
CS 61C L6.2.2 Interrupts (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 6.2.2

Interrupts

2004-07-29

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L6.2.2 Interrupts (2) K. Meinz, Summer 2004 © UCB

Big Idea

• How to choose between associativity,
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

• influenced by technology & program
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is
large, cheap, and fast - on average

CS 61C L6.2.2 Interrupts (3) K. Meinz, Summer 2004 © UCB

Example

• Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles (on top of hit)
• Calculate AMAT…

• Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS 61C L6.2.2 Interrupts (4) K. Meinz, Summer 2004 © UCB

Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• k-way set associated
- k places for each block
- direct map: k=1

CS 61C L6.2.2 Interrupts (5) K. Meinz, Summer 2004 © UCB

Improving Miss Penalty
• When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles

• Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS 61C L6.2.2 Interrupts (6) K. Meinz, Summer 2004 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = AMATL2 =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS 61C L6.2.2 Interrupts (7) K. Meinz, Summer 2004 © UCB

Typical Scale

• L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?
CS 61C L6.2.2 Interrupts (8) K. Meinz, Summer 2004 © UCB

Example: with L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS 61C L6.2.2 Interrupts (9) K. Meinz, Summer 2004 © UCB

Example: without L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)

CS 61C L6.2.2 Interrupts (10) K. Meinz, Summer 2004 © UCB

Cache Summary

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

• Use performance model to pick
between choices, depending on
programs, technology, budget, ...

CS 61C L6.2.2 Interrupts (11) K. Meinz, Summer 2004 © UCB

Outline

• Exceptions
• Memory Mapped IO
• Exception Implementation

CS 61C L6.2.2 Interrupts (12) K. Meinz, Summer 2004 © UCB

Recall : 5 components of any Computer

Processor
(active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS 61C L6.2.2 Interrupts (13) K. Meinz, Summer 2004 © UCB

Motivation for Input/Output

• I/O is how humans interact with
computers

• I/O gives computers long-term memory.
• I/O lets computers do amazing things:

• Read pressure of synthetic hand and control
synthetic arm and hand of fireman

• Control propellers, fins, communicate
in BOB (Breathable Observable Bubble)

• Computer without I/O like a car without
wheels; great technology, but won’t get
you anywhere

CS 61C L6.2.2 Interrupts (14) K. Meinz, Summer 2004 © UCB

I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 100-million-to-1)
• Device Behavior Partner Data Rate

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 1,000,000.00

CS 61C L6.2.2 Interrupts (15) K. Meinz, Summer 2004 © UCB

What do we need to make I/O work?

• A way to present them
to user programs so
they are useful

cmd reg.
data reg.

Operating System
APIsFiles

Proc Mem

• A way to connect many
types of devices to the
Proc-Mem

PCI Bus

SCSI Bus

• A way to control these
devices, respond to
them, and transfer data

CS 61C L6.2.2 Interrupts (16) K. Meinz, Summer 2004 © UCB

Instruction Set Architecture for I/O

• What must the processor do for I/O?
• Input: reads a sequence of bytes
• Output: writes a sequence of bytes

• Some processors have special input and
output instructions

• Alternative model (used by MIPS):
• Use loads for input, stores for output
• Called “Memory Mapped Input/Output”
• A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

CS 61C L6.2.2 Interrupts (17) K. Meinz, Summer 2004 © UCB

Memory Mapped I/O

• Certain addresses are not regular
memory

• Instead, they correspond to registers
in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

CS 61C L6.2.2 Interrupts (18) K. Meinz, Summer 2004 © UCB

Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

• I/O devices data rates range from 0.01
KB/s to 1,000,000 KB/s

• Input: device may not be ready to send
data as fast as the processor loads it

• Also, might be waiting for human to act

• Output: device not be ready to accept
data as fast as processor stores it

• What to do?

