CS61C : Machine Structures
Lecture 3.1.2
MIPS Instruction Format
2004-07-06
Kurt Meinz

Inst.eecs.berkeley.edu/~cs6lc

ﬂ CS 61C L3.1.2 Instruction Format (1) K. Meinz, Summer 2004 © UCB

Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as data.

2) Therefore, entire programs can be
stored in memory to be read or
written just like data.

Q CS 61C L3.1.2 Instruction Format (2) K. Meinz, Summer 2004 © UCB

Consequence: Everything Addressed

* Everything has a memory address:
Instructions, data words

* One register keeps address of instruction
being executed: “Program Counter” (PC)

e Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

« Computer “brain” executes the instruction at PC
 Jumps and branches modify PC

Q CS 61C L3.1.2 Instruction Format (3) K. Meinz, Summer 2004 © UCB

Instructions as Numbers (1/2)

e Currently all data we work with is in
words (32-bit blocks):

 Each register is a word.

e lw and sw both access memory one word
at a time.

S0 how do we represent instructions?

* Remember: Computer only understands
1s and 0s, so “add $t0,%$0,%$0” is

meaningless.

 MIPS wants simplicity: since data is in
words, make instructions be words too

Q CS 61C L3.1.2 Instruction Format (4) K. Meinz, Summer 2004 © UCB

Instructions as Numbers (2/2)

*One word is 32 bits, so divide
instruction word into “fields”.

e Each field tells computer something
about instruction.

* 3 basic types of instruction formats:
* R-format
o |-format
« J-format

Q CS 61C L3.1.2 Instruction Format (5) K. Meinz, Summer 2004 © UCB

Instruction Formats

e |-format: used for instructions with
immediates, Iw and sw (since the offset

counts as an immediate), and the
branches (beq and bne),

 (but not the shift instructions; later)

« J-format: used for j and jal

e R-format: used for all other instructions

Q CS 61C L3.1.2 Instruction Format (6) K. Meinz, Summer 2004 © UCB

R-Format Instructions (1/5)

* Define “fields” of the following number
of bitseach: 6 +5+5+5+5+6 =32

| 6 5 5 5 5 6 |

* For simplicity, each field has a name:

| opcode| rs rt rd |shamt| funct |

* Important: On these slides and in book, each field
Is viewed as a 5- or 6-bit unsigned integer, not as
part of a 32-bit integer.

5-bit fields = 0-31, 6-bit fields = 0-63.

Q CS 61C L3.1.2 Instruction Format (7) K. Meinz, Summer 2004 © UCB

R-Format Instructions (2/5)

 What do these field integer values tell us?

eopcode: partially specifies what instruction
itis
- Note: This number is equal to 0 for all R-Format
instructions.

efunct: combined with opcode, this number
exactly specifies the instruction

Q CS 61C L3.1.2 Instruction Format (8) K. Meinz, Summer 2004 © UCB

R-Format Instructions (3/5)

e More fields:

-I's (Source Register): generally used to
specify register containing first operand

-rt (Target Register): generally used to

specify register containing second
operand (note that name is misleading)

-rd (Destination Register): generally used

to specify register which will receive
result of computation

Q CS 61C L3.1.2 Instruction Format (9) K. Meinz, Summer 2004 © UCB

R-Format Instructions (4/5)

* Notes about register fields:

« Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these

fields specifies one of the 32 registers by
number.

 The word “generally” was used because

there are exceptions that we’ll see later.
E.g.,

- mult and div have nothing important in the
rd field since the dest registers are hi and Io

— mfhi1 and mflo have nothing important in the
rs and rt fields since the source is

ﬂ determined by the instruction (p. 264 P&H)

CS 61C L3.1.2 Instruction Format (10) K. Meinz, Summer 2004 © UCB

R-Format Instructions (5/5)

e Final field:

eshamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

e This field is set to 0 in all but the shift
instructions.

* For a detailed description of field
usage for each instruction, see back
inside cover of P&H textbook

Q * (We’ll give you a copy for any exam)

CS 61C L3.1.2 Instruction Format (11) K. Meinz, Summer 2004 © UCB

R-Format Example (1/2)

e MIPS Instruction:
add $8,%9,%10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rs =9 (first operand)

rt =10 (second operand)

rd = 8 (destination)

shamt = 0 (not a shift)

Q CS 61C L3.1.2 Instruction Format (12) K. Meinz, Summer 2004 © UCB

R-Format Example (2/2)

e MIPS Instruction:

add $8,%$9,%10
Decimal number per field representation:
| 0 9 10 8 0 32 |
Binary number per field representation:
| 000C0D0| 01:001 |61010!:01000| 00060 [100000 |
hex representation: 012A 4020, ,
decimal representation: 19,546,144

ten

e Called a Machine Language Instruction

ﬂ CS 61C L3.1.2 Instruction Format (13)

K. Meinz, Summer 2004 © UCB

I-Format Instructions (1/4)

 What about instructions with
immediates (e.g. addi and Iw)?

