31 is useless, 
so this field is only 5 bits (so it can 
represent the numbers 0-31).

• This field is set to 0 in all but the shift 
instructions.

• For a detailed description of field 
usage for each instruction, see back 
inside cover of P&H textbook

• (We’ll give you a copy for any exam)
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R-Format Example (1/2)

• MIPS Instruction:
add   $8,$9,$10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rs = 9 (first operand)
rt = 10 (second operand)
rd = 8 (destination)
shamt = 0 (not a shift)
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R-Format Example (2/2)

• MIPS Instruction:
add   $8,$9,$10

0 9 10 8 320

Binary number per field representation:

• Called a Machine Language Instruction

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation:        19,546,144ten

000000 01001 01010 01000 10000000000
hex
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I-Format Instructions (1/4)
• What about instructions with 
immediates (e.g. addi and lw)?

• 5-bit field only represents numbers up to 
the value 31: immediates may be much 
larger than this

• Ideally, MIPS would have only one 
instruction format (for simplicity): 
unfortunately, we need to compromise

• Define new instruction format that is 
partially consistent with R-format:

• Notice that, if instruction has an immediate, 
then it uses at most 2 registers.
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I-Format Instructions (2/4)

• Define “fields” of the following number 
of bits each: 6 + 5 + 5 + 16 = 32 bits

6 5 5 16

opcode rs rt immediate

• Again, each field has a name:

• Key Concept: Only one field is 
inconsistent with R-format.  Most 
importantly, opcode is still in same 
location.
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I-Format Instructions (3/4)
• What do these fields mean?

•opcode: same as before except that, since 
there’s no funct field, opcode uniquely 
specifies an instruction in I-format

• This also answers question of why           
R-format has two 6-bit fields to identify 
instruction instead of a single 12-bit field: 
in order to be consistent with other 
formats.

•rs: specifies the only register operand (if 
there is one)

•rt: specifies register which will receive 
result of computation (this is why it’s 
called the target register “rt”)
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I-Format Instructions (4/4)
• The Immediate Field:

•addi, slti, sltiu, the immediate is 
sign-extended to 32 bits.  Thus, it’s 
treated as a signed integer.

• 16 bits can be used to represent 
immediate up to 216 different values

• This is large enough to handle the offset 
in a typical lw or sw, plus a vast majority 
of values that will be used in the slti
instruction.

CS 61C L3.1.2 Instruction Format (18) K. Meinz, Summer 2004 © UCB

I-Format Example (1/2)

• MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)
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I-Format Example (2/2)

• MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex
decimal representation: 584,449,998ten
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I-Format Problems (0/3)

• Problem 0: Unsigned # sign-extended?
•addiu, sltiu, sign-extends immediates
to 32 bits. Thus, # is a “signed” integer.

• Rationale
•addiu so that can add w/out overflow

- See K&R pp. 230, 305
•sltiu suffers so that we can have ez HW

- Does this mean we’ll get wrong answers?
- Nope, it means assembler has to handle any 

unsigned immediate 215 ≤ n < 216 (I.e., with a 
1 in the 15th bit and 0s in the upper 2 bytes) 
as it does for numbers that are too large. ⇒
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I-Format Problems (1/3)

• Problem 1: 
• Chances are that addi, lw, sw and slti
will use immediates small enough to fit in 
the immediate field.

• …but what if it’s too big?
• We need a way to deal with a 32-bit 
immediate in any I-format instruction.
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I-Format Problems (2/3)

• Solution to Problem 1:
• Handle it in software + new instruction
• Don’t change the current instructions: 
instead, add a new instruction to help out

• New instruction:
lui register, immediate

• stands for Load Upper Immediate
• takes 16-bit immediate and puts these bits 
in the upper half (high order half) of the 
specified register

• sets lower half to 0s
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I-Format Problems (3/3)
• Solution to Problem 1 (continued):

• So how does lui help us?
• Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add    $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler would 
this for us automatically?  (later)
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J-Format Instructions (1/5)

Jumps modify the PC:

“j <label>”

means 

“Set the next PC = the address of the     
instruction pointed to by <label>”
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J-Format Instructions (1/5)

Jumps modify the PC:
• j and jal jump to labels
• but a label is just a name for an address!
• so, the ML equivalents of j and jal use 
addresses 

- Ideally, we could specify a 32-bit memory 
address to jump to.

