CS61C : Machine Structures

Lecture 7.2.2
RAID & Performance

2004-08-05
Kurt Meinz

K. Meinz, Summer 2004 © ucs]

Use Arrays of Small Disks...

 Katz and Patterson asked in 1987:
« Can smaller disks be used to close gap in
performance between disks and CPUs?

Conventional:

4 disk - T
designs 3.5” 5.25” 10”
14”
| Low End ———~High End
Disk Array:
1 disk design

35" o T =)

@ CS61C 1722 RAID and K. Meinz, Summer 2004 © ucs]

Array Reliability
* Reliability - whether or not a component
has failea

*measured as Mean Time To Failure (MTTF)

« Reliability of N disks
= Reliability of 1 Disk + N
(assuming failures independent)

- 50,000 Hours + 70 disks = 700 hour

*Disk system MTTF:
Drops from 6 years to 1 month!

*Disk arrays (JBOD) too unreliable to be
useful!

Outline

*RAID

K, Meinz, Summer 2004 @ ucs|

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

IBM 3390K |BM 3.5" 0061 X70

Disk Arrays potentially high performance, high

MB per cu. ft., high MB per KW,
but what about reliability?

CS 61C 17,22 RAID and P

K. Meinz, Summer. 2004

Capacity | 20 GBytes 320 MBytes 23 GBytes
Volume 97 cu. ft. 0.1 cu. ft. 11 cu. ft. 9X
Power 3 KW 1MW 1KW 3X
Data Rate| 15 MB/s 1.5 MB/s 120 MB/s 8X
1/0 Rate 600 I/Os/s 55 1/0sls 3900 10s/s 6X
MTTF 250 KHrs 50 KHrs ??? Hrs
Cost $250K $2K $150K

ucs|

Redundant Arrays of (Inexpensive) Disks
*Files are "striped" across multiple disks

*Redundancy yields high data availability

* Availability: service still provided to user,
even if some components failed

* Disks will still fail

* Contents reconstructed from data
redundantly stored in the array
= Capacity penalty to store redundant info
= Bandwidth penalty to update redundant info

CS61CI722RAID AN K. Mein

Berkeley History, RAID-I

«RAID-I (1989)

« Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

*Today RAID is $27
billion dollar industry,
80% nonPC disks
sold in RAIDs

CS61C 1722 RAID and

K. Meinz, Summer 2004 © ucs]

RAID 1: Mirror

aRAADAAY

» Each disk is fuily duplicated onto its “mirror”
*Very high availability can be achieved

* Bandwidth reduced on write:
«1 Logical write = 2 physical writes

» Most expensive solution: 100% capacity
overhead

@ CS61C 1722 RAID and

K. Meinz, Summer. 20040 ucs]

Inspiration for RAID 5
«Small writes (write to one disk):

«Option 1: read other data disks, create new
sum and write to Parity Disk (access all disks)

« Option 2: since P has old sum, compare old
data to new data, add the difference to P:
1 logical write = 2 physical reads + 2 physical
writes to 2 disks

* Parity Disk is bottleneck for Small writes:
Write to A0, B1 => both write to P disk

CY O o
oo [[o] [[oo] [
o | (o] [[] |2

J IO T3 O s

“RAID 0”: Striping

RAID O

* Assume have 4 disks of data for this
example, organized in blocks

*Large accesses faster since transfer
from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html
CS 61C 1722 RAID and X Meinz, Summer 2004.© ucs|

RAID 3: Parity

* Parity computed across group to protect
against hard disk failures, stored in P disk

* Logically, a single high capacity, high transfer
rate disk

* 25% capacity cost for parity in this example vs.
100% for RAID 1 (5 disks vs. 8 disks)

CS61CL722 RAID and 10) K. Meinz, Summer 2004 © ucs|

RAID 5: Rotated Parity, faster small writes

RAID 5

Lol ¢

[

enevalasT o Vi 10T, baea

* Independent writes possible because of
interleaved parity

« Example: write to A0, B1 uses
disks 0, 1, 4, 5, so can proceed in parallel

« Still 1 small write = 4 physical disk accesses

Outline

*RAID
* Performance

¢Intro to x86

K. Meinz, Summer 2004 © ucs]

Two Notions of “Performance”
DCto | Top [Passen-| Throughput
Paris |Speed| gers (pmph)

Boeing 6.5 610
747 hours | mph 470 286,700

BAD/Sud 3 1350
Concorde | hours | mph

*Which has higher performance?
*Time to deliver 1 passenger?
*Time to deliver 400 passengers?
In a computer, time for 1 job called
Response Time or Execution Time
In a computer, jobs per day called
Throughput or Bandwidth