 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

e |ldeally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

 Define new instruction format that is
partially consistent with R-format:

* Notice that, if instruction has an immediate,
then it uses at most 2 registers.

Q CS 61C L3.1.2 Instruction Format (14) K. Meinz, Summer 2004 © UCB

I-Format Instructions (2/4)

e Define “fields” of the following number
of bits each: 6 + 5+ 5 + 16 = 32 bits

| 6 5 5 16 |

* Again, each field has a name:

| opcode| rs rt immediate |

* Key Concept: Only one field is

inconsistent with R-format. Most
importantly, opcode is still in same

location.

Q CS 61C L3.1.2 Instruction Format (15) K. Meinz, Summer 2004 © UCB

I-Format Instructions (3/4)
e What do these fields mean?

eopcode: same as before except that, since
there’s no funct field, opcode uniquely
specifies an instruction in |-format

* This also answers question of why
R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field:
in order to be consistent with other
formats.

=I's: specifies the only register operand (if
there is one)

=I't: specifies register which will receive
result of computation (this is why it’s
called the target register “rt”)

CS 61C L3.1.2 Instruction Format (16) K. Meinz, Summer 2004 © UCB

I-Format Instructions (4/4)

e The Immediate Field:

eaddr, slti, sltiu, the immediate is
sigh-extended to 32 bits. Thus, it’s
treated as a signed integer.

* 16 bits = can be used to represent
immediate up to 216 different values

* This is large enough to handle the offset
in a typical Iw or sw, plus a vast majority

of values that will be used in the sl ti
instruction.

Q CS 61C L3.1.2 Instruction Format (17) K. Meinz, Summer 2004 © UCB

I-Format Example (1/2)

e MIPS Instruction:
addi $21,%22,-50

opcode = 8 (look up in table in book)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

ﬂ CS 61C L3.1.2 Instruction Format (18)

K. Meinz, Summer 2004 © UCB

I-Format Example (2/2)

e MIPS Instruction:
addi $21,%22,-50

Decimal/field representation:

| 8 22 21 -50 |
Binary/field representation:
| 001000| 10110(10101| 1111111111001110 |

hexadecimal representation: 22D5 FFCE, .,
decimal representation: 584,449,998,

ﬂ CS 61C L3.1.2 Instruction Format (19)

K. Meinz, Summer 2004 © UCB

I-Format Problems (0/3)

* Problem 0: Unsigned # sign-extended?

eaddiu, sltiu, sign-extends immediates
to 32 bits. Thus, # is a “signed” integer.

 Rationale
eaddiu so that can add w/out overflow
- See K&R pp. 230, 305
esltiu suffers so that we can have ez HW

- Does this mean we’ll get wrong answers?

- Nope, it means assembler has to handle any
unsigned immediate 27° < n < 216 (l.e., with a
1 in the 15th bit and 0s in the upper 2 bytes)

ﬂ as it does for numbers that are too large. =

CS 61C L3.1.2 Instruction Format (20) K. Meinz, Summer 2004 © UCB

I-Format Problems (1/3)

 Problem 1:

 Chances are that addi, Iw, sw and sl ti

will use immediates small enough to fit in
the immediate field.

o ...but what if it’s too big?

 We need a way to deal with a 32-bit
immediate in any I-format instruction.

Q CS 61C L3.1.2 Instruction Format (21) K. Meinz, Summer 2004 © UCB

I-Format Problems (2/3)

e Solution to Problem 1:
e Handle it in software + new instruction

* Don’t change the current instructions:
instead, add a new instruction to help out

* New instruction:
lul register, immmediate
e stands for Load Upper Immediate

s takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register

ﬂ e sets lower half to 0s

CS 61C L3.1.2 Instruction Format (22) K. Meinz, Summer 2004 © UCB

I-Format Problems (3/3)

* Solution to Problem 1 (continued):
*So how does luil help us?

 Example:
addi $t0,$t0, OxXABABCDCD

becomes:

lui $at, OxABAB
ori $at, $at, OxCDCD
add $t0,$t0, %at

* Now each I|-format instruction has only a 16-
bit immediate.

