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61C

What are “Machine Structures”?

Coordination of many levels of abstraction

I/O systemProcessor

Compiler
Operating

System
(MacOS X)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control 

transistors

MemoryHardware

Software Assembler

We’ll investigate lower abstraction layers!
(contract between HW & SW)
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Below the Program
• High-level language program (in C)

swap  int v[], int k){
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

• Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000 . . .

C compiler

assembler

?
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Physical Hardware - PowerPC 750
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Digital Design Basics (1/2)

• Next 4 weeks: we’ll study how a 
modern processor is built starting with 
basic logic elements as building 
blocks.

• Why study logic design?
• Understand what processors can do fast 
and what they can’t do fast (avoid slow 
things if you want your code to run fast!)

• Background for more detailed hardware 
courses (CS 150, CS 152)
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Digital Design Basics (2/2)

• ISA is very important abstraction layer
• Contract between HW and SW
• Can you peek across abstraction?
• Can you depend “across abstraction”?

• Voltages are analog, quantized to 0/1
• Circuit delays are fact of life
• Two types

• Stateless Combinational Logic (&,|,~)
• State circuits (e.g., registers)
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Outline

• Transistors
• Logic Gates
• Combinational Logic
• Boolean Algebra
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Transistors (1/3)

CMOSFET Transistors:

* Physically exist!

* Voltages are quantized

* Only 2 Types:
- P-channel: 

0 on gate -> pull up (1)
- N-channel: 

1 on gate -> pull down (0)

* Undriven otherwise.

n:

p:
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Transistors (2/3)

CMOSFET Transistors:

* have delay and require power 

* can be combined to perform 
logical operations and maintain 
state.

- logical operations will be 
our starting point for digital 
design

- state tomorrow
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Transistors (3/3): CMOS Nand

A B C
0 0 1
0 1 1
1 0 1
1 1 0
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Logic Gates (1/4)
• Transistors are too low level

• Good for measuring performance, power.
• Bad for logical design / analysis

• Gates are collections of transistors 
wired in a certain way

• Can represent and reason about gates with 
truth tables and Boolean algebra

• Assume know truth tables and Boolean 
algebra from a math or circuits course.  

• Section B.2 in the textbook has a review
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Logic Gates (2/4)
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Logic Gates (3/4)

AND Gate

CA
B

Symbol

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition

AN
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Logic Gates (4/4)
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Truth Tables (1/6)

0
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TT (2/6) Ex #1: 1 iff one (not both) a,b=1

011
101
110
000
yba
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TT (3/6): Example #2: 2-bit adder
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TT (4/6): Ex #3: 32-bit unsigned adder
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TT (5/6): Conversion: 3-input majority
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TT (6/6): Conversion: 3-input majority
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Combinational Logic (1/2)

A combinational logic block is one in 
which the output is a function only of 
its current input.

• Combinational logic cannot have memory.

• Everything we’ve seen so far is CL

• CL will have delay (   f(transistors)  )
- More later.
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Representations of CL Circuits (2/2)…

• Logic Gates                       

• Truth Tables                      

• Boolean Algebra                ? ? ?
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Boolean Algebra (1/7)

• George Boole, 19th Century 
mathematician

• Developed a mathematical system 
(algebra) involving logic, later known as 
“Boolean Algebra”

• Primitive functions: AND, OR and NOT
• The power of BA is there’s a one-to-one 
correspondence between circuits made 
up of AND, OR and NOT gates and 
equations in BA
+ means OR,• means AND, x means NOT
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BA (2/7): e.g., for majority fun…

y = a • b + a • c + b • c
y = ab + ac + bc
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BA (3/7):Laws of Boolean Algebra
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BA (4/7): Circuit & Algebraic Simplification
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BA (5/7): Simplification Example
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BA (6/7): Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)
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BA (7/7): Canonical forms (2/2)
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“And In conclusion…”

• Use this table and techniques we 
learned to transform from 1 to another