@ CS61C 1722 RAID and 15) K. Meinz, Summer 2004 © ucs]

Plane

132 178,200

Example of Response Time v. Throughput
» Time of Concorde vs. Boeing 7477
« Concord is 6.5 hours / 3 hours
= 2.2 times faster
» Throughput of Boeing vs. Concorde?
« Boeing 747: 286,700 pmph / 178,200 pmph
=1.6 times faster

» Boeing is 1.6 times (“60%”) faster in
terms of throughput

» Concord is 2.2 times (“120%”) faster in
terms of flying time (response time)

We will focus primarily on execution
I@time for a single job

CS61CI722 RAIDand ra) K Meinz,

Performance

*Purchasing Perspective: given a
collection of machines (or upgrade
options), which has the

- best performance ?
- least cost ?
- best performance / cost ?

* Computer Designer Perspective: faced
with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

+All require basis for comparison and
metric for evaluation

*Solid metrics lead to solid progress!

CS61C1L722 RAID and

inz, Summer 2004 © uce]

Definitions
*Performance is in units of things per sec
«bigger is better

«If we are primarily concerned with
response time

* performance(x) = 1
execution_time(x)
" F(ast) is n times faster than S(low) " means...
performance(F) execution_time(S)

n= =

@ performance(S) execution_time(F)

ucs|

Confusing Wording on Performance

«Will (try to) stick to “n times faster”;
its less confusing than “m % faster”

* As faster means both increased
performance and decreased execution
time, to reduce confusion will use
“improve performance” or
“improve execution time”

What is Time?
« Straightforward definition of time:

* Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...

«“real time”, “response time” or
“elapsed time”

« Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)

* “CPU execution time” or “CPU time”

* Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS61C 1722 RAID and 19) K. Meinz, Summer 2004 © ucs]

Measuring Time using Clock Cycles (1/2)

* CPU execution time for program

= Clock Cycles for a program
x Clock Cycle Time

eor

= Clock Cycles for a program
Clock Rate

@ CS61C 1722 RAID and K. Meinz, Summer 2004 © ucs]

Performance Calculation (1/2)

» CPU execution time for program
= Clock Cycles for program
x Clock Cycle Time

» Substituting for clock cycles:
CPU execution time for program
= (Instruction Count x CPI)
x Clock Cycle Time

= Instruction Count x CPI x Clock Cycle Time

How to Measure Time?
*User Time = seconds

«CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware

* These discrete time intervals called
clock cycles (or informally clocks or
cycles)

« Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

K, Meinz, Summer 2004 @ ucs|

Measuring Time using Clock Cycles (2/2)

*One way to define clock cycles:

Clock Cycles for program

= Instructions for a program
(called “Instruction Count”)

x Average Clock cycles Per Instruction
(abbreviated “CPI”)

*CPl one way to compare two machines
with same instruction set, since
Instruction Count would be the same

@ SS61CL722RAD and K. Meinz, Summer 2004

ucs|

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle
CPU time =Tnstructions x Cycles x Seconds

Program Instruction. Cycle
CPU time =TInstructions x €yeles_ x Seconds

Program Instructien. —Cyele—
CPU time = Seconds

‘Program

¢ Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS61CI722RAID AN K. Mein

How Calculate the 3 Components?

«Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

¢ Instruction Count:
» Count instructions in loop of small program

* Use simulator to count instructions
* Hardware counter in spec. register
- (Pentium IL,l1,4)
*CPI:

« Calculate: Execution Time / Clock cycle time
Instruction Count

IQHardware counter in special register (PIi,l1,4)

CS61C 1722 RAID and (25) K. Meinz, Summer 2004 © ucs]

Example (RISC processor)

Op Freq; CPl; Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 3 (14%)
Branch | 20% 2 4 (18%)

Instruction Mix 2'2(Where time spent)

« What if Branch instructions twice as fast?

@ CS61C 1722 RAID and K. Meinz, Summer 2004 © ucs]

What Programs Measure for Comparison?

ldeally run t{gical programs with
typical input before purchase,
or before even build machine

« Called a “workload”; For example:
* Engineer uses compiler, spreadsheet
* Author uses word processor, drawing
program, compression software
*In some situations it’s hard to do

*Don’t have access to machine to
“benchmark” before purchase

*Don’t know workload in future

Calculating CPI Another Way

«First calculate CPI for each individual
instruction (add, sub, and, etc.)