 Wouldn’t it be nice if the assembler would
this for us automatically? (later)

Q CS 61C L3.1.2 Instruction Format (23) K. Meinz, Summer 2004 © UCB

J-Format Instructions (1/5)

Jumps modify the PC:

“] <label>”

means

«Set the next PC = the address of the
instruction pointed to by <label>”

ﬂ CS 61C L3.1.2 Instruction Format (24) K. Meinz, Summer 2004 © UCB

J-Format Instructions (1/5)

Jumps modify the PC:
j and jal jump to labels
* but a label is just a name for an address!

* s0, the ML equivalents of j and jal use
addresses

- ldeally, we could specify a 32-bit memory
address to jump to.

- Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a single
32-bit word, so we compromise:

Q CS 61C L3.1.2 Instruction Format (25) K. Meinz, Summer 2004 © UCB

J-Format Instructions (2/5)

* Define fields of the following number
of bits each:

| 6 bits 26 bits |

* As usual, each field has a name:

| opcode target address |

 Key Concepts

* Keep opcode field identical to R-format
and I-format for consistency.

« Combine all other fields to make room
for large target address.

Q CS 61C L3.1.2 Instruction Format (26) K. Meinz, Summer 2004 © UCB

J-Format Instructions (3/5)

e target has 26 bits of the 32-bit bit address.

e Optimization:
e jumps will only jump to word aligned
addresses,

- so last two bits of address are always 00 (in
binary).

- let’s just take this for granted and not even
specify them.

Q CS 61C L3.1.2 Instruction Format (27) K. Meinz, Summer 2004 © UCB

J-Format Instructions (4/5)

* Now : we have 28 bits of a 32-bit address

* Where do we get the other 4 bits?

* By definition, take the 4 highest-order bits
from the PC.

e Technically, this means that we cannot jump
to anywhere in memory, but it’s adequate
99.9999...% of the time, since programs
aren’t that long

- only if jump straddles a 256 MB boundary

- If we absolutely need to specify a 32-bit
address, we can always put it in a register and
use the jr instruction.

Q CS 61C L3.1.2 Instruction Format (28) K. Meinz, Summer 2004 © UCB

J-Format Instructions (5/5)

e Summary:
* Next PC = { PC[31..28], target address, 00 }

 Understand where each part came from!

*Note: {,, } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

{1010, 11111111111111111111111111, 00 }
=10101111111111111111111111111100

* Note: Book uses ||, Verilog uses {, , }
 We will learn Verilog later in this class

Q CS 61C L3.1.2 Instruction Format (29) K. Meinz, Summer 2004 © UCB

Midterm details

 Email Carolen NOW if you can’t make it
* You will write C and MIPS.

*“l Highly Recommend review session.”

Q CS 61C L3.1.2 Instruction Format (30) K. Meinz, Summer 2004 © UCB

Other Jumps and Branches

 We have j and jal

 What about jr?
« J-format won’t work (no reg field)

* S0, use R-format and ignore other regs:

opcode rs rt rd shamt funct
| 0 $reg| O 0 0 8 |

 What about beq and bne?
* Tight fit: 2 regs and an immediate (address)

Q CS 61C L3.1.2 Instruction Format (31) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (1/5)

e Use |I-Format
| opcode| rs rt immediate |

e Opcode specifies beq v. bne
* rs and rt specify registers to compare

* What can immediate specify?
e Immediate is only 16 bits
* Using word-align trick, we can get 18 bits

« Still not enough!
- Would have to use jr if straddling a 256KB.

Q CS 61C L3.1.2 Instruction Format (32) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (2/5)

 How do we usually use branches?
« Answer: 1 T-else, while, for

 Loops are generally small: typically up to
50 instructions

e Function calls and unconditional jumps are
done using jump instructions (jJ and jal),

not the branches.

* Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount...

Q CS 61C L3.1.2 Instruction Format (33) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (3/5)

e Solution to branches in a 32-bit
instruction: PC-Relative Addressing

e Let the 16-bit immediate field be a

sidgned two’s complement integer to be
added to the PC if we take the branch.

* Now we can branch * 275 words from
the PC, which should be enough to
cover almost any loop.

Q CS 61C L3.1.2 Instruction Format (34) K. Meinz, Summer 2004 © UCB

Branches: PC-Relative Addressing (5/5)
 Branch Calculation:

e [f we don’t take the branch:
next PC =PC + 4

PC+4 = byte address of next instruction
o If we do take the branch:
next PC = (PC + 4) + (1immediate * 4)
* Observations

- Immediate field specifies the number of

words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.

