
CS 61C L4.1.1 Combinational Logic (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 4.1.1

Logic Gates and
Combinational Logic

2004-07-12

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L4.1.1 Combinational Logic (2) K. Meinz, Summer 2004 © UCB

61C

What are “Machine Structures”?

Coordination of many levels of abstraction

I/O systemProcessor

Compiler
Operating

System
(MacOS X)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

We’ll investigate lower abstraction layers!
(contract between HW & SW)

CS 61C L4.1.1 Combinational Logic (3) K. Meinz, Summer 2004 © UCB

Below the Program
• High-level language program (in C)

swap int v[], int k){
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

• Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000 . . .

C compiler

assembler

?

CS 61C L4.1.1 Combinational Logic (4) K. Meinz, Summer 2004 © UCB

Physical Hardware - PowerPC 750

CS 61C L4.1.1 Combinational Logic (5) K. Meinz, Summer 2004 © UCB

Digital Design Basics (1/2)

• Next 4 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

• Why study logic design?
• Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

• Background for more detailed hardware
courses (CS 150, CS 152)

CS 61C L4.1.1 Combinational Logic (6) K. Meinz, Summer 2004 © UCB

Digital Design Basics (2/2)

• ISA is very important abstraction layer
• Contract between HW and SW
• Can you peek across abstraction?
• Can you depend “across abstraction”?

• Voltages are analog, quantized to 0/1
• Circuit delays are fact of life
• Two types

• Stateless Combinational Logic (&,|,~)
• State circuits (e.g., registers)

CS 61C L4.1.1 Combinational Logic (7) K. Meinz, Summer 2004 © UCB

Outline

• Transistors
• Logic Gates
• Combinational Logic
• Boolean Algebra

CS 61C L4.1.1 Combinational Logic (8) K. Meinz, Summer 2004 © UCB

Transistors (1/3)

CMOSFET Transistors:

* Physically exist!

* Voltages are quantized

* Only 2 Types:
- P-channel:

0 on gate -> pull up (1)
- N-channel:

1 on gate -> pull down (0)

* Undriven otherwise.

n:

p:

CS 61C L4.1.1 Combinational Logic (9) K. Meinz, Summer 2004 © UCB

Transistors (2/3)

CMOSFET Transistors:

* have delay and require power

* can be combined to perform
logical operations and maintain
state.

- logical operations will be
our starting point for digital
design

- state tomorrow

CS 61C L4.1.1 Combinational Logic (10) K. Meinz, Summer 2004 © UCB

Transistors (3/3): CMOS Nand

A B C
0 0 1
0 1 1
1 0 1
1 1 0

CS 61C L4.1.1 Combinational Logic (11) K. Meinz, Summer 2004 © UCB

Logic Gates (1/4)
• Transistors are too low level

• Good for measuring performance, power.
• Bad for logical design / analysis

• Gates are collections of transistors
wired in a certain way

• Can represent and reason about gates with
truth tables and Boolean algebra

• Assume know truth tables and Boolean
algebra from a math or circuits course.

• Section B.2 in the textbook has a review

CS 61C L4.1.1 Combinational Logic (12) K. Meinz, Summer 2004 © UCB

Logic Gates (2/4)

CS 61C L4.1.1 Combinational Logic (13) K. Meinz, Summer 2004 © UCB

Logic Gates (3/4)

AND Gate

CA
B

Symbol

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition

AN

CS 61C L4.1.1 Combinational Logic (14) K. Meinz, Summer 2004 © UCB

Logic Gates (4/4)

CS 61C L4.1.1 Combinational Logic (15) K. Meinz, Summer 2004 © UCB

Truth Tables (1/6)

0

CS 61C L4.1.1 Combinational Logic (16) K. Meinz, Summer 2004 © UCB

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

011
101
110
000
yba

CS 61C L4.1.1 Combinational Logic (17) K. Meinz, Summer 2004 © UCB

TT (3/6): Example #2: 2-bit adder

CS 61C L4.1.1 Combinational Logic (18) K. Meinz, Summer 2004 © UCB

TT (4/6): Ex #3: 32-bit unsigned adder

CS 61C L4.1.1 Combinational Logic (19) K. Meinz, Summer 2004 © UCB

TT (5/6): Conversion: 3-input majority

CS 61C L4.1.1 Combinational Logic (20) K. Meinz, Summer 2004 © UCB

TT (6/6): Conversion: 3-input majority

CS 61C L4.1.1 Combinational Logic (21) K. Meinz, Summer 2004 © UCB

Combinational Logic (1/2)

A combinational logic block is one in
which the output is a function only of
its current input.

• Combinational logic cannot have memory.

• Everything we’ve seen so far is CL

• CL will have delay (f(transistors))
- More later.

CS 61C L4.1.1 Combinational Logic (22) K. Meinz, Summer 2004 © UCB

Representations of CL Circuits (2/2)…

• Logic Gates

• Truth Tables

• Boolean Algebra ? ? ?

CS 61C L4.1.1 Combinational Logic (23) K. Meinz, Summer 2004 © UCB

Boolean Algebra (1/7)

• George Boole, 19th Century
mathematician

• Developed a mathematical system
(algebra) involving logic, later known as
“Boolean Algebra”

• Primitive functions: AND, OR and NOT
• The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA
+ means OR,• means AND, x means NOT

CS 61C L4.1.1 Combinational Logic (24) K. Meinz, Summer 2004 © UCB

BA (2/7): e.g., for majority fun…

y = a • b + a • c + b • c
y = ab + ac + bc

CS 61C L4.1.1 Combinational Logic (25) K. Meinz, Summer 2004 © UCB

BA (3/7):Laws of Boolean Algebra

CS 61C L4.1.1 Combinational Logic (26) K. Meinz, Summer 2004 © UCB

BA (4/7): Circuit & Algebraic Simplification

CS 61C L4.1.1 Combinational Logic (27) K. Meinz, Summer 2004 © UCB

BA (5/7): Simplification Example

CS 61C L4.1.1 Combinational Logic (28) K. Meinz, Summer 2004 © UCB

BA (6/7): Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)

CS 61C L4.1.1 Combinational Logic (29) K. Meinz, Summer 2004 © UCB

BA (7/7): Canonical forms (2/2)

CS 61C L4.1.1 Combinational Logic (30) K. Meinz, Summer 2004 © UCB

“And In conclusion…”

• Use this table and techniques we
learned to transform from 1 to another