- Unfortunately, we can’t fit both a 6-bit 
opcode and a 32-bit address into a single 
32-bit word, so we compromise:
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J-Format Instructions (2/5)

• Define fields of the following number 
of bits each:

6 bits 26 bits

opcode target address

• As usual, each field has a name:

• Key Concepts
• Keep opcode field identical to R-format 
and I-format for consistency.

• Combine all other fields to make room 
for large target address.
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J-Format Instructions (3/5)

• target has 26 bits of the 32-bit bit address.

• Optimization:
• jumps will only jump to word aligned 
addresses, 

- so last two bits of address are always 00 (in 
binary).

- let’s just take this for granted and not even 
specify them.
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J-Format Instructions (4/5)

• Now : we have 28 bits of a 32-bit address
• Where do we get the other 4 bits?

• By definition, take the 4 highest-order bits 
from the PC.

• Technically, this means that we cannot jump 
to anywhere in memory, but it’s adequate 
99.9999…% of the time, since programs 
aren’t that long 

- only if jump straddles a 256 MB boundary
- If we absolutely need to specify a 32-bit 

address, we can always put it in a register and 
use the jr instruction.
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J-Format Instructions (5/5)

• Summary:
• Next PC = { PC[31..28], target address, 00 }

• Understand where each part came from!
• Note: { , , } means concatenation 
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• { 1010, 11111111111111111111111111, 00 } 
= 10101111111111111111111111111100

• Note: Book uses ||, Verilog uses { , , }
• We will learn Verilog later in this class
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Midterm details

• Email Carolen NOW if you can’t make it

• You will write C and MIPS.

• “I Highly Recommend review session.”
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Other Jumps and Branches

• We have j and jal
• What about jr?

• J-format won’t work (no reg field)
• So, use R-format and ignore other regs:

• What about beq and bne?
• Tight fit: 2 regs and an immediate (address)

opcode rs rt rd functshamt
0 $reg 0 0 80
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Branches: PC-Relative Addressing (1/5)

• Use I-Format
opcode rs rt immediate

•opcode specifies beq v. bne
•rs and rt specify registers to compare
• What can immediate specify?

•Immediate is only 16 bits
• Using word-align trick, we can get 18 bits
• Still not enough! 

- Would have to use jr if straddling a 256KB.
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Branches: PC-Relative Addressing (2/5)
• How do we usually use branches?

• Answer: if-else, while, for
• Loops are generally small: typically up to 
50 instructions

• Function calls and unconditional jumps are 
done using jump instructions (j and jal), 
not the branches.

• Conclusion: may want to branch to 
anywhere in memory, but a branch often 
changes PC by a small amount…
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Branches: PC-Relative Addressing (3/5)

• Solution to branches in a 32-bit 
instruction: PC-Relative Addressing

• Let the 16-bit immediate field be a 
signed two’s complement integer to be 
added to the PC if we take the branch.

• Now we can branch ± 215 words from 
the PC, which should be enough to 
cover almost any loop.
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Branches: PC-Relative Addressing (5/5)
• Branch Calculation:

• If we don’t take the branch:
next PC = PC + 4

PC+4 =  byte address of next instruction
• If we do take the branch:

next PC = (PC + 4) + (immediate * 4)
• Observations

- Immediate field specifies the number of 
words to jump, which is simply the number of 
instructions to jump.

- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4), 

not to PC; will be clearer why later in course
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Branch Example (1/3)
• MIPS Code:

Loop: beq $9,$0,End
add   $8,$8,$10
addi $9,$9,-1

j     Loop

End:  sub   $2,$3,$4

•beq branch is I-Format:
opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???
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Branch Example (2/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j     Loop

End: sub   $2,$3,$4

•Immediate Field:
• Number of instructions to add to (or 
subtract from) the PC, starting at the 
instruction following the branch (“+4”).

• In beq case, immediate = 3
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Branch Example (3/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j     Loop

End: sub   $2,$3,$4 

4 9 0 3

decimal representation:

binary representation:
000100 01001 00000 0000000000000011
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Questions on PC-addressing

• Does the value in branch field change 
if we move the code?

• What do we do if destination is > 215

instructions away from branch?
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MIPS So Far:

• MIPS Machine Language Instruction: 
32 bits representing a single instruction

• Branches use PC-relative addressing, 
Jumps use PC-absolute addressing.

