
CS 61C L3.1.2 Instruction Format (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 3.1.2

MIPS Instruction Format

2004-07-06

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L3.1.2 Instruction Format (2) K. Meinz, Summer 2004 © UCB

Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as data.
2) Therefore, entire programs can be

stored in memory to be read or
written just like data.

CS 61C L3.1.2 Instruction Format (3) K. Meinz, Summer 2004 © UCB

Consequence: Everything Addressed

• Everything has a memory address:
instructions, data words

• One register keeps address of instruction
being executed: “Program Counter” (PC)

• Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

• Computer “brain” executes the instruction at PC
• Jumps and branches modify PC

CS 61C L3.1.2 Instruction Format (4) K. Meinz, Summer 2004 © UCB

Instructions as Numbers (1/2)

• Currently all data we work with is in
words (32-bit blocks):

• Each register is a word.
•lw and sw both access memory one word
at a time.

• So how do we represent instructions?
• Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0” is
meaningless.

• MIPS wants simplicity: since data is in
words, make instructions be words too

CS 61C L3.1.2 Instruction Format (5) K. Meinz, Summer 2004 © UCB

Instructions as Numbers (2/2)

• One word is 32 bits, so divide
instruction word into “fields”.

• Each field tells computer something
about instruction.

• 3 basic types of instruction formats:
• R-format
• I-format
• J-format

CS 61C L3.1.2 Instruction Format (6) K. Meinz, Summer 2004 © UCB

Instruction Formats

• I-format: used for instructions with
immediates, lw and sw (since the offset
counts as an immediate), and the
branches (beq and bne),

• (but not the shift instructions; later)

• J-format: used for j and jal
• R-format: used for all other instructions

CS 61C L3.1.2 Instruction Format (7) K. Meinz, Summer 2004 © UCB

R-Format Instructions (1/5)
• Define “fields” of the following number
of bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32
6 5 5 5 65

opcode rs rt rd functshamt

• For simplicity, each field has a name:

• Important: On these slides and in book, each field
is viewed as a 5- or 6-bit unsigned integer, not as
part of a 32-bit integer.

5-bit fields 0-31, 6-bit fields 0-63.

CS 61C L3.1.2 Instruction Format (8) K. Meinz, Summer 2004 © UCB

R-Format Instructions (2/5)
• What do these field integer values tell us?

•opcode: partially specifies what instruction
it is

- Note: This number is equal to 0 for all R-Format
instructions.

•funct: combined with opcode, this number
exactly specifies the instruction

CS 61C L3.1.2 Instruction Format (9) K. Meinz, Summer 2004 © UCB

R-Format Instructions (3/5)

• More fields:
•rs (Source Register): generally used to
specify register containing first operand

•rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)

•rd (Destination Register): generally used
to specify register which will receive
result of computation

CS 61C L3.1.2 Instruction Format (10) K. Meinz, Summer 2004 © UCB

R-Format Instructions (4/5)

• Notes about register fields:
• Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.

• The word “generally” was used because
there are exceptions that we’ll see later.
E.g.,

- mult and div have nothing important in the
rd field since the dest registers are hi and lo

- mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction (p. 264 P&H)

CS 61C L3.1.2 Instruction Format (11) K. Meinz, Summer 2004 © UCB

R-Format Instructions (5/5)

• Final field:
•shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

• This field is set to 0 in all but the shift
instructions.

• For a detailed description of field
usage for each instruction, see back
inside cover of P&H textbook

• (We’ll give you a copy for any exam)
CS 61C L3.1.2 Instruction Format (12) K. Meinz, Summer 2004 © UCB

R-Format Example (1/2)

• MIPS Instruction:
add $8,$9,$10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rs = 9 (first operand)
rt = 10 (second operand)
rd = 8 (destination)
shamt = 0 (not a shift)

CS 61C L3.1.2 Instruction Format (13) K. Meinz, Summer 2004 © UCB

R-Format Example (2/2)

• MIPS Instruction:
add $8,$9,$10

0 9 10 8 320

Binary number per field representation:

• Called a Machine Language Instruction

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation: 19,546,144ten

000000 01001 01010 01000 10000000000
hex

CS 61C L3.1.2 Instruction Format (14) K. Meinz, Summer 2004 © UCB

I-Format Instructions (1/4)
• What about instructions with
immediates (e.g. addi and lw)?