* Next calculate frequency of each
individual instruction

*Finally multiply these two for each
instruction and add them up to get
final CPI (the weighted sum)

K, Meinz, Summer 2004 @ ucs|

Example: What about Caches?

» Can Calculate Memory portion of CPI separately

* Miss rates: say L1 cache = 5%, L2 cache = 10%

» Miss penalties: L1 = 5 clock cycles, L2 = 50 clocks

* Assume miss rates, miss penalties same for

instruction accesses, loads, and stores

° CPImemory
= Instruction Frequency * L1 Miss rate *

(L1 miss penalty + L2 miss rate * L2 miss penalty)

+ Data Access Frequency * L1 Miss rate *

(L1 miss penalty + L2 miss rate * L2 miss penalty)
=100%*5%*(5+10%*50)+(20%+10%)*5%*(5+10%*50)
= 5%*(10)+(30%)*5%*(10) = 0.5 + 0.15 = 0.65

ﬁa" CPI=2.2 +0.65=2.85
CS 61C 1722 RAID and P K, Moinz, Summer 2004 © uca|

Example Standardized Benchmarks (1/2)

«Standard Performance Evaluation
Corporation (SPEC) SPEC CPU2000

+CINT2000 12 integer (gzip, gcc, crafty, perl, ...)
+ CFP2000 14 floating-point (swim, mesa, art, ...)

« All relative to base machine
Sun 300MHz 256Mb-RAM Ultra5_10, which
gets score of 100

= www.spec.org/osg/cpu2000/
* They measure
- System speed (SPECint2000)
- System throughput (SPECint_rate2000)

Example Standardized Benchmarks (2/2)
*SPEC
« Benchmarks distributed in source code

* Big Company representatives select workload
- Sun, HP, IBM, etc.

« Compiler, machine designers target
benchmarks, so try to change every 3 years

K. Meinz, Summer 2004 © ucs]

Performance Evaluation

*Good products created when have:

* Good benchmarks
* Good ways to summarize performance

*Given sales is a function of
performance relative to competition,
should invest in improving product as
reported by performance summary?

«If benchmarks/summary inadequate,
then choose between improving
product for real programs vs.
improving product to get more sales;
Sales almost always wins!

@ CS61C 1722 RAID and K. Meinz, Summer 2004 © ucs]

Outline

«RAID
* Performance

*Intro to x86

Example PC Workload Benchmark

* PCs: Ziff-Davis Benchmark Suite

« “Business Winstone is a system-level,
application-based benchmark that measures
a PC's overall performance when running
today's top-selling Windows-based 32-bit
applications... it doesn’t mimic what these
packages do; it runs real applications
through a series of scripted activities and
uses the time a PC takes to complete those
activities to produce its performance scores.

« Also tests for CDs, Content-creation, Audio,
3D graphics, battery life

http://www.etestinglabs.com/benchmarks/

CS 61C 1722 RAID and (32) K, Meinz, Summer 2004 @ ucs|

“And in conclusion...”

«Benchmarks
» Attempt to predict performance
«Updated every few years

* Measure everything from simulation of
desktop graphics programs to battery life

*Megahertz Myth
* MHz # performance, it’s just one factor

«It’s non-trivial to try to help people in
developing countries with technology

*Viruses have damaging potential the
likes of which we can only imagine.

Meinz, Summer. 20040 ucs|

CS 61C 17,22 RAID and P

MIPS is example of RISC

*RISC = Reduced Instruction Set
Computer

*Term coined at Berkeley, ideas pioneered
by IBM, Berkeley, Stanford
*RISC characteristics:
« Load-store architecture
« Fixed-length instructions (typically 32 bits)
* Three-address architecture
*RISC examples: MIPS, SPARC,

IBM/Motorola PowerPC, Compaq Alpha,
ARM, SH4, HP-PA, ...

CS61CI722 RAID and K. Mein

MIPS vs. 80386

* Address: 32-bit * 32-bit
* Page size: 4KB +4KB
« Data aligned » Data unaligned

* Destination reg: Left < Right
eadd $rd,$rsl,$rs2 eadd %rsi,%rs2,%rd

*Regs: $0, $1, ..., $31 +%r0, %r1, ..., %r7
*Reg =0: $0 *(n.a.)
* Return address: $31 ¢ (n.a.)