CS 61C L6.2.2 Interrupts (19) K. Meinz, Summer 2004 © UCB

Processor Checks Status before Acting
• Path to device generally has 2 registers:

• Control Register, says it’s OK to read/write
(I/O ready) [think of a flagman on a road]

• Data Register, contains data

• Processor reads from Control Register
in loop, waiting for device to set Ready
bit in Control reg (0 ⇒ 1) to say its OK

• Processor then loads from (input) or
writes to (output) data register

• Load from or Store into Data Register
Proc resets Ready bit (1 ⇒ 0) of Control
Register

CS 61C L6.2.2 Interrupts (20) K. Meinz, Summer 2004 © UCB

SPIM/Proj4 I/O Simulation
• Simulate 1 I/O device: memory-mapped
terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS 61C L6.2.2 Interrupts (21) K. Meinz, Summer 2004 © UCB

SPIM I/O
• Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data
Register not yet been read;
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

• Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte,
writes char to display

CS 61C L6.2.2 Interrupts (22) K. Meinz, Summer 2004 © UCB

I/O Example
• Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

• Processor waiting for I/O called “Polling”

CS 61C L6.2.2 Interrupts (23) K. Meinz, Summer 2004 © UCB

Cost of Polling?
• Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss
user movement

• Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

• Hard disk: transfers data in 16-Byte chunks
and can transfer at 16 MB/second. Again, no
transfer can be missed.

CS 61C L6.2.2 Interrupts (24) K. Meinz, Summer 2004 © UCB

% Processor time to poll [p. 677 in book]
Mouse Polling, Clocks/sec

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
⇒ Polling mouse little impact on processor

Frequency of Polling Floppy
= 50 [KB/s] / 2 [B/poll] = 25K [polls/s]

• Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

• % Processor for polling:
10*106 [clocks/s] / 1*109 [clocks/s] = 1%
⇒ OK if not too many I/O devices

CS 61C L6.2.2 Interrupts (25) K. Meinz, Summer 2004 © UCB

% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B] = 1M [polls/s]

• Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

• % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%
⇒ Unacceptable

CS 61C L6.2.2 Interrupts (26) K. Meinz, Summer 2004 © UCB

What is the alternative to polling?

• Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

• Would like an unplanned procedure
call that would be invoked only when
I/O device is ready

• Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

CS 61C L6.2.2 Interrupts (27) K. Meinz, Summer 2004 © UCB

I/O Interrupt

• An I/O interrupt is like overflow
exceptions except:

• An I/O interrupt is “asynchronous”
• More information needs to be conveyed

• An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

CS 61C L6.2.2 Interrupts (28) K. Meinz, Summer 2004 © UCB

Definitions for Clarification

• Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception
• Note: These are different from the
book’s definitions.

• All I care about: that you know the
difference between sync and async.

CS 61C L6.2.2 Interrupts (29) K. Meinz, Summer 2004 © UCB

Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to
interrupt
service
routine
(4)
perform
transfer

(5)

CS 61C L6.2.2 Interrupts (30) K. Meinz, Summer 2004 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
• Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS 61C L6.2.2 Interrupts (31) K. Meinz, Summer 2004 © UCB

Benefit of Interrupt-Driven I/O
• Find the % of processor consumed if the
hard disk is only active 5% of the time.
Assuming 500 clock cycle overhead for
each transfer, including interrupt:

• Disk Interrupts/s = 16 MB/s / 16B/interrupt
= 1M interrupts/s

• Disk Interrupts, clocks/s
= 1M interrupts/s * 500 clocks/interrupt
= 500,000,000 clocks/s

• % Processor for during transfer:
500*106 / 1*109 = 50%

• Disk active 5% ⇒ 5% * 50% ⇒ 2.5%
busy

CS 61C L6.2.2 Interrupts (32) K. Meinz, Summer 2004 © UCB

Generalizing Interrupts

• We can handle all sorts of exceptions
with interrupts.

• Big idea: jump to handler that knows
what to do with each interrupt, then
jump back

• Our types: syscall, overflow, mmio
ready.

