

Administrative

- · Finish course material on Wed, Thurs.
- All next week will be review:
 - Review lectures (2 weeks/lecture)
 - No hw/labs*
 - Lab attendance still required. Checkoff points for showing up/finishing review material *
- Schedule: P4 out tonight, MT3 on Friday, Final next Friday, P4 due next Sat*.

* Subject to change

K. Meinz, Summer 2004 © UCB

Outline • Buses • Networks • Disks • RAID

Outline • Buses • Networks • Disks • RAID

Cal

Why Networks?

Originally sharing I/O devices between computers
(e.g., printers)

Then Communicating between computers
(e.g, file transfer protocol)

Then Communicating between people (e.g., email)

Then Communicating between networks of computers
⇒ File sharing, WWW, ...

Typical Types of Networks

- Local Area Network (Ethernet)
 - Inside a building: Up to 1 km
 - (peak) Data Rate: 10 Mbits/sec, 100 Mbits /sec,1000 Mbits/sec (1.25, 12.5, 125 MBytes/s)
 - Run, installed by network administrators
- Wide Area Network
 - Across a continent (10km to 10000 km)
 - (peak) Data Rate: 1.5 Mb/s to 10000 Mb/s
 - Run, installed by telecommunications companies (Sprint, UUNet[MCI], AT&T)

K. Meinz, Summer 2004 © UCB

A Simple Example: 2 Computers

What is Message Format?
Similar idea to Instruction Format
Fixed size? Number bits?

Length Data
8 bit 32 x Length bits
Header(Trailer): information to deliver message
Payload: data in message
What can be in the data?
anything that you can represent as bits
values, chars, commands, addresses...

Questions About Simple Example

- · What if message is garbled in transit?
- Add redundant information that is checked when message arrives to be sure it is OK
- 8-bit sum of other bytes: called "Check sum"; upon arrival compare check sum to sum of rest of information in message

Checksum

Net ID Net ID Len

Header

CMD/ Address /Data

Payload

Trailer

Cal

Math 55 talks about what a Check sum is...

K. Meinz, Summer 2004 © U

Questions About Simple Example

- What if message never arrives?
- Receiver tells sender when it arrives (ack) [ala registered mail], sender retries if waits too long
- Don't discard message until get "ACK" (for ACKnowledgment);
 Also, if check sum fails, don't send ACK

Checksum

CMD/ Address /Data

Payload Trailer

K. Meinz, Summer 2004 © UC

Observations About Simple Example

- Simple questions such as those above lead to more complex procedures to send/receive message and more complex message formats
- Protocol: algorithm for properly sending and receiving messages (packets)

K. Meinz, Summer 200

Software Protocol to Send and Receive

- SW Send steps
 - 1: Application copies data to OS buffer
 - 2: OS calculates checksum, starts timer
 - 3: OS sends data to network interface HW and says start
- SW Receive steps
 - 3: OS copies data from network interface HW to OS buffer
 - 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)
 - 1: If OK, OS copies data to user address space, & signals application to continue

CS 61C L7 2.1 Dieke & Naturarke (22)

K. Meinz, Summer 2004 @

Protocol for Networks of Networks?

- Internetworking: allows computers on independent and incompatible networks to communicate reliably and efficiently;
 - Enabling technologies: SW standards that allow reliable communications without reliable networks
 - Hierarchy of SW layers, giving each layer responsibility for portion of overall communications task, called protocol families or protocol suites
- Abstraction to cope with complexity of communication vs. Abstraction for complexity of computation

al

K. Meinz, Summer 2004 @ UCB

Protocol Family Concept

- Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-
- ...but is implemented via services at the next lower level
- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble

Protocol for Network of Networks

- Transmission Control Protocol/Internet Protocol (TCP/IP)
 - This protocol family is the basis of the Internet, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN

TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KB segments, adds 20B heäder
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (µs), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s
 - $= 8000b / (100b/\mu s) = 80 \mu s$

//Effective bandwidth: 8000b/(320+80)μs = 20 Mb/s

Shared vs. Switched Based Networks Shared Shared Media vs. Node Node Switched: in switched, Node pairs ("point-to-point" connections) communicate at same Node time; shared 1 at a time Crossbar Aggregate bandwidth (BW) in switched Switch Node Node network is many times shared: point-to-point faster since no arbitration, Node simpler interface

And in conclusion...

- Protocol suites allow heterogeneous networking
 - Another form of principle of abstraction
 - Protocols ⇒ operation in presence of failures
 - Standardization key for LAN, WAN
- Integrated circuit ("Moore's Law") revolutionizing network switches as well as processors
- Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth

Cal

Disk Performance Model /Trends

- Capacity: + 100% / year (2X / 1.0 yrs)
 Over time, grown so fast that # of platters has reduced (some even use only 1 now!)
- Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
- Rotation+Seek time: 8%/yr (1/2 in 10 yrs)
- Areal Density
 - Bits recorded along a track: Bits/Inch (BPI)
 - # of tracks per surface: Tracks/Inch (TPI)
 - We care about bit density per unit area Bits/Inch²
 - Called Areal Density = BPI x TPI
- MB/\$: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

K. Meinz, Summer 2004 © UC

Modern Disks: 1 inch disk drive!

- Not magnetic but ...
- •1gig Secure digital
 - Solid State NAND Flash
 - •1.2" x 0.9" x 0.08 (!!)
 - •11.6 GB/inch3

Cal

Meinz, Summer 20

Outline

- Buses
- Networks
- Disks
- RAID

V H-1-- 0-------

Use Arrays of Small Disks... Katz and Patterson asked in 1987: Can smaller disks be used to close of

• Can smaller disks be used to close gap in performance between disks and CPUs?

CS 61C L7.2.1 Disks & Networks (45)

K. Meinz, Summer 2004 © U

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

	IBM 3390K	IBM 3.5" 0061	x70
Capacity	y 20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. 9X
Power	3 KW	11 W	1 KW ^{3X}
Data Ra	te 15 MB/s	1.5 MB/s	120 MB/s 8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s 6X
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW,

but what about reliability?

K. Meinz, Summer 2004 © UC

Array Reliability

- Reliability whether or not a component has failed
- measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 Reliability of 1 Disk ÷ N
 (assuming failures independent)
 - •50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - <u>Availability</u>: service still provided to user, even if some components failed
- · Disks will still fail

S 61C L7.2.1 Disks & Networks (46)

- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

CS 61C L7.2.1 Disks & Networks (48)

K. Meinz, Summer 2004 © UCB

Berkeley History, RAID-I

- RAID-I (1989)
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25inch SCSI disks and specialized disk striping software
- Today RAID is \$27 billion dollar industry, 80% nonPC disks sold in RAIDs

K. Meinz, Summer 2004 © UC

"RAID 0": Striping

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

V Maine Summer 2004 © UCB

RAID 1: Mirror

- · Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- · Bandwidth reduced on write:
 - •1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead

CS 61C L7 2.1 Disks & Networks (51)

K. Meinz, Summer 2004 © UCE

RAID 3: Parity

- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)

CS 61C L7 2.1 Diebe & Naturarke (52)

K. Meinz, Summer 2004 ©

Inspiration for RAID 5

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old data to new data, add the difference to P: 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes: Write to A0, B1 => both write to P disk

RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

K. Meinz, Summer 2004 © UC

Magnetic Disk Summary

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/\$ improving 100%/yr?
 - Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per \$
 - Adds option for small # of extra disks
- Today RAID is > \$27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal

K. Meinz, Summer 2004 © UCR