- Due to hardware, add immediate to (PC+4),
Q not to PC; will be clearer why later in course

CS 61C L3.1.2 Instruction Format (35) K. Meinz, Summer 2004 © UCB

Branch Example (1/3)

 MIPS Code:

Loop: beq $9,%0,End
add $8,%$8,%10
adc $9,%9,-1

] Loop
End: sub $2,%3,%4

* beq branch is I-Format:
opcode =4 (look up in table)
rs =9 (first operand)
rt =0 (second operand)

Q immediate = ???
CS 61C L3.1.2 Instruction Format (36) K. Meinz, Summer 2004 © UCB

Branch Example (2/3)

 MIPS Code:

Loop: beq $9,%0,End
addi $8,%$8,%10
addi $9,%9,-1
J Loop

End: sub $2,%3,%4

e Immediate Field:

* Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch (“+4”).

*In beq case, iImmediate =3

Q CS 61C L3.1.2 Instruction Format (37) K. Meinz, Summer 2004 © UCB

Branch Example (3/3)

* MIPS Code:
Loop: bec
addi
qdci
J
End: sub

$9,%$0,End
$8,%$8, %10
$9,%$9,-1
Loop

$2,%3,%4

decimal representation:

| 4 9

O

binary representation:

| 000100| 01001

00000| 0000000000000011 |

ﬂ CS 61C L3.1.2 Instruction Format (38)

K. Meinz, Summer 2004 © UCB

Questions on PC-addressing

* Does the value in branch field change
if we move the code?

 What do we do if destination is > 21°
instructions away from branch?

Q CS 61C L3.1.2 Instruction Format (39) K. Meinz, Summer 2004 © UCB

MIPS So Far:

* MIPS Machine Language Instruction:
32 bits representing a single instruction

R| opcode| rs rt rd |shamt| funct
| | opcode| rs rt immediate
J | opcode target address

 Branches use PC-relative addressing,
Jumps use PC-absolute addressing.

ﬂ CS 61C L3.1.2 Instruction Format (40)

K. Meinz, Summer 2004 © UCB

Review from before: lui
*So how does luil help us?

 Example:
addi $t0,$t0, OXABABCDCD

becomes:

lui $at, OxABAB
ori $at, $at, OxCDCD
add $t0,$t0, %at

 Now each I-format instruction has only a 16-
bit immediate.

e Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
Q replace addi with lui, ori, add

CS 61C L3.1.2 Instruction Format (41) K. Meinz, Summer 2004 © UCB

True Assembly Language (1/3)

* Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instrucitons

 What happens with pseudoinstructions?

 They’re broken up by the assembler into
several “real” MIPS instructions.

e But what is a “real” MIPS instruction?
Answer in a few slides

* First some examples...

Q CS 61C L3.1.2 Instruction Format (42) K. Meinz, Summer 2004 © UCB

Example Pseudoinstructions

* Register Move
move reg2,regl

Expands to:
add reg2,%zero,regl

 Load Immediate
r reg,value

If value fits in 16 bits:
addr reg,%$zero,value

else:
ul reg,upper 16 bits of value
ori reg,%$zero, lower 16 bits

Q CS 61C L3.1.2 Instruction Format (43) K. Meinz, Summer 2004 © UCB

True Assembly Language (2/3)

 Problem:

* When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.

o If it uses any regular register, it’ll overwrite
whatever the program has put into it.
e Solution:

* Reserve a register ($1, called $at for

“assembler temporary”) that assembler
will use to break up pseudo-instructions.

* Since the assembler may use this at any
time, it’s not safe to code with it.

Q CS 61C L3.1.2 Instruction Format (44) K. Meinz, Summer 2004 © UCB

Example Pseudoinstructions

* Rotate Right Instruction

ror reg, value N\
Expands to:

srl $at, reg, value - 0 OO
sl reg, reg, 32-value 0
or reg, reg, %at %N NN\

* No operation instruction
nop
Expands to instruction = 0,
sl $0, $0, O

Q CS 61C L3.1.2 Instruction Format (45) K. Meinz, Summer 2004 © UCB

True Assembly Language (3/3)

 MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

 TAL (True Assembly Language): set of
instructions that can actuallz get
translated into a single machine
language instruction (32-bit binary string)

o rogram must be converted from MAL
into TAL before translation into 1s & 0s.

Q CS 61C L3.1.2 Instruction Format (46) K. Meinz, Summer 2004 © UCB

Questions on Pseudoinstructions

e Question:
 How does MIPS recognize pseudo-
iInstructions?
e Answer:

* It looks for officially defined pseudo-
iInstructions, such as ror and move

* It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

Q CS 61C L3.1.2 Instruction Format (47) K. Meinz, Summer 2004 © UCB

Decoding Machine Language

 How do we convert 1s and 0s to C code?
Machine language — C?