K. Meinz, Summer 2004 © ucs]

MIPS vs. Intel 80x86
*MIPS: “load-store architecture”

*Only Load/Store access memory; rest
operations register-register; e.g.,
Iw $t0, 12($gp)
add $s0,%$s0,$t0 # sO0=sO+Mem[12+gp]

« Benefit: simpler hardware = easier to pipeline,
higher performance

*x86: “reqgister-memory architecture”

« All operations can have an operand in memory;
other operand is a register; e.g.,

add 12(%gp) ,%s0 # sO0=s0+Mem[12+gp]
Benefit: fewer instructions = smaller code

CS61C 1722 RAIDand

K. Meinz, Summer 2004 © ucs]

Unusual features of 80x86

*8 32-bit Registers have names;
16-bit 8086 names with “e” prefix:
=eax, ecx, edx, ebx, esp, ebp, esi, edi

*80x86 word is 16 bits, double word is 32 bits
*PC is called eip (instruction pointer)

*leal (load effective address)

« Calculate address like a load, but load address
into register, not data

* Load 32-bit address:

leal -4000000(%ebp) ,%esi
z # esi = ebp - 4000000

CS61CI722 RAIDand K Meinz,

MIPS vs. Intel 80x86

*MIPS: “Three-address architecture”
« Arithmetic-logic specify all 3 operands
add $s0,$s1,$s2 # sO=sl+s2
« Benefit: fewer instructions = performance

*x86: “Two-address architecture”

*Only 2 operands,
so the destination is also one of the sources

add $s1,$s0 # s0=s0+sl
« Often true in C statements: c += b;

z « Benefit: smaller instructions = smaller code

CS61C 1722 RAID and 38) K, Meinz, Summer 2004 @ ucs|

MIPS vs. Intel 80x86

*MIPS: “fixed-length instructions”
« All instructions same size, e.g., 4 bytes
«simple hardware = performance
*branches can be multiples of 4 bytes

*x86: “variable-length instructions”
« Instructions are multiple of bytes: 1 to 17;
= small code size (30% smaller?)

* More Recent Performance Benefit:
better instruction cache hit rates

¢ Instructions can include 8- or 32-bit immediates

CS 61C 17,22 RAID and P 4 K. Moinz, Summer 20040 ucs|

Instructions:MIPS vs. 80x86
¢ addu, addiu « addl
e subu e subl

eand,or, xor «andl, orl, xorl

esll, srl, sra esall, shrl, sarl

o lw emovl mem, reg
*SW *movl reg, mem
* mov emovl reg, reg
ol emovl imm, reg

e lui en.a.

80386 addressing (ALU instructions too)

*base reg + offset (like MIPS)
emovl -8000044(%ebp), %eax

*base reg + index reg (2 regs form addr.)
emovl (%eax,%ebx),%edi
edi = Mem[ebx + eax]
*scaled reg + index (shift one reg by 1,2)
emov 1 (%eax,%edx,4) ,%ebx
ebx = Mem[edx*4 + eax]
*scaled reg + index + offset
emovl 12(%eax,%edx,4) ,%ebx

@ # ebx = Mem[edx*4 + eax + 12]

CS61C 1722 RAID and

K. Meinz, Summer 2004 © ucs]

Branch: MIPS vs. 80x86

*beq s (cmpl;) je
if previous operation
set condition code, then
cmpl unnecessary

*bne * (cmpl;) jne

*slt; beq «(cmpl;) jlt

*slt; bne e (cmpl;) jge

e jal ecall

ojr $31 *ret

@ CS61CL722 RAID and K, Meinz, Summer 2004 © ucs)

Unusual features of 80x86

*Memory Stack is part of instruction set

«call places return address onto stack,
increments esp (Mem[esp]=eip+6; esp+=4)

epush places value onto stack, increments esp
epop gets value from stack, decrements esp

«incl, decl (increment, decrement)

incl %edx # edx = edx + 1
» Benefit: smaller instructions = smaller code

ﬁ&fcmLMMﬂ o

Branches in 80x86

*Rather than compare registers, x86
uses special 1-bit registers called
“condition codes” that are set as a
side-effect of ALU operations

S - Sign Bit
*Z - Zero (result is all 0)
«C - Carry Out

P - Parity: set to 1 if even number of ones
in rightmost 8 bits of operation

< Conditional Branch instructions then
use condition flags for all
@comparisons: <, <=, >, 5= == I=

CS61C 1722 RAID and

K, Meinz, Summer 2004 @ ucs|

While in C/Assembly: 80x86

c while (save[i]==k)
1=1+];
(1,],K: %edx,%esi ,%ebx)
leal -400(%ebp) ,%eax
-Loop: cmpl %ebx, (%eax,%edx,4)

x jne .Exit

8 addl %esi ,%edx
6 Jj -Loop

_Exit:

