CS61C : Machine Structures

Lecture 6.2.1
Cache ll

2004-07-28

Kurt Meinz

inst.eecs.berkeley.edu/~cs6lc

ﬂ CS 61C L6.2.1 Cache ll (1) K. Meinz, Summer 2004 © UCB

Review: Memory Hierarchy Basics

 Programs exhibit “temporal locality” ...

o If we just accessed it, chances are we’ll
access it again soon.

Or, more formally,

* The probability of accessing a particular
piece of data varies inversely with the time
since we last accessed It.

ﬂ CS 61C L6.2.1 Cache ll (2) K. Meinz, Summer 2004 © UCB

Review: Memory Hierarchy Basics

e Also “Spatial Locality”:

* Probability of accessing a certain piece
of data X increases as we access pieces
located around X.

*We use temporal and spatial locality to
approximate the working set of a
program.

ﬂ CS 61C L6.2.1 Cache Il (3) K. Meinz, Summer 2004 © UCB

Review: DM

 Mechanism for transparent movement of
data among levels of a storage hierarchy

eset of address/value bindings

eaddress = index to set of candidates
ecompare desired address with tag

eservice hit or miss
- load new block and binding on miss

address: Index

) 0000000001 {

A

uT539770x0—3 Ox4-7 Ox8-b Oxc-T
0 a) P.Jl;d;l)

Q CS 61C L6.2.1 Cache Il (4) K. Meinz, Summer 2004 © UCB

=)

N

Review: Cache Design Decisions

* Direct Mapped is Very Good
e Fast Logic
o Efficient Hardware

 However, we can test out some
changes ...

ﬂ CS 61C L6.2.1 Cache Il (5) K. Meinz, Summer 2004 © UCB

Review: Cache Design: Five Questions

» ¢« Q0: How big are blocks?

-%1: Where can a block be placed In
the cache?

eQ2: How is a block found if it is In the
cache?

* Q3: Which block should be replaced
on a miss?

*Q4: What happens on a write?

Q CS 61C L6.2.1 Cache Il (6) K. Meinz, Summer 2004 © UCB

Review: Block Size Tradeoff Conclusions

. M _ . :
I\P/“?]Sél ty R;g Exploits Spatial Locality

/ Fewer blocks:
/ compromises
temporal locality

Block Size Block Size
Average Increased Miss Penalty
Access 4 & Miss Rate

Time

>»Know these!

>
Q Block Size
CS 61C L6.2.1 Cache Il (7) K. Meinz, Summer 2004 © UCB

Outline

DM
e Cac

e Cac

mplementation

ne Miss Analysis

ne Associativity

e Cache Performance Model

* Write Strategies

ﬂ CS 61C L6.2.1 Cache Il (8)

K. Meinz, Summer 2004 © UCB

Direct Mapped Cache

 Implementation of DM Cache
* Index selects block via mux @

e Cache block tag and valid bit compared to {1, Requested Tag}@

« Data is muxed again by offset. @

{1, Adr Tag}

Inldex Offset

l Valid Cache Tag
(1)

Cache Data

Cache Block 0

e

> =

Q Hit ®What's missing?
CS 61C L6.2.1 Cache 11 (9)

=

Data

K. Meinz, Summer 2004 © UCB

Cache Design: Five Questions

> -%1: Where can a block be placed In
the cache?

eQ2: How is a block found if it is In the
cache?

* Q3: Which block should be replaced
on a miss?

*Q4: What happens on a write?

ﬂ CS 61C L6.2.1 Cache Il (10) K. Meinz, Summer 2004 © UCB

Analysis of Cache Misses (1/2)

e“Three Cs” Model of Misses

e 1st C. Compulsory Misses
eoccur when a program is first started

ecache does not contain any of that
program’s data yet, so misses are bound
to occur

ecan’t be avoided easily, so won’t focus
on these in this course

Q CS 61C L6.2.1 Cache Il (11) K. Meinz, Summer 2004 © UCB

Types of Cache Misses (2/2)

e 2nd C: Conflict Misses

 miss that occurs because two distinct memory
addresses map to the same cache location

» two blocks (which happen to map to the same
location) can keep overwriting each other

* big problem in direct-mapped caches

e Dealing with Conflict Misses
e Solution 1: Make the cache size bigger?
Fails at some point

e Solution 2: Multiple distinct blocks can fit in the
same cache Index?!

