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Big Idea

• How to choose between associativity, 
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time 
+  Miss Penalty x Miss Rate

• influenced by technology & program 
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is 
large, cheap, and fast - on average
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Example

• Assume 
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles (on top of hit)
• Calculate AMAT…

• Avg mem access time 
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles
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Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each 
block of memory – associativity

• fully-associative
- any block any line

• k-way set associated
- k places for each block
- direct map: k=1 
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Improving Miss Penalty
• When caches first became popular, 
Miss Penalty ~ 10 processor clock 
cycles

• Today 2400 MHz Processor (0.4 ns per 
clock cycle) and 80 ns to go to DRAM 
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and 
the processor cache: Second Level (L2) Cache
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Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit 
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = AMATL2 = 
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * 
(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)

L2 hit 
time L2 Miss Rate

L2 Miss Penalty
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Typical Scale

• L1 
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses 
that also miss in L2

• why so high?
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Example: with L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15%  (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles
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Example: without L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)
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Cache Summary

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

• Use performance model to pick 
between choices, depending on 
programs, technology, budget, ...
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Outline

• Exceptions
• Memory Mapped IO
• Exception Implementation
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Recall : 5 components of any Computer

Processor
(active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where 
programs, 
data live 
when
running)

Devices
Input

Output

Keyboard, 
Mouse

Display, 
Printer

Disk,
Network
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Motivation for Input/Output

• I/O is how humans interact with 
computers

• I/O gives computers long-term memory.
• I/O lets computers do amazing things:

• Read pressure of synthetic hand and control 
synthetic arm and hand of fireman

• Control propellers, fins, communicate 
in BOB (Breathable Observable Bubble)

• Computer without I/O like a car without 
wheels; great technology, but won’t get 
you anywhere
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I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 100-million-to-1) 
• Device Behavior Partner Data Rate 

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 1,000,000.00
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What do we need to make I/O work?

• A way to present them 
to user programs so 
they are useful

cmd reg.
data reg.

Operating System
APIsFiles

Proc Mem

• A way to connect many 
types of devices to the 
Proc-Mem

PCI Bus

SCSI Bus

• A way to control these 
devices, respond to 
them, and transfer data
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Instruction Set Architecture for I/O

• What must the processor do for I/O?
• Input:    reads a sequence of bytes 
• Output: writes a sequence of bytes

• Some processors have special input and 
output instructions

• Alternative model (used by MIPS):
• Use loads for input, stores for output
• Called “Memory Mapped Input/Output”
• A portion of the address space dedicated to 
communication paths to Input or Output 
devices (no memory there)
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Memory Mapped I/O

• Certain addresses are not regular 
memory

• Instead, they correspond to registers 
in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address
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Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute  1 
billion load or store instructions per 
second, or 4,000,000 KB/s data rate

• I/O devices data rates range from 0.01 
KB/s to 1,000,000 KB/s

• Input: device may not be ready to send 
data as fast as the processor loads it

• Also, might be waiting for human to act

• Output: device not be ready to accept 
data as fast as processor stores it

• What to do?
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Processor Checks Status before Acting
• Path to device generally has 2 registers:

• Control Register, says it’s OK to read/write 
(I/O ready) [think of a flagman on a road]

• Data Register, contains data

• Processor reads from Control Register 
in loop, waiting for device to set Ready
bit in Control reg (0 ⇒ 1) to say its OK

• Processor then loads from (input) or 
writes to (output) data register

• Load from or Store into Data Register 
Proc resets Ready bit (1 ⇒ 0) of Control 
Register
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SPIM/Proj4 I/O Simulation
• Simulate 1 I/O device: memory-mapped 
terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received 
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused
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SPIM I/O
• Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data 
Register not yet been read; 
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is 
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

• Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte, 
writes char to display
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I/O Example
• Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

• Processor waiting for I/O called “Polling”
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Cost of Polling?
• Assume for a processor with a 1GHz 
clock it takes 400 clock cycles for a 
polling operation (call polling routine, 
accessing the device, and returning). 
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss 
user movement

• Floppy disk: transfers data in 2-Byte units 
and has a data rate of 50 KB/second. 
No data transfer can be missed.

• Hard disk: transfers data in 16-Byte chunks 
and can transfer at 16 MB/second. Again, no 
transfer can be missed.
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% Processor time to poll [p. 677 in book]
Mouse Polling, Clocks/sec

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling: 
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
⇒ Polling mouse little impact on processor

Frequency of Polling Floppy
= 50 [KB/s] / 2 [B/poll] = 25K [polls/s]

• Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

• % Processor for polling: 
10*106 [clocks/s] / 1*109 [clocks/s] = 1%
⇒ OK if not too many I/O devices
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% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B] = 1M [polls/s]

• Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll] 
= 400M [clocks/s]

• % Processor for polling: 
400*106 [clocks/s] / 1*109 [clocks/s] = 40%
⇒ Unacceptable 
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What is the alternative to polling?

