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Outline

• Interrupts Review
• Virtual Memory
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SPIM/Proj4 I/O Simulation
• Simulate 1 I/O device: memory-mapped 
terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received 
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused
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SPIM I/O
• Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data 
Register not yet been read; 
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is 
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

• Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte, 
writes char to display
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Definitions for Clarification

• Exception: signal marking that 
something “out of the ordinary” has 
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception
• Note: These are different from the 
book’s definitions.

• All I care about: that you know the 
difference between sync and async.
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Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to 
interrupt
service 
routine
(4) 
perform 
transfer

(5)
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SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
• Set Interrupt Enable bit to 1 have interrupt 
occur whenever Ready bit is set

Received 
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused
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Generalizing Interrupts

• We can handle all sorts of exceptions 
with interrupts.

• Big idea: jump to handler that knows 
what to do with each interrupt, then 
jump back

• Our types: syscall, overflow, mmio
ready.
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OS: I/O Requirements
• The OS must be able to prevent:

• The user program from communicating with 
the I/O device directly

• If user programs could perform I/O directly:
• No protection to the shared I/O resources

• 3 types of communication are required:
• The OS must be able to give commands to the 
I/O devices

• The I/O device notify OS when the I/O device 
has completed an operation or an error

• Data transfers between memory and I/O device
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Kernel/User Mode

• Generally restrict device access to OS
• HOW?
• Add a “mode bit” to the machine: K/U
• Only allow SW in “kernel mode” to 
access device registers

• If user programs could access device 
directly?

• could destroy each others data, ...
• might break the devices, …
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Crossing the System Boundary

• System loads user program into 
memory and ‘gives’ it use of the 
processor

• Switch back
• SYSCALL

- request service
- I/O

• TRAP (overflow)
• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

System

User
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Syscall

• How does user invoke the OS?
•syscall instruction: invoke the kernel 
(Go to 0x80000080, change to kernel 
mode)

• By software convention, $v0 has system 
service requested: OS performs request
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Handling a Single Interrupt (1/3)

• An interrupt has occurred, then what?
• Automatically, the hardware copies PC 
into EPC ($14 on cop0) and puts correct 
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080, 
process enters kernel mode, and 
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause 
Register (bits 5 to 2 of $13 in cop0) and 
jumps to portion of interrupt handler 
which handles the current exception
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Handling a Single Interrupt (2/3)

• Sample Interrupt Handler Code
.text 0x80000080

mfc0  $k0,$13  # $13 is Cause Reg

sll $k0,$k0,26  # isolate

srl $k0,$k0,28  #   Cause bits

• Notes:
• Don’t need to save $k0 or $k1

- MIPS software convention to provide temp 
registers for operating system routines

- Application software cannot use them
• Can only work on CPU, not on cop0
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Handling a Single Interrupt (3/3)

• When the interrupt is handled, copy the 
value from EPC to the PC.

• Call instruction rfe (return from 
exception), which will return process to 
user mode and reset state to the way it 
was before the interrupt

• What about multiple interrupts?
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Modified Interrupt Handler (1/3)

• Problem: When an interrupt comes in, 
EPC and Cause get overwritten 
immediately by hardware.  Lost EPC 
means loss of user program.

• Solution: Modify interrupt handler.  
When first interrupt comes in:

• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority 
Level on Exception Stack

• re-enable interrupts
• continue handling current interrupt
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Modified Interrupt Handler (2/3)

• When next (or any later) interrupt comes 
in:

• interrupt the first one
• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority Level 
(and maybe more) on Exception Stack

• determine whether new one preempts old 
one

- if no, re-enable interrupts and continue with 
old one

- if yes, may have to save state for the old one, 
then re-enable interrupts, then handle new one
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Modified Interrupt Handler (3/3)

• Notes:
• Disabling interrupts is dangerous
• So we disable them for as short a time as 
possible: long enough to save vital info 
onto Exception Stack

• This new scheme allows us to handle 
many interrupts effectively.
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Details not covered

• MIPS has a field to record all pending 
interrupts so that none are lost while 
interrupts are off; in Cause register

• The Interrupt Priority Level that the 
CPU is running at is set in memory

• MIPS has a field in that can mask 
interrupts of different priorities to 
implement priority levels; in Status 
register

• MIPS has limited nesting of saving 
KU,IE bits to recall in case higher 
priority interrupts; in Status Register
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Things to Remember

• Kernel Mode v. User Mode: OS can 
provide security and fairness

• Syscall: provides a way for a 
programmer to avoid having to know 
details of each I/O device

• To be acceptable, interrupt handler 
must:

• service all interrupts (no drops)
• service by priority
• make all users believe that no interrupt 
has occurred
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Improving Data Transfer Performance

• Thus far: OS give commands to I/O, 
I/O device notify OS when the I/O device 
completed operation or an error

• What about data transfer to I/O device?
• Processor busy doing loads/stores 
between memory and I/O Data Register

• Ideal: specify the block of memory to be 
transferred, be notified on completion?

