
CS 61C L7.1.1 VM I (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 7.1.1

VM I

2004-08-2

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L7.1.1 VM I (2) K. Meinz, Summer 2004 © UCB

Outline

• Interrupts Review
• Virtual Memory

CS 61C L7.1.1 VM I (3) K. Meinz, Summer 2004 © UCB

SPIM/Proj4 I/O Simulation
• Simulate 1 I/O device: memory-mapped
terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS 61C L7.1.1 VM I (4) K. Meinz, Summer 2004 © UCB

SPIM I/O
• Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data
Register not yet been read;
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

• Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte,
writes char to display

CS 61C L7.1.1 VM I (5) K. Meinz, Summer 2004 © UCB

Definitions for Clarification

• Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception
• Note: These are different from the
book’s definitions.

• All I care about: that you know the
difference between sync and async.

CS 61C L7.1.1 VM I (6) K. Meinz, Summer 2004 © UCB

Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to
interrupt
service
routine
(4)
perform
transfer

(5)

CS 61C L7.1.1 VM I (7) K. Meinz, Summer 2004 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
• Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS 61C L7.1.1 VM I (8) K. Meinz, Summer 2004 © UCB

Generalizing Interrupts

• We can handle all sorts of exceptions
with interrupts.

• Big idea: jump to handler that knows
what to do with each interrupt, then
jump back

• Our types: syscall, overflow, mmio
ready.

CS 61C L7.1.1 VM I (9) K. Meinz, Summer 2004 © UCB

OS: I/O Requirements
• The OS must be able to prevent:

• The user program from communicating with
the I/O device directly

• If user programs could perform I/O directly:
• No protection to the shared I/O resources

• 3 types of communication are required:
• The OS must be able to give commands to the
I/O devices

• The I/O device notify OS when the I/O device
has completed an operation or an error

• Data transfers between memory and I/O device
CS 61C L7.1.1 VM I (10) K. Meinz, Summer 2004 © UCB

Kernel/User Mode

• Generally restrict device access to OS
• HOW?
• Add a “mode bit” to the machine: K/U
• Only allow SW in “kernel mode” to
access device registers

• If user programs could access device
directly?

• could destroy each others data, ...
• might break the devices, …

CS 61C L7.1.1 VM I (11) K. Meinz, Summer 2004 © UCB

Crossing the System Boundary

• System loads user program into
memory and ‘gives’ it use of the
processor

• Switch back
• SYSCALL

- request service
- I/O

• TRAP (overflow)
• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

System

User

CS 61C L7.1.1 VM I (12) K. Meinz, Summer 2004 © UCB

Syscall

• How does user invoke the OS?
•syscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

• By software convention, $v0 has system
service requested: OS performs request

CS 61C L7.1.1 VM I (13) K. Meinz, Summer 2004 © UCB

Handling a Single Interrupt (1/3)

• An interrupt has occurred, then what?
• Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

CS 61C L7.1.1 VM I (14) K. Meinz, Summer 2004 © UCB

Handling a Single Interrupt (2/3)

• Sample Interrupt Handler Code
.text 0x80000080

mfc0 $k0,$13 # $13 is Cause Reg

sll $k0,$k0,26 # isolate

srl $k0,$k0,28 # Cause bits

• Notes:
• Don’t need to save $k0 or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them
• Can only work on CPU, not on cop0

CS 61C L7.1.1 VM I (15) K. Meinz, Summer 2004 © UCB

Handling a Single Interrupt (3/3)

• When the interrupt is handled, copy the
value from EPC to the PC.

• Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

• What about multiple interrupts?

CS 61C L7.1.1 VM I (16) K. Meinz, Summer 2004 © UCB

Modified Interrupt Handler (1/3)

• Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware. Lost EPC
means loss of user program.