Q CS 61C L6.2.1 Cache Il (12) K. Meinz, Summer 2004 © UCB

Fully Associative Cache (1/3)

* Memory address fields:
 Tag: same as before
e Offset: same as before
e Index: non-existent € !!

 What does this mean?
any block can go anywhere in the cache

e must compare with all tags in entire cache
to see If data Is there

ﬂ CS 61C L6.2.1 Cache Il (13) K. Meinz, Summer 2004 © UCB

Fully Associative Cache (2/3)

* Fully Associative Cache (e.g., 16 B block)

ecompare tags in parallel

31 4 0
| Cache Tag (27 bits Tong) [Byte Offsef]
Cache Tag Valid Cache Data
O H EIIE'BJ
.- H
— O H

ﬂ CS 61C L6.2.1 Cache Il (14)

K. Meinz, Summer 2004 © UCB

Fully Associative Cache (3/3)

* Benefit of Fully Assoc Cache

 No Conflict Misses (since data can go
anywhere)

 Drawbacks of Fully Assoc Cache

 Need hardware comparator for every
single entry: If we have a 64KB of data in
cache with 4B entries, we need ~16,000
comparators: infeasible

» S0 where are FA caches feasible?

ﬂ CS 61C L6.2.1 Cache Il (15) K. Meinz, Summer 2004 © UCB

Third Type of Cache Miss

e Capacity Misses

e mMISS that occurs because the cache has
alimited size

e Miss that would not occur If we increase
the size of the cache

e Capacity miss on data X €=» If cache
has N blocks, and last access to X was >
N unique accesses ago.

- C.f. conflict miss on X €&=» |last access to X
was < N unigue accesses ago.

*This Is the primary type of miss for
Q Fully Associative caches.

CS 61C L6.2.1 Cache Il (16) K. Meinz, Summer 2004 © UCB

Compromise

« Can we compromise between FA and
DM?

*Insight: For most programs It
becomes mcreasmng unllkely to have
more than 4 (or so) blocks in the
working set map to the same index.

* S0, keep indexes from DM, but have a
little FA cache in each index .

Q CS 61C L6.2.1 Cache Il (17) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (1/4)

* Memory address fields:
 Tag: same as before
e Offset: same as before

e Index: points us to the correct index
(called a set Iin this case)

S0 what’s the difference?
e each set contains multiple blocks

eonce we've found correct set, must
compare with all tags in that set to find
our data

ﬂ CS 61C L6.2.1 Cache Il (18) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (2/4)

eSUMMary:

ecache is direct-mapped with respect to
sets

eeach set is fully associative

 Works like: N direct-mapped caches
working in parallel: each has its own
valid bit and data

ﬂ CS 61C L6.2.1 Cache Il (19) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (3/4)

e Given memory address:
* Find correct set using Index value.

« Compare Tag with all Tag values in the
determined set.

e If a match occurs, hit!, otherwise a miss.

e Finally, use the offset field as usual to
find the desired data within the block.

ﬂ CS 61C L6.2.1 Cache Il (20) K. Meinz, Summer 2004 © UCB

N-Way Set Associative Cache (4/4)

\What's so great about this?

eeven a 2-way set assoc cache avoids a
lot of conflict misses

 hardware cost isn’t that bad: only need N
comparators

e|n fact, for a cache with M blocks,

eit's
o|t’'S
eSOt

Direct-Mapped if it’s 1-way set assoc
~ully Assoc if it’s M-way set assoc

nese two are just special cases of the

more general set associative design

Q CS 61C L6.2.1 Cache I (21) K. Meinz, Summer 2004 © UCB

Associative Cache Example

Memory Cache 4 Byte Direct
Address Memory Index Mapped Cache
1
2

* Recall this is how a
simple direct mapped
cache looked.