• Direct Memory Access (DMA) : a simple 
computer transfers a block of data to/from 
memory and I/O, interrupting upon done
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Example:  code in DMA controller
• DMA code from Disk Device to Memory

.data
Count: .word  4096
Start: .space 4096

• DMA “computer” in parallel with CPU

.text
Initial: lw $s0, Count # No. chars

la $s1, Start # @next char
Wait: lw $s2, DiskControl

andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
lb $t0, DiskData # get byte
sb $t0, 0($s1) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$s1,1  # Start++
bne $s0,$0,Wait # next char
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VM
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Generalized Caching

• We’ve discussed memory caching in 
detail.  Caching in general shows up 
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but 
we want to do it repeatedly, do it once 
and cache the result.



CS 61C L7.1.1 VM I (25) K. Meinz, Summer 2004 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory
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Memory Hierarchy Requirements

• What else might we want from our memory 
subsystem? …

• Share memory between multiple processes but 
still provide protection – don’t let one program 
read/write memory from another

- Emacs on star

• Address space – give each process the illusion 
that it has its own private memory

- Implicit in our model of a linker

• Called Virtual Memory
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Virtual Memory Big Ideas

• Each address that a program uses (pc, 
$sp, $gp, .data, etc) is fake.

• Processor inserts new step:
• Every time we reference an address (in IF 
or MEM) …

• Translate fake address to real one.

virtual physical
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VM Ramifications

• Immediate consequences:
• Each program can operate in isolation!
• OS can decide where and when each goes in memory!
• HW/OS can grant different rights to different 

processes on same chunk of physical mem!
• Big question:

• How do we manage the VA PA mappings?

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(caches)

CS 61C L7.1.1 VM I (29) K. Meinz, Summer 2004 © UCB

Analogy

• Book title like virtual address
• Library of Congress call number like 
physical address

• Card catalogue like page table, 
mapping from book title to call number

• On card for book, in local library vs. in 
another branch like valid bit indicating 
in main memory vs. on disk

• On card, available for 2-hour in library 
use (vs. 2-week checkout) like access 
rights
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VM

• Ok, now how do we implement it?

• Simple solution: 
• Linker assumes start addr at 0x0.
• Each process has a $base and $bound:

- $base: start of physical address space
- $bound: size of physical address space

• Algorithms:
- VA PA Mapping:   PA = VA + $base
- Bounds check:        VA < $bound
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Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

• Same flaws as freelist
malloc!

• Also: what if process size 
> mem

• What to do??

Enough space for User D,
but discontinuous 
(“fragmentation problem”) 

so what’s wrong?

CS 61C L7.1.1 VM I (32) K. Meinz, Summer 2004 © UCB

VM Observations

• Working set of process is small, but 
distributed all over address space 

• Arbitrary mapping function, 
- keep working set in memory
- rest on disk or unallocated.

• Fragmentation comes from variable-
sized physical address spaces

• Allocate physical memory in fixed-sized 
chunks (1 mapping per chunk)

• FA placement of chunks
- i.e. any V chunk of any process can map to 

any P chunk of memory.
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Mapping Virtual Memory to Physical Memory 

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

• Divide into equal sized
chunks (about 4 KB - 8 KB)

0

• Any chunk of Virtual Memory 
assigned to any chunk of 
Physical Memory (“page”)
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Paging Organization

Addr
Trans
MAP

Page is unit 
of mapping

Page also unit of 
transfer from disk 
to physical memory

page   0 1K
1K

1K

0
1024

31744

Virtual 
MemoryVA

page   1

page 31

1K2048 page   2
...... ...

1KB Pages

VPN

page 00
1024

7168

PA
Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

PPN
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Virtual Memory Mapping Function

• Use table lookup (“Page Table”) for 
mappings: V Page number is index

• Mapping Function
• Physical Offset = Virtual Offset
• Physical Page Number
= PageTable[Virtual Page Number]

FYI: P.P.N. also called “Page Frame” or “Frame #”.

Page Number   Offset
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Address Mapping: Page Table

Virtual Address:
VPN        offset

Page Table  located in physical memory

index
into
page
table

PPN

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset
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Page Table

• A page table: mapping function 
• There are several different ways, all up to 
the operating system, to keep this data 
around.

• Each process running in the operating 
system has its own page table

- Historically, OS changes page tables by 
changing contents of Page Table Base 
Register
– Not anymore! We’ll explain soon.
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Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated 
to different processes (sharing)

• A process can only touch pages in its 
own page table (protection)

• Separate address spaces
• Since programs work only with virtual 
addresses, different programs can have 
different data/code at the same address!
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Page Table Entry (PTE) Format

• Contains either Physical Page Number 
or indication not in Main Memory

• OS maps to disk if Not Valid  (V = 0)

• If valid, also check if have permission 
to use page: Access Rights (A.R.) may 
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.
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Paging/Virtual Memory Multiple Processes
User B: 

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A 
Page
Table

B 
Page
Table

User A: 
Virtual Memory
∞

0
0

Physical
Memory

64 MB
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Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped, 
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back
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Notes on Page Table
• OS must reserve “Swap Space” on disk 
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence 
of Virtual Memory