• Solution: Modify interrupt handler.
When first interrupt comes in:

• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority
Level on Exception Stack

• re-enable interrupts
• continue handling current interrupt

CS 61C L7.1.1 VM I (17) K. Meinz, Summer 2004 © UCB

Modified Interrupt Handler (2/3)

• When next (or any later) interrupt comes
in:

• interrupt the first one
• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

• determine whether new one preempts old
one

- if no, re-enable interrupts and continue with
old one

- if yes, may have to save state for the old one,
then re-enable interrupts, then handle new one

CS 61C L7.1.1 VM I (18) K. Meinz, Summer 2004 © UCB

Modified Interrupt Handler (3/3)

• Notes:
• Disabling interrupts is dangerous
• So we disable them for as short a time as
possible: long enough to save vital info
onto Exception Stack

• This new scheme allows us to handle
many interrupts effectively.

CS 61C L7.1.1 VM I (19) K. Meinz, Summer 2004 © UCB

Details not covered

• MIPS has a field to record all pending
interrupts so that none are lost while
interrupts are off; in Cause register

• The Interrupt Priority Level that the
CPU is running at is set in memory

• MIPS has a field in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

• MIPS has limited nesting of saving
KU,IE bits to recall in case higher
priority interrupts; in Status Register

CS 61C L7.1.1 VM I (20) K. Meinz, Summer 2004 © UCB

Things to Remember

• Kernel Mode v. User Mode: OS can
provide security and fairness

• Syscall: provides a way for a
programmer to avoid having to know
details of each I/O device

• To be acceptable, interrupt handler
must:

• service all interrupts (no drops)
• service by priority
• make all users believe that no interrupt
has occurred

CS 61C L7.1.1 VM I (21) K. Meinz, Summer 2004 © UCB

Improving Data Transfer Performance

• Thus far: OS give commands to I/O,
I/O device notify OS when the I/O device
completed operation or an error

• What about data transfer to I/O device?
• Processor busy doing loads/stores
between memory and I/O Data Register

• Ideal: specify the block of memory to be
transferred, be notified on completion?

• Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and I/O, interrupting upon done

CS 61C L7.1.1 VM I (22) K. Meinz, Summer 2004 © UCB

Example: code in DMA controller
• DMA code from Disk Device to Memory

.data
Count: .word 4096
Start: .space 4096

• DMA “computer” in parallel with CPU

.text
Initial: lw $s0, Count # No. chars

la $s1, Start # @next char
Wait: lw $s2, DiskControl

andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
lb $t0, DiskData # get byte
sb $t0, 0($s1) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$s1,1 # Start++
bne $s0,$0,Wait # next char

CS 61C L7.1.1 VM I (23) K. Meinz, Summer 2004 © UCB

VM

CS 61C L7.1.1 VM I (24) K. Meinz, Summer 2004 © UCB

Generalized Caching

• We’ve discussed memory caching in
detail. Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but
we want to do it repeatedly, do it once
and cache the result.

CS 61C L7.1.1 VM I (25) K. Meinz, Summer 2004 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory

CS 61C L7.1.1 VM I (26) K. Meinz, Summer 2004 © UCB

Memory Hierarchy Requirements

• What else might we want from our memory
subsystem? …

• Share memory between multiple processes but
still provide protection – don’t let one program
read/write memory from another

- Emacs on star

• Address space – give each process the illusion
that it has its own private memory

- Implicit in our model of a linker

• Called Virtual Memory

CS 61C L7.1.1 VM I (27) K. Meinz, Summer 2004 © UCB

Virtual Memory Big Ideas

• Each address that a program uses (pc,
$sp, $gp, .data, etc) is fake.

• Processor inserts new step:
• Every time we reference an address (in IF
or MEM) …

• Translate fake address to real one.

virtual physical

CS 61C L7.1.1 VM I (28) K. Meinz, Summer 2004 © UCB

VM Ramifications

• Immediate consequences:
• Each program can operate in isolation!
• OS can decide where and when each goes in memory!
• HW/OS can grant different rights to different

processes on same chunk of physical mem!
• Big question:

• How do we manage the VA PA mappings?

