
CS 61C L7.1.2 VM II (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 7.1.2

VM II

2004-08-03

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L7.1.2 VM II (2) K. Meinz, Summer 2004 © UCB

Address Mapping: Page Table

Virtual Address:
VPN offset

Page Table located in physical memory

index
into
page
table

PPN

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset

CS 61C L7.1.2 VM II (3) K. Meinz, Summer 2004 © UCB

Page Table

• A page table: mapping function
• There are several different ways, all up to
the operating system, to keep this data
around.

• Each process running in the operating
system has its own page table

- Historically, OS changes page tables by
changing contents of Page Table Base
Register
– Not anymore! We’ll explain soon.

CS 61C L7.1.2 VM II (4) K. Meinz, Summer 2004 © UCB

Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

• Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

CS 61C L7.1.2 VM II (5) K. Meinz, Summer 2004 © UCB

Page Table Entry (PTE) Format

• Contains either Physical Page Number
or indication not in Main Memory

• OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 61C L7.1.2 VM II (6) K. Meinz, Summer 2004 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

CS 61C L7.1.2 VM II (7) K. Meinz, Summer 2004 © UCB

Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 61C L7.1.2 VM II (8) K. Meinz, Summer 2004 © UCB

Notes on Page Table
• OS must reserve “Swap Space” on disk
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence
of Virtual Memory

CS 61C L7.1.2 VM II (9) K. Meinz, Summer 2004 © UCB

VM Problems and Solutions

• TLB
• Paged Page Tables

CS 61C L7.1.2 VM II (10) K. Meinz, Summer 2004 © UCB

Virtual Memory Problem #1

• Map every address ⇒ 1 indirection via
Page Table in memory per virtual
address ⇒ 1 virtual memory accesses =
2 physical memory accesses ⇒ SLOW!

• Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages

• Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

• For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS 61C L7.1.2 VM II (11) K. Meinz, Summer 2004 © UCB

Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 32 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS 61C L7.1.2 VM II (12) K. Meinz, Summer 2004 © UCB

Typical TLB Format

Virtual Physical Dirty Ref Valid Access
Address Address Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
(much less than main memory access time)

• Dirty: since use write back, need to know whether
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

CS 61C L7.1.2 VM II (13) K. Meinz, Summer 2004 © UCB

What if not in TLB?

• Option 1: Hardware checks page table
and loads new Page Table Entry into
TLB

• Option 2: Hardware traps to OS, up to
OS to decide what to do

• MIPS follows Option 2: Hardware
knows nothing about page table

CS 61C L7.1.2 VM II (14) K. Meinz, Summer 2004 © UCB

What if the data is on disk?

• We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access – very fast!)
transfer

• Meantime we switch to some other
process waiting to be run

• When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data will be in memory

CS 61C L7.1.2 VM II (15) K. Meinz, Summer 2004 © UCB

What if we don't have enough memory?

• We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

• If clean (disk copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

• And update that program's page table
to reflect the fact that its memory
moved somewhere else

• If continuously swap between disk and
memory, called Thrashing

CS 61C L7.1.2 VM II (16) K. Meinz, Summer 2004 © UCB

Paging/Virtual Memory Review
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

TLB

CS 61C L7.1.2 VM II (17) K. Meinz, Summer 2004 © UCB

Virtual Memory Problem #1 Recap

• Slow:
• Every memory access requires:

- 1 access to PT to get VPN->PPN translation
- 1 access to MEM to get data at PA

• Solution:
• Cache the Page Table

- Make common case fast
- PT cache called “TLB”

• “block size” is just 1 VPN->PN mapping
• TLB associativity?

CS 61C L7.1.2 VM II (18) K. Meinz, Summer 2004 © UCB

Virtual Memory Problem #2

• Page Table too big!
• 4GB Virtual Memory ÷ 1 KB page
⇒ ~ 4 million Page Table Entries
⇒ 16 MB just for Page Table for 1 process,
8 processes ⇒ 256 MB for Page Tables!

• Spatial Locality to the rescue
• Each page is 4 KB, lots of nearby references
• But large page size wastes resources

• No matter how big program is, at any time
only accessing a few pages

• “Working Set”: recently used pages

CS 61C L7.1.2 VM II (19) K. Meinz, Summer 2004 © UCB

Solutions

• Page the Page Table itself!
• Works, but must be careful with never-
ending page faults

• Pin some PT pages to memory

• 2-level page table
• Solutions tradeoff in-memory PT size
for slower TLB miss

• Make TLB large enough, highly associative
so rarely miss on address translation

• CS 162 will go over more options and in
greater depth

CS 61C L7.1.2 VM II (20) K. Meinz, Summer 2004 © UCB

2-level Page Table

0

Physical
Memory64

MB

Virtual Memory
∞

Code

Static

Heap

Stack

0

...

2nd Level
Page Tables

Super
Page
Table

CS 61C L7.1.2 VM II (21) K. Meinz, Summer 2004 © UCB

Page Table Shrink :

• Single Page Table

Page Number Offset
20 bits 12 bits

• Multilevel Page Table

Page NumberSuper Page No. Offset

10 bits 10 bits 12 bits

• Only have second level page table for
valid entries of super level page table

• Exercise 7.35 explores exact space
savings