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode
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Review from before: lui
• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add    $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler 
would this for us automatically?

- If number too big, then just automatically 
replace addi with lui, ori, add
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True Assembly Language (1/3)

• Pseudoinstruction: A MIPS instruction 
that doesn’t turn directly into a machine 
language instruction, but into other MIPS 
instrucitons

• What happens with pseudoinstructions?
• They’re broken up by the assembler into 
several “real” MIPS instructions.

• But what is a “real” MIPS instruction? 
Answer in a few slides

• First some examples…
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Example Pseudoinstructions

• Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits
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True Assembly Language (2/3)

• Problem:
• When breaking up a pseudoinstruction, the 
assembler may need to use an extra reg.

• If it uses any regular register, it’ll overwrite 
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for 
“assembler temporary”) that assembler 
will use to break up pseudo-instructions.

• Since the assembler may use this at any 
time, it’s not safe to code with it.
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Example Pseudoinstructions

• Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• No operation instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0
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True Assembly Language (3/3)

• MAL (MIPS Assembly Language): the set 
of instructions that a programmer may 
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of 
instructions that can actually get 
translated into a single machine 
language instruction (32-bit binary string)

• A program must be converted from MAL 
into TAL before translation into 1s & 0s.
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Questions on Pseudoinstructions

• Question:
• How does MIPS recognize pseudo-
instructions?

• Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move

• It looks for special cases where the 
operand is incorrect for the operation 
and tries to handle it gracefully
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Decoding Machine Language

• How do we convert 1s and 0s to C code?
Machine language ⇒ C?

• For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3 
mean J-Format, otherwise I-Format.

• Use instruction type to determine which 
fields exist. 

• Write out MIPS assembly code, converting 
each field to name, register number/name, 
or decimal/hex number.

• Logically convert this MIPS code into valid 
C code.  Always possible? Unique?
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Decoding Example (1/7)

• Here are six machine language 
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

• Let the first instruction be at address 
4,194,304ten (0x00400000hex).

• Next step: convert hex to binary
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Decoding Example (2/7)

• The six machine language instructions in 
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3
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Decoding Example (3/7)
• Select the opcode (first 6 bits) 
to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111 
00001000000100000000000000000001

• Look at opcode: 
0 means R-Format,
2 or 3 mean J-Format, 
otherwise I-Format.

• Next step: separation of fields

R
R
I
R
I
J

Format:
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Decoding Example (4/7)

• Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

• Next step: translate (“disassemble”) to 
MIPS assembly instructions

R
R
I
R
I
J

Format:
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Decoding Example (5/7)

• MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000     or    $2,$0,$0
0x00400004     slt $8,$0,$5
0x00400008     beq $8,$0,3
0x0040000c     add   $2,$2,$4
0x00400010     addi $5,$5,-1
0x00400014     j     0x100001

• Better solution: translate to more 
meaningful MIPS instructions (fix the 
branch/jump and add labels, registers)
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Decoding Example (6/7)

• MIPS Assembly (Part 2):

or    $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add   $v0,$v0,$a0
addi $a1,$a1,-1
j     Loop

Exit:

• Next step: translate to C code 
(be creative!)
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Decoding Example (7/7)
• After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand; 
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C 
Idea: Instructions are 
just numbers, code is 
treated like data

or   $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add  $v0,$v0,$a0
addi $a1,$a1,-1
j    Loop

Exit:
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In conclusion

• Disassembly is simple and starts by 
decoding opcode field.

• Be creative, efficient when authoring C

• Assembler expands real instruction set 
(TAL) with pseudoinstructions (MAL)

• Only TAL can be converted to raw binary
• Assembler’s job to do conversion
• Assembler uses reserved register $at
• MAL makes it much easier to write MIPS
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Bonus: Binary Compatibility
• Programs are distributed in binary form

- Programs bound to specific instruction set
- Different version for Macintoshes and PCs

• New machines want to run old programs 
(“binaries”) as well as programs compiled 
to new instructions

• Leads to instruction set evolving over time
• Selection of Intel 8086 in 1981 for 1st IBM 
PC is major reason latest PCs still use 
80x86 instruction set (Pentium 4); could 
still run program from 1981 PC today