&Uomzpcooo\l@mhwmpo

CS 61C L6.2.1 Cache Il (22) K. Meinz, Summer 2004 © UCB

Associative Cache Example

Memory Cache
Address Memory Index
0 = 0
1]
2 1
3
4
5
0
7
8 * Here's a simple 2 way set
A associlative cache.
B
C
D

ﬂ CS 61C L6.2.1 Cache Il (23) K. Meinz, Summer 2004 © UCB

Set Associative Cache Implementation

« Example: Two-way set associative cache

e Cache Index selects a “set” from the cache :

 The two tags in the set are compared to the input in parallel
e Data is selected based on the tag result

Valid Cache Tag

Cache Data

Cache Index

Cache Block 0

Cache Data

Cache Tag Valid

Cache Block 0

\

| Cache Block

ompare)+———

K. Meinz, Summer 2004 © UCB

Cache Design: Five Questions

* Q0: How big are blocks?

-%1 Where can a block be placed In
e cache? (Block placement)

eQ2: How is a block found if it Is In the
cache? -
(Block identification)

* Q3: Which block should be replaced
on a miss?
(Block replacement)

Q4: What happens on a write?

Cd (erte strategy)

CS 61C L6.2.1 Cache Il (25) K. Meinz, Summer 2004 © UCB

What to do on a write hit?

e Write-through

e update the word in cache block and
corresponding word in memory

« Write-back
e update word in cache block
e allow memory word to be “stale”

—> add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced

—> OS flushes cache before 1/0...

e Performance trade-offs?

ﬂ CS 61C L6.2.1 Cache Il (26) K. Meinz, Summer 2004 © UCB

Cache Design: Five Questions

* Q0: How big are blocks?

-%1 Where can a block be placed In
e cache? (Block placement)

eQ2: How is a block found if it Is In the
cache? -
(Block identification)

» +0Q3: Which block should be replaced
on a miss”?
(Block replacement)

Q4: What happens on a write?

cd (erte strategy)

CS 61C L6.2.1 Cache Il (27) K. Meinz, Summer 2004 © UCB

Block Replacement Policy (1/2)

*Direct-Mapped Cache: index completely
specifies position which position a
block can go in on a miss

*N-Way Set Assoc: index specifies a set,
but block can occupy any position
within the set on a miss

* Fully Associative: block can be written
iInto any position

e Question: If we have the choice, where
should we write an incoming block?

Q CS 61C L6.2.1 Cache Il (28) K. Meinz, Summer 2004 © UCB

Block Replacement Policy (2/2)

*|f there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

*|f all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out™ on a miss.

ﬂ CS 61C L6.2.1 Cache Il (29) K. Meinz, Summer 2004 © UCB

Block Replacement Policy: LTNA

* Best replacement scheme:
«“Longest Time to Next Access”

e Kick out the block that won’t be used for
the longest time.

® What’s wrong with this?

Q CS 61C L6.2.1 Cache Il (30) K. Meinz, Summer 2004 © UCB

Block Replacement Policy: LRU

 LRU (Least Recently Used)

e |dea: cache out block which has been
accessed (read or write) least recently

* Pro: temporal locality = recent past use
iImplies likely future use: in fact, this is a
very effective policy

e Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

- Usually resort to random replacement

Q CS 61C L6.2.1 Cache Il (31) K. Meinz, Summer 2004 © UCB

Block Replacement Example

\We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0,2,0,1,4,0,2,3,5,4

How many hits and how many misses
will there be for the LRU bloc
replacement policy?

Q CS 61C L6.2.1 Cache Il (32) K. Meinz, Summer 2004 © UCB

Block Replacement Example: LRU 1ocoioc1

«Addresses 0, 2,0, 1, 4,0, ... setd
0: miss, bring into set 0 (loc 0) set

| | | set O 2
2. miss, bring into set 0 (loc 1) st 1 |

O:m setO‘ 0]

set 1‘
. . 0
1: miss, bring into set 1 (loc 0) z: 1} (1) 2

4: miss, bring into set 0 (loc 1, replace 2) > O} 0] 4
set 1l

1
set O‘ 0 4
1

CS 61C L6.2.1 Cache 1l (33) K. Meinz, Summer 2004 © UCB

Big Idea

 How to choose between associativity,
block size, replacement policy?

e Design against a performance model

 Minimize: Average Memory Access Time
= Hit Time |
+ Miss Penalty x Miss Rate

* Influenced by technology & program
behavior

e Note:

eCreate t

Hit Time encompasses Hit Rate!!!

ne illusion of a memory that is

large, cheap, and fast - on average

Q CS 61C L6.2.1 Cache Il (34) K. Meinz, Summer 2004 © UCB