• 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

• Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

• Define new instruction format that is
partially consistent with R-format:

• Notice that, if instruction has an immediate,
then it uses at most 2 registers.

CS 61C L3.1.2 Instruction Format (15) K. Meinz, Summer 2004 © UCB

I-Format Instructions (2/4)

• Define “fields” of the following number
of bits each: 6 + 5 + 5 + 16 = 32 bits

6 5 5 16

opcode rs rt immediate

• Again, each field has a name:

• Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

CS 61C L3.1.2 Instruction Format (16) K. Meinz, Summer 2004 © UCB

I-Format Instructions (3/4)
• What do these fields mean?

•opcode: same as before except that, since
there’s no funct field, opcode uniquely
specifies an instruction in I-format

• This also answers question of why
R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field:
in order to be consistent with other
formats.

•rs: specifies the only register operand (if
there is one)

•rt: specifies register which will receive
result of computation (this is why it’s
called the target register “rt”)

CS 61C L3.1.2 Instruction Format (17) K. Meinz, Summer 2004 © UCB

I-Format Instructions (4/4)
• The Immediate Field:

•addi, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.

• 16 bits can be used to represent
immediate up to 216 different values

• This is large enough to handle the offset
in a typical lw or sw, plus a vast majority
of values that will be used in the slti
instruction.

CS 61C L3.1.2 Instruction Format (18) K. Meinz, Summer 2004 © UCB

I-Format Example (1/2)

• MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)

CS 61C L3.1.2 Instruction Format (19) K. Meinz, Summer 2004 © UCB

I-Format Example (2/2)

• MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex
decimal representation: 584,449,998ten

CS 61C L3.1.2 Instruction Format (20) K. Meinz, Summer 2004 © UCB

I-Format Problems (0/3)

• Problem 0: Unsigned # sign-extended?
•addiu, sltiu, sign-extends immediates
to 32 bits. Thus, # is a “signed” integer.

• Rationale
•addiu so that can add w/out overflow

- See K&R pp. 230, 305
•sltiu suffers so that we can have ez HW

- Does this mean we’ll get wrong answers?
- Nope, it means assembler has to handle any

unsigned immediate 215 ≤ n < 216 (I.e., with a
1 in the 15th bit and 0s in the upper 2 bytes)
as it does for numbers that are too large. ⇒

CS 61C L3.1.2 Instruction Format (21) K. Meinz, Summer 2004 © UCB

I-Format Problems (1/3)

• Problem 1:
• Chances are that addi, lw, sw and slti
will use immediates small enough to fit in
the immediate field.

• …but what if it’s too big?
• We need a way to deal with a 32-bit
immediate in any I-format instruction.

CS 61C L3.1.2 Instruction Format (22) K. Meinz, Summer 2004 © UCB

I-Format Problems (2/3)

• Solution to Problem 1:
• Handle it in software + new instruction
• Don’t change the current instructions:
instead, add a new instruction to help out

• New instruction:
lui register, immediate

• stands for Load Upper Immediate
• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register

• sets lower half to 0s

CS 61C L3.1.2 Instruction Format (23) K. Meinz, Summer 2004 © UCB

I-Format Problems (3/3)
• Solution to Problem 1 (continued):

• So how does lui help us?
• Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler would
this for us automatically? (later)

CS 61C L3.1.2 Instruction Format (24) K. Meinz, Summer 2004 © UCB

J-Format Instructions (1/5)

Jumps modify the PC:

“j <label>”

means

“Set the next PC = the address of the
instruction pointed to by <label>”

CS 61C L3.1.2 Instruction Format (25) K. Meinz, Summer 2004 © UCB

J-Format Instructions (1/5)

Jumps modify the PC:
• j and jal jump to labels
• but a label is just a name for an address!
• so, the ML equivalents of j and jal use
addresses

- Ideally, we could specify a 32-bit memory
address to jump to.

- Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a single
32-bit word, so we compromise:

CS 61C L3.1.2 Instruction Format (26) K. Meinz, Summer 2004 © UCB

J-Format Instructions (2/5)

• Define fields of the following number
of bits each:

6 bits 26 bits

opcode target address

• As usual, each field has a name:

• Key Concepts
• Keep opcode field identical to R-format
and I-format for consistency.

• Combine all other fields to make room
for large target address.

CS 61C L3.1.2 Instruction Format (27) K. Meinz, Summer 2004 © UCB

J-Format Instructions (3/5)

• target has 26 bits of the 32-bit bit address.

• Optimization:
• jumps will only jump to word aligned
addresses,

- so last two bits of address are always 00 (in
binary).

- let’s just take this for granted and not even
specify them.

CS 61C L3.1.2 Instruction Format (28) K. Meinz, Summer 2004 © UCB

J-Format Instructions (4/5)

• Now : we have 28 bits of a 32-bit address
• Where do we get the other 4 bits?

• By definition, take the 4 highest-order bits
from the PC.

• Technically, this means that we cannot jump
to anywhere in memory, but it’s adequate
99.9999…% of the time, since programs
aren’t that long

- only if jump straddles a 256 MB boundary
- If we absolutely need to specify a 32-bit

address, we can always put it in a register and
use the jr instruction.

CS 61C L3.1.2 Instruction Format (29) K. Meinz, Summer 2004 © UCB

J-Format Instructions (5/5)

• Summary:
• Next PC = { PC[31..28], target address, 00 }

• Understand where each part came from!
• Note: { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100

• Note: Book uses ||, Verilog uses { , , }
• We will learn Verilog later in this class

CS 61C L3.1.2 Instruction Format (30) K. Meinz, Summer 2004 © UCB

Midterm details

• Email Carolen NOW if you can’t make it

• You will write C and MIPS.

• “I Highly Recommend review session.”

CS 61C L3.1.2 Instruction Format (31) K. Meinz, Summer 2004 © UCB

Other Jumps and Branches

• We have j and jal
• What about jr?

• J-format won’t work (no reg field)
• So, use R-format and ignore other regs:

• What about beq and bne?
• Tight fit: 2 regs and an immediate (address)

opcode rs rt rd functshamt
0 $reg 0 0 80

CS 61C L3.1.2 Instruction Format (32) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (1/5)

• Use I-Format
opcode rs rt immediate

•opcode specifies beq v. bne
•rs and rt specify registers to compare
• What can immediate specify?

•Immediate is only 16 bits
• Using word-align trick, we can get 18 bits
• Still not enough!

- Would have to use jr if straddling a 256KB.

CS 61C L3.1.2 Instruction Format (33) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (2/5)
• How do we usually use branches?

• Answer: if-else, while, for
• Loops are generally small: typically up to
50 instructions

• Function calls and unconditional jumps are
done using jump instructions (j and jal),
not the branches.

• Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount…

CS 61C L3.1.2 Instruction Format (34) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (3/5)

• Solution to branches in a 32-bit
instruction: PC-Relative Addressing

• Let the 16-bit immediate field be a
signed two’s complement integer to be
added to the PC if we take the branch.

• Now we can branch ± 215 words from
the PC, which should be enough to
cover almost any loop.

CS 61C L3.1.2 Instruction Format (35) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (5/5)
• Branch Calculation:

• If we don’t take the branch:
next PC = PC + 4

PC+4 = byte address of next instruction
• If we do take the branch:

next PC = (PC + 4) + (immediate * 4)
• Observations

- Immediate field specifies the number of
words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4),

not to PC; will be clearer why later in course
CS 61C L3.1.2 Instruction Format (36) K. Meinz, Summer 2004 © UCB

Branch Example (1/3)
• MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1

j Loop

End: sub $2,$3,$4

•beq branch is I-Format:
opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???

CS 61C L3.1.2 Instruction Format (37) K. Meinz, Summer 2004 © UCB

Branch Example (2/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $2,$3,$4

•Immediate Field:
• Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch (“+4”).

• In beq case, immediate = 3

CS 61C L3.1.2 Instruction Format (38) K. Meinz, Summer 2004 © UCB

Branch Example (3/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $2,$3,$4

4 9 0 3

decimal representation:

binary representation:
000100 01001 00000 0000000000000011

CS 61C L3.1.2 Instruction Format (39) K. Meinz, Summer 2004 © UCB

Questions on PC-addressing

• Does the value in branch field change
if we move the code?

