
CS 61C L6.2.1 Cache II (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 6.2.1

Cache II

2004-07-28

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L6.2.1 Cache II (2) K. Meinz, Summer 2004 © UCB

Review: Memory Hierarchy Basics

• Programs exhibit “temporal locality” …
• If we just accessed it, chances are we’ll
access it again soon.

Or, more formally,
• The probability of accessing a particular
piece of data varies inversely with the time
since we last accessed it.

CS 61C L6.2.1 Cache II (3) K. Meinz, Summer 2004 © UCB

Review: Memory Hierarchy Basics

• Also “Spatial Locality”:
• Probability of accessing a certain piece
of data X increases as we access pieces
located around X.

• We use temporal and spatial locality to
approximate the working set of a
program.

CS 61C L6.2.1 Cache II (4) K. Meinz, Summer 2004 © UCB

Review: DM
• Mechanism for transparent movement of
data among levels of a storage hierarchy

• set of address/value bindings
• address ⇒ index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index offset

CS 61C L6.2.1 Cache II (5) K. Meinz, Summer 2004 © UCB

Review: Cache Design Decisions

• Direct Mapped is Very Good
• Fast Logic
• Efficient Hardware

• However, we can test out some
changes …

CS 61C L6.2.1 Cache II (6) K. Meinz, Summer 2004 © UCB

• Q0: How big are blocks?
• Q1: Where can a block be placed in
the cache? (Block placement)

• Q2: How is a block found if it is in the
cache?
(Block identification)

• Q3: Which block should be replaced
on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Review: Cache Design: Five Questions

CS 61C L6.2.1 Cache II (7) K. Meinz, Summer 2004 © UCB

Review: Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

Know these!

CS 61C L6.2.1 Cache II (8) K. Meinz, Summer 2004 © UCB

Outline

• DM Implementation
• Cache Miss Analysis
• Cache Associativity
• Cache Performance Model
• Write Strategies

CS 61C L6.2.1 Cache II (9) K. Meinz, Summer 2004 © UCB

Direct Mapped Cache

• Implementation of DM Cache
• Index selects block via mux
• Cache block tag and valid bit compared to {1, Requested Tag}
• Data is muxed again by offset.

Cache Data
Cache Block 0

Cache TagValid

:: :

=

{1, Adr Tag}

Hit

: :

Index Offset

Data

1

1 1

2

2

3

3

What’s missing?

CS 61C L6.2.1 Cache II (10) K. Meinz, Summer 2004 © UCB

• Q0: How big are blocks?
• Q1: Where can a block be placed in
the cache? (Block placement)

• Q2: How is a block found if it is in the
cache?
(Block identification)

• Q3: Which block should be replaced
on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Cache Design: Five Questions

CS 61C L6.2.1 Cache II (11) K. Meinz, Summer 2004 © UCB

Analysis of Cache Misses (1/2)

• “Three Cs” Model of Misses
• 1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

CS 61C L6.2.1 Cache II (12) K. Meinz, Summer 2004 © UCB

Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory

addresses map to the same cache location
• two blocks (which happen to map to the same

location) can keep overwriting each other
• big problem in direct-mapped caches

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger?

- Fails at some point

• Solution 2: Multiple distinct blocks can fit in the
same cache Index?!

CS 61C L6.2.1 Cache II (13) K. Meinz, Summer 2004 © UCB

Fully Associative Cache (1/3)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existent !!

• What does this mean?
• any block can go anywhere in the cache
• must compare with all tags in entire cache
to see if data is there

CS 61C L6.2.1 Cache II (14) K. Meinz, Summer 2004 © UCB

Fully Associative Cache (2/3)

• Fully Associative Cache (e.g., 16 B block)
• compare tags in parallel

Byte Offset

:

Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 15 :

Cache Tag
=

=
=

=

=
:

CS 61C L6.2.1 Cache II (15) K. Meinz, Summer 2004 © UCB

Fully Associative Cache (3/3)

• Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

• Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need ~16,000
comparators: infeasible

So where are FA caches feasible?