Note: cmpl replaces sli, add, Iw in loop

CS 61C 17,22 RAID and P K. Moinz, Summer 20040 ucs|

ﬁ&gcmmmwd o

Intel Internals

* Hardware below instruction set called
"microarchitecture”

* Pentium Pro, Pentium I, Pentium lll all
based on same microarchitecture
(1994)

«Improved clock rate, increased cache size

* Pentium 4 has new microarchitecture

K. Meinz, Summer 2004 © ucs]

Hardware support

: allow a
instructions to execute before branch
is resolved (“HW undo”)

*When instruction no longer
specula)tive, write results (

*Fetch in-order, execute out-of-order,
commit in order

@ CS61C 1722 RAID and K_Msinz, Summr 2004 © uce]

Dynamic Scheduling in Pentium Pro
Max. instructions issued/clock 3

Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40

2 inte%er functional units (FU), 1 floating
Ecl)jint U, 1 branch FU, 1 Load FU, 1 Store

Dynamic Scheduling in Pentium Pro, II, I
* PPro doesn’t pipeline 80x86 instructions
* PPro decode unit translates the Intel
instructions into 72-bit "micro-operations"”
(~ MIPS instructions)

* Takes 1 clock cycle to determine length
of 80x86 instructions + 2 more to create
the micro-operations

* Most instructions translate to 1 to 4
micro-operations

*10 stage pipeline for micro-operations

K, Meinz, Summer 2004 @ ucs|

Hardware for out of order execution

o Nee(?tHWf buffer for_tt d
results of uncommitte —
instructions:

Reorder
Buffer

FP Regs |[*—

* Reorder buffer can be EF,’,

operand source Queue

* Once operand commits, |
result is found in

register ‘ Res Stations ‘ ‘ Res Stations ‘

.
* Discard results on |

mispredicted branches
or on exceptions

@ S5 61C 1722 RAID and P

K. Meinz, Summer. 20040 ucs|

Pentium 4
« Still translate from 80x86 to micro-ops
*P4 has better branch predictor, more FUs
*Clock rates:

¢ Pentium lll 1 GHz v. Pentium IV 1.5 GHz

*10 stage pipeline vs. 20 stage pipeline
«Faster memory bus: 400 MHz v. 133 MHz
*Caches

« Pentium Ill: L11 16KB, L1D 16KB, L2 256 KB

*Pentium 4: L11 8 KB, L1D 8 KB, L2 256 KB
* Block size: Plll 32B v. P4 128B

CS61CI722 RAID and K. Mein

Pentium 4 features

* Multimedia instructions 128 bits wide
vs. 64 bits wide => 144 new instructions

*When used by programs??
*Instruction Cache holds micro-
operations vs. 80x86 instructions
*no decode stages of 80x86 on cache hit
« called “trace cache” (TC)

+Using RAMBUS DRAM
* Bandwidth faster, latency same as SDRAM
*Cost 3X vs. SDRAM

Block Diagram of Pentium 4 Microarchitecture

BTB and |-TLB —_—
*86 Instruction Decoder

Microcode =)
ROM Execution Trace Cache BTB

(NN
L Rename and Allocate
T 2
Wicro-op Queues Cache

Schedulers
L1 IRRERH]
FP Reg File Integer Reg File
1 1 1
Enul | [FP Move Load || store |ALU|ALU
FAdd | FP Store
MbAX
55

L1 D-Cache and D-TLB ~ ——

« BTB = Branch Target Buffer (branch predictor)
« I-TLB = Instruction TLB, Trace Cache = Instruction cache
« RF = Register File; AGU = Address Generation Unit
Z « "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

CS61C 1722 RAIDand K. Meinz, Summer 2004 © ucs]

Pentium, Pentium Pro, Pentium 4 Pipeline

Prefetch Cecode | Decode | Execute Wiile-back

PS5 Microarchitecture

Fetch Fetch | Decode | Decode | Decode | Rename | ROB Rd | Rdy/Sch | Dispatch | Execute

P& Microarchitecture

TC Mxt IP TC Fetch Drive Allac Rename Queve | Schedule

Schedule | Schedule | Dispateh | Dispatch | Reg Fle | Reg File | Execute | Flags BranchCk Crive

NetBurst Microarchitecture

*Pentium LPS) = 5 stages
Pentium Pro, Il, 1l (P6) = 10 stages
Penitum 4 (NetBurst) = 20 stages

vh Peawiewed ” Microor Renagrt 8/28/08. summer 2004 o ucs|