• What do we do if destination is > 215

instructions away from branch?

CS 61C L3.1.2 Instruction Format (40) K. Meinz, Summer 2004 © UCB

MIPS So Far:

• MIPS Machine Language Instruction:
32 bits representing a single instruction

• Branches use PC-relative addressing,
Jumps use PC-absolute addressing.

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

CS 61C L3.1.2 Instruction Format (41) K. Meinz, Summer 2004 © UCB

Review from before: lui
• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS 61C L3.1.2 Instruction Format (42) K. Meinz, Summer 2004 © UCB

True Assembly Language (1/3)

• Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instrucitons

• What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.

• But what is a “real” MIPS instruction?
Answer in a few slides

• First some examples…

CS 61C L3.1.2 Instruction Format (43) K. Meinz, Summer 2004 © UCB

Example Pseudoinstructions

• Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L3.1.2 Instruction Format (44) K. Meinz, Summer 2004 © UCB

True Assembly Language (2/3)

• Problem:
• When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.

• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.

• Since the assembler may use this at any
time, it’s not safe to code with it.

CS 61C L3.1.2 Instruction Format (45) K. Meinz, Summer 2004 © UCB

Example Pseudoinstructions

• Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• No operation instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS 61C L3.1.2 Instruction Format (46) K. Meinz, Summer 2004 © UCB

True Assembly Language (3/3)

• MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)

• A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS 61C L3.1.2 Instruction Format (47) K. Meinz, Summer 2004 © UCB

Questions on Pseudoinstructions

• Question:
• How does MIPS recognize pseudo-
instructions?

• Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move

• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS 61C L3.1.2 Instruction Format (48) K. Meinz, Summer 2004 © UCB

Decoding Machine Language

• How do we convert 1s and 0s to C code?
Machine language ⇒ C?

• For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.

• Use instruction type to determine which
fields exist.

• Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

• Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS 61C L3.1.2 Instruction Format (49) K. Meinz, Summer 2004 © UCB

Decoding Example (1/7)

• Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

• Let the first instruction be at address
4,194,304ten (0x00400000hex).

• Next step: convert hex to binary

CS 61C L3.1.2 Instruction Format (50) K. Meinz, Summer 2004 © UCB

Decoding Example (2/7)

• The six machine language instructions in
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS 61C L3.1.2 Instruction Format (51) K. Meinz, Summer 2004 © UCB

Decoding Example (3/7)
• Select the opcode (first 6 bits)
to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

• Next step: separation of fields

R
R
I
R
I
J

Format:

CS 61C L3.1.2 Instruction Format (52) K. Meinz, Summer 2004 © UCB

Decoding Example (4/7)

• Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

• Next step: translate (“disassemble”) to
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS 61C L3.1.2 Instruction Format (53) K. Meinz, Summer 2004 © UCB

Decoding Example (5/7)

• MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

• Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS 61C L3.1.2 Instruction Format (54) K. Meinz, Summer 2004 © UCB

Decoding Example (6/7)

• MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

• Next step: translate to C code
(be creative!)

CS 61C L3.1.2 Instruction Format (55) K. Meinz, Summer 2004 © UCB

Decoding Example (7/7)
• After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:
CS 61C L3.1.2 Instruction Format (56) K. Meinz, Summer 2004 © UCB

In conclusion

• Disassembly is simple and starts by
decoding opcode field.

• Be creative, efficient when authoring C

• Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)

• Only TAL can be converted to raw binary
• Assembler’s job to do conversion
• Assembler uses reserved register $at
• MAL makes it much easier to write MIPS

CS 61C L3.1.2 Instruction Format (57) K. Meinz, Summer 2004 © UCB

Bonus: Binary Compatibility
• Programs are distributed in binary form

- Programs bound to specific instruction set
- Different version for Macintoshes and PCs

• New machines want to run old programs
(“binaries”) as well as programs compiled
to new instructions

• Leads to instruction set evolving over time
• Selection of Intel 8086 in 1981 for 1st IBM
PC is major reason latest PCs still use
80x86 instruction set (Pentium 4); could
still run program from 1981 PC today