CS 61C L6.2.1 Cache II (16) K. Meinz, Summer 2004 © UCB

Third Type of Cache Miss

• Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• Capacity miss on data X If cache
has N blocks, and last access to X was >
N unique accesses ago.

- C.f. conflict miss on X last access to X
was < N unique accesses ago.

• This is the primary type of miss for
Fully Associative caches.

CS 61C L6.2.1 Cache II (17) K. Meinz, Summer 2004 © UCB

Compromise

• Can we compromise between FA and
DM?

• Insight: For most programs, it
becomes increasingly unlikely to have
more than 4 (or so) blocks in the
working set map to the same index.

• So, keep indexes from DM, but have a
little FA cache in each index …

CS 61C L6.2.1 Cache II (18) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (1/4)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct index
(called a set in this case)

• So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS 61C L6.2.1 Cache II (19) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (2/4)

• Summary:
• cache is direct-mapped with respect to
sets

• each set is fully associative
• Works like: N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS 61C L6.2.1 Cache II (20) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (3/4)

• Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS 61C L6.2.1 Cache II (21) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (4/4)

• What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS 61C L6.2.1 Cache II (22) K. Meinz, Summer 2004 © UCB

Associative Cache Example

• Recall this is how a
simple direct mapped
cache looked.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS 61C L6.2.1 Cache II (23) K. Meinz, Summer 2004 © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS 61C L6.2.1 Cache II (24) K. Meinz, Summer 2004 © UCB

Set Associative Cache Implementation

• Example: Two-way set associative cache
• Cache Index selects a “set” from the cache
• The two tags in the set are compared to the input in parallel
• Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS 61C L6.2.1 Cache II (25) K. Meinz, Summer 2004 © UCB

• Q0: How big are blocks?
• Q1: Where can a block be placed in
the cache? (Block placement)

• Q2: How is a block found if it is in the
cache?
(Block identification)

• Q3: Which block should be replaced
on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Cache Design: Five Questions

CS 61C L6.2.1 Cache II (26) K. Meinz, Summer 2004 © UCB

What to do on a write hit?

• Write-through
• update the word in cache block and
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

• Performance trade-offs?

CS 61C L6.2.1 Cache II (27) K. Meinz, Summer 2004 © UCB

• Q0: How big are blocks?
• Q1: Where can a block be placed in
the cache? (Block placement)

• Q2: How is a block found if it is in the
cache?
(Block identification)

• Q3: Which block should be replaced
on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

Cache Design: Five Questions

CS 61C L6.2.1 Cache II (28) K. Meinz, Summer 2004 © UCB

Block Replacement Policy (1/2)

• Direct-Mapped Cache: index completely
specifies position which position a
block can go in on a miss

• N-Way Set Assoc: index specifies a set,
but block can occupy any position
within the set on a miss

• Fully Associative: block can be written
into any position

• Question: if we have the choice, where
should we write an incoming block?

CS 61C L6.2.1 Cache II (29) K. Meinz, Summer 2004 © UCB

Block Replacement Policy (2/2)

• If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

• If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS 61C L6.2.1 Cache II (30) K. Meinz, Summer 2004 © UCB

Block Replacement Policy: LTNA

• Best replacement scheme:
• “Longest Time to Next Access”
• Kick out the block that won’t be used for
the longest time.

What’s wrong with this?

CS 61C L6.2.1 Cache II (31) K. Meinz, Summer 2004 © UCB

Block Replacement Policy: LRU

• LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

- Usually resort to random replacement

CS 61C L6.2.1 Cache II (32) K. Meinz, Summer 2004 © UCB

Block Replacement Example
• We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS 61C L6.2.1 Cache II (33) K. Meinz, Summer 2004 © UCB

Block Replacement Example: LRU
• Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0

set 1

0 2lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1
0
1 lru

lru24lru

set 0

set 1
0 4
1 lru

lru lru

CS 61C L6.2.1 Cache II (34) K. Meinz, Summer 2004 © UCB

Big Idea

• How to choose between associativity,
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

• influenced by technology & program
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is
large, cheap, and fast - on average