 For each 32 bits:

* Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise |-Format.

* Use instruction type to determine which
fields exist.

* Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

* Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS 61C L3.1.2 Instruction Format (48) K. Meinz, Summer 2004 © UCB

Decoding Example (1/7)

*Here are six machine language
instructions in hexadecimal:

00001025,
0005402A, ..,
11000003, ..,
00441020,
20A5FFFF, .
08100001,

e Let the first instruction be at address
4,194,304, (0x00400000,.,).

* Next step: convert hex to binary

Q CS 61C L3.1.2 Instruction Format (49) K. Meinz, Summer 2004 © UCB

Decoding Example (2/7)

* The six machine language instructions in
binary:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
0010000010100101111117111111111111
00001000000100000000000000000001

* Next step: identify opcode and format

R 0 rs rt rd |shamt| funct
111,4-31] rs rt immediate
Jl2or3 target address

ﬂ CS 61C L3.1.2 Instruction Format (50)

K. Meinz, Summer 2004 © UCB

Decoding Example (3/7)

* Select the opcode (first 6 bits)
to determine the format:

Format:

R {00000000000000000001000000100101
R |00000000000001010100000000101010
| |00010001000000000000000000000011
R |00000000010001000001000000100000
| |001000001010010111111111171171171171171111
J |00001G00000100000000000000000001

* Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

Q Next step: separation of fields

CS 61C L3.1.2 Instruction Format (51)

K. Meinz, Summer 2004 © UCB

Decoding Example (4/7)

* Fields separated based on format/opcode:
Format:

R| 0 0 0 2 0 37 |
R
[4 8 0 +3

R[0 2 4 2 0 32

[s 5 5 -1

N 1,048,577

* Next step: translate (“disassemble”) to
MIPS assembly instructions

Q CS 61C L3.1.2 Instruction Format (52) K. Meinz, Summer 2004 © UCB

Decoding Example (5/7)

 MIPS Assembly (Part 1):

Address: Assembly instructions:
0x00400000 or $2,%0,3%0
0x00400004 st $8,%0,%$5
0x00400008 be $8,%0,3
0x0040000c ad $2,%$2,%4
0x00400010 addr $5,%5,-1
0x00400014 J 0x100001

* Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

Q CS 61C L3.1.2 Instruction Format (53) K. Meinz, Summer 2004 © UCB

Decoding Example (6/7)

* MIPS Assembly (Part 2):

or
Loop: slt
beo
add

qdc'

i J
ExXit:

$v0,$0,$0
$t0,%$0, %al
$t0,$0,Ex1t
$vO0,$v0, $al
$al,%al,-1
Loop

 Next step: translate to C code

(be creative!)

CS 61C L3.1.2 Instruction Format (54)

K. Meinz, Summer 2004 © UCB

Decoding Example (7/7)

Before Hex: .« After C code (Mapping below)
$vO: product

00001025, $a0: multiplicand

0005402A, ... $al: multiplier

110000030, o ov = o,

oaezeee™ while (multiplier > 0) {
hex product += multiplicand;

08100001, \ multiplier -= 1;

or $v0,%$0,%$0
Loop: slt $t0,%$0,%al Demonstrated Big 61C

beq $t0,30,EXIT| |dea: Instructions are
add $v0,3v0,3a0 | 5,5t numbers, code is

addi $al,%al,-1]
I Loop treated like data

Exit:
R S — K. Meinz, Summer 2004 © UCB

In conclusion

* Disassembly is simple and starts by
decoding opcode field.

* Be creative, efficient when authoring C

 Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)

* Only TAL can be converted to raw binary
« Assembler’s job to do conversion
 Assembler uses reserved register $at

* MAL makes it much easier to write MIPS

Q CS 61C L3.1.2 Instruction Format (56) K. Meinz, Summer 2004 © UCB

Bonus: Binary Compatibility

 Programs are distributed in binary form
- Programs bound to specific instruction set
- Different version for Macintoshes and PCs

* New machines want to run old programs
g“blnarl_es”) as well as programs compiled
o0 new instructions

* Leads to instruction set evolving over time

* Selection of Intel 8086 in 1981 for 1st IBM
PC is major reason latest PCs still use
80x86 instruction set (Pentium 4); could
still run program from 1981 PC today

Q CS 61C L3.1.2 Instruction Format (57) K. Meinz, Summer 2004 © UCB