CS 61C L6.2.2 Interrupts (33) K. Meinz, Summer 2004 © UCB

Generalizing Interrupts

• Must support:
• Jumping to handler

- On exception, proc sets nPC handlerAddr

• Knowing what happened/bookkeeping
- EPC: Reg holds ~inst at which nrpt occurred
- Cause: Holds the specific interrupt

• Jumping back to user program
- More bookkeeping (back to user mode)
- ~ “jr $EPC”

CS 61C L6.2.2 Interrupts (34) K. Meinz, Summer 2004 © UCB

Knowing what happened

• On exception, proc copies PC+4 into
EPC:

assign exception = arith_excp | mem_excp | sys_excp
always @ (posedge clk)

if (exception) EPC <= PC + 4;

• Proc copies exception number into
cause:

always @ (posedge clk) {
if (arith_excp) Cause <= 0x1;
else if (mem_excp) Cause <= 0x2;
else if (sys_excp) Cause <= 0x4; }

CS 61C L6.2.2 Interrupts (35) K. Meinz, Summer 2004 © UCB

Jumping to handler

New nPC mux:
assign nPC = (exception) ? 0x04000040

: old_npc;

• Overrides all other nPC signals
• Jump to handler takes priority over branch.

CS 61C L6.2.2 Interrupts (36) K. Meinz, Summer 2004 © UCB

In handler:

• Handler uses special regs/instrs to
access exception data:

• $k0/$k1 (Why not $t0 … $t9?)
• mfc0 $reg $EPC
• mfc0 $reg $CAUSE

• When done, move EPC (or whatever) in
$k0 and jr $k0.

CS 61C L6.2.2 Interrupts (37) K. Meinz, Summer 2004 © UCB

Proc Support for mfc0:

• mfc0 $reg X
Lots of options:
• In decode as “add $reg X $0”:

- Mux in front of BusA <- ForwardA, Cause, EPC
- Mux in front of BusB <- ForwardB, 0

• In wb:
- Mux in front of regdst:

Regdst <- ALUout, MemOut, Cause, EPC

Which one do you think pipelines better?

CS 61C L6.2.2 Interrupts (38) K. Meinz, Summer 2004 © UCB

What about pipelining?!

• Precise Exceptions ⇒ State of the machine is preserved as
if program executed up to (not including) the offending
instruction

• All previous instructions completed
• Offending instruction and all following instructions act

as if they have not even started
• Same system code will work on different

implementations

CS 61C L6.2.2 Interrupts (39) K. Meinz, Summer 2004 © UCB

Exception/Interrupts: Implementation
5 instructions, executing in 5 different pipeline stages!
• Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined or illegal opcode; syscall
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation; memory error
• How do we stop the pipeline? How do we restart it?
• Do we interrupt immediately or wait?
• How do we sort all of this out to maintain preciseness?

CS 61C L6.2.2 Interrupts (40) K. Meinz, Summer 2004 © UCB

Exception Handling

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PClw $2,20($5)

Regs

A im op rwn

detect bad instruction address

detect bad instruction

detect overflow

detect bad data address

Allow exception to take effect

Excp

Excp

Excp

Excp

CS 61C L6.2.2 Interrupts (41) K. Meinz, Summer 2004 © UCB

Another look at the exception problem

• Use pipeline to sort this out!
• Pass exception status along with instruction.
• Keep track of PCs for every instruction in pipeline.
• Don’t act on exception until it reaches WB stage

• When instruction reaches WB stage:
• Save PC ⇒ EPC, exc_status ⇒ cause, handler addr ⇒ PC
• Turn all instructions in earlier stages into noops!

Pr
og

ra
m

 F
lo

w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow

CS 61C L6.2.2 Interrupts (42) K. Meinz, Summer 2004 © UCB

Detailed implementation

• New pipeline regs:
• Valid <- If instr. Is not valid, no writes to regfile or mem

will occur. Invalids will not trigger exceptions
• iPC <- addr of the current instr. Will go into EPC
• Exception <- type of exception. Will go into cause.

• In each stage: if excepting, set except
reg. “flag exception”

• In MEM, WB, only do write if Valid
• In WB: “raise exception” …

CS 61C L6.2.2 Interrupts (43) K. Meinz, Summer 2004 © UCB

Detailed implementation

• In WB:
if (ME/WB.Valid & ME/WB.Except) {
IF/DE.valid_in = DE/Ex.Valid_in =

EX/ME.Valid_in = ME/WB.valid_in = 0;
npc ME/WB.iPC;
cause Me/WB.Except;
EPC Me/WB.iPC;