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(caches)

CS 61C L7.1.1 VM I (29) K. Meinz, Summer 2004 © UCB

Analogy

• Book title like virtual address
• Library of Congress call number like
physical address

• Card catalogue like page table,
mapping from book title to call number

• On card for book, in local library vs. in
another branch like valid bit indicating
in main memory vs. on disk

• On card, available for 2-hour in library
use (vs. 2-week checkout) like access
rights

CS 61C L7.1.1 VM I (30) K. Meinz, Summer 2004 © UCB

VM

• Ok, now how do we implement it?

• Simple solution:
• Linker assumes start addr at 0x0.
• Each process has a $base and $bound:

- $base: start of physical address space
- $bound: size of physical address space

• Algorithms:
- VA PA Mapping: PA = VA + $base
- Bounds check: VA < $bound

CS 61C L7.1.1 VM I (31) K. Meinz, Summer 2004 © UCB

Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

• Same flaws as freelist
malloc!

• Also: what if process size
> mem

• What to do??

Enough space for User D,
but discontinuous
(“fragmentation problem”)

so what’s wrong?

CS 61C L7.1.1 VM I (32) K. Meinz, Summer 2004 © UCB

VM Observations

• Working set of process is small, but
distributed all over address space

• Arbitrary mapping function,
- keep working set in memory
- rest on disk or unallocated.

• Fragmentation comes from variable-
sized physical address spaces

• Allocate physical memory in fixed-sized
chunks (1 mapping per chunk)

• FA placement of chunks
- i.e. any V chunk of any process can map to

any P chunk of memory.

CS 61C L7.1.1 VM I (33) K. Meinz, Summer 2004 © UCB

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

• Divide into equal sized
chunks (about 4 KB - 8 KB)

0

• Any chunk of Virtual Memory
assigned to any chunk of
Physical Memory (“page”)

CS 61C L7.1.1 VM I (34) K. Meinz, Summer 2004 © UCB

Paging Organization

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk
to physical memory

page 0 1K
1K

1K

0
1024

31744

Virtual
MemoryVA

page 1

page 31

1K2048 page 2
...... ...

1KB Pages

VPN

page 00
1024

7168

PA
Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

PPN

CS 61C L7.1.1 VM I (35) K. Meinz, Summer 2004 © UCB

Virtual Memory Mapping Function

• Use table lookup (“Page Table”) for
mappings: V Page number is index

• Mapping Function
• Physical Offset = Virtual Offset
• Physical Page Number
= PageTable[Virtual Page Number]

FYI: P.P.N. also called “Page Frame” or “Frame #”.

Page Number Offset

CS 61C L7.1.1 VM I (36) K. Meinz, Summer 2004 © UCB

Address Mapping: Page Table

Virtual Address:
VPN offset

Page Table located in physical memory

index
into
page
table

PPN

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset

CS 61C L7.1.1 VM I (37) K. Meinz, Summer 2004 © UCB

Page Table

• A page table: mapping function
• There are several different ways, all up to
the operating system, to keep this data
around.

• Each process running in the operating
system has its own page table

- Historically, OS changes page tables by
changing contents of Page Table Base
Register
– Not anymore! We’ll explain soon.

CS 61C L7.1.1 VM I (38) K. Meinz, Summer 2004 © UCB

Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

• Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

CS 61C L7.1.1 VM I (39) K. Meinz, Summer 2004 © UCB

Page Table Entry (PTE) Format

• Contains either Physical Page Number
or indication not in Main Memory

• OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 61C L7.1.1 VM I (40) K. Meinz, Summer 2004 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

CS 61C L7.1.1 VM I (41) K. Meinz, Summer 2004 © UCB

Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 61C L7.1.1 VM I (42) K. Meinz, Summer 2004 © UCB

Notes on Page Table
• OS must reserve “Swap Space” on disk
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence
of Virtual Memory