• Wasteful to have processor spend 
most of its time “spin-waiting” for I/O 
to be ready

• Would like an unplanned procedure 
call that would be invoked only when 
I/O device is ready

• Solution: use exception mechanism to 
help I/O.  Interrupt program when I/O 
ready, return when done with data 
transfer
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I/O Interrupt

• An I/O interrupt is like overflow 
exceptions except:

• An I/O interrupt is “asynchronous”
• More information needs to be conveyed

• An I/O interrupt is asynchronous with 
respect to instruction execution:

• I/O interrupt is not associated with any 
instruction, but it can happen in the middle 
of any given instruction

• I/O interrupt does not prevent any 
instruction from completion
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Definitions for Clarification

• Exception: signal marking that 
something “out of the ordinary” has 
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception
• Note: These are different from the 
book’s definitions.

• All I care about: that you know the 
difference between sync and async.
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Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to 
interrupt
service 
routine
(4) 
perform 
transfer

(5)

CS 61C L6.2.2 Interrupts (30) K. Meinz, Summer 2004 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
• Set Interrupt Enable bit to 1 have interrupt 
occur whenever Ready bit is set

Received 
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused
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Benefit of Interrupt-Driven I/O
• Find the % of processor consumed if the 
hard disk is only active 5% of the time.  
Assuming 500 clock cycle overhead for 
each transfer, including interrupt:

• Disk Interrupts/s = 16 MB/s / 16B/interrupt
= 1M interrupts/s

• Disk Interrupts, clocks/s 
= 1M interrupts/s * 500 clocks/interrupt 
= 500,000,000 clocks/s

• % Processor for during transfer: 
500*106 / 1*109 = 50%

• Disk active 5% ⇒ 5% * 50% ⇒ 2.5% 
busy
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Generalizing Interrupts

• We can handle all sorts of exceptions 
with interrupts.

• Big idea: jump to handler that knows 
what to do with each interrupt, then 
jump back

• Our types: syscall, overflow, mmio
ready.
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Generalizing Interrupts

• Must support:
• Jumping to handler

- On exception, proc sets nPC handlerAddr

• Knowing what happened/bookkeeping
- EPC: Reg holds ~inst at which nrpt occurred
- Cause: Holds the specific interrupt

• Jumping back to user program
- More bookkeeping (back to user mode)
- ~ “jr $EPC”
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Knowing what happened

• On exception, proc copies PC+4 into 
EPC:

assign exception = arith_excp | mem_excp | sys_excp
always @ (posedge clk)

if (exception) EPC <= PC + 4;

• Proc copies exception number into 
cause:

always @ (posedge clk) {
if (arith_excp) Cause <= 0x1;
else if (mem_excp) Cause <= 0x2;
else if (sys_excp) Cause <= 0x4; }
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Jumping to handler

New nPC mux:
assign nPC = (exception) ? 0x04000040

: old_npc;

• Overrides all other nPC signals
• Jump to handler takes priority over branch.
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In handler:

• Handler uses special regs/instrs to 
access exception data:

• $k0/$k1  (Why not $t0 … $t9?)
• mfc0 $reg $EPC
• mfc0 $reg $CAUSE

• When done, move EPC (or whatever) in 
$k0 and jr $k0.
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Proc Support for mfc0:

• mfc0 $reg X 
Lots of options:
• In decode as “add $reg X $0”:

- Mux in front of BusA <- ForwardA, Cause, EPC
- Mux in front of BusB <- ForwardB, 0

• In wb:
- Mux in front of regdst:

Regdst <- ALUout, MemOut, Cause, EPC

Which one do you think pipelines better?
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What about pipelining?!

• Precise Exceptions ⇒ State of the machine is preserved as 
if program executed up to (not including) the offending 
instruction

• All previous instructions completed
• Offending instruction and all following instructions act 

as if they have not even started
• Same system code will work on different 

implementations
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Exception/Interrupts: Implementation
5 instructions, executing in 5 different pipeline stages!
• Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory 

access; memory-protection violation
ID Undefined or illegal opcode; syscall
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation; memory error
• How do we stop the pipeline?  How do we restart it?
• Do we interrupt immediately or wait?
• How do we sort all of this out to maintain preciseness?
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Exception Handling

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PClw $2,20($5)

Regs

A im op rwn

detect bad instruction address

detect bad instruction

detect overflow

detect bad data address

Allow exception to take effect

Excp

Excp

Excp

Excp
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Another look at the exception problem

• Use pipeline to sort this out!
• Pass exception status along with instruction.
• Keep track of PCs for every instruction in pipeline.
• Don’t act on exception until it reaches WB stage

• When instruction reaches WB stage:
• Save PC ⇒ EPC, exc_status ⇒ cause, handler addr ⇒ PC
• Turn all instructions in earlier stages into noops!

Pr
og

ra
m

 F
lo

w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow
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Detailed implementation

• New pipeline regs:
• Valid <- If instr. Is not valid, no writes to regfile or mem

will occur. Invalids will not trigger exceptions
• iPC <- addr of the current instr. Will go into EPC
• Exception <- type of exception. Will go into cause.

• In each stage: if excepting, set except 
reg. “flag exception”

• In MEM, WB, only do write if Valid
• In WB: “raise exception” …
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Detailed implementation

• In WB:
if (ME/WB.Valid & ME/WB.Except) {
IF/DE.valid_in = DE/Ex.Valid_in = 

EX/ME.Valid_in = ME/WB.valid_in = 0;
npc ME/WB.iPC;
cause Me/WB.Except;
EPC Me/WB.iPC;


