
CS 61C L7.2.2 RAID and Performance (1) K. Meinz, Summer 2004 © UCB

CS61C : Machine Structures
Lecture 7.2.2

RAID & Performance

2004-08-05

Kurt Meinz

inst.eecs.berkeley.edu/~cs61c

CS 61C L7.2.2 RAID and Performance (2) K. Meinz, Summer 2004 © UCB

Outline

• RAID
• Performance
• Intro to x86

CS 61C L7.2.2 RAID and Performance (3) K. Meinz, Summer 2004 © UCB

Use Arrays of Small Disks…

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

• Katz and Patterson asked in 1987:
• Can smaller disks be used to close gap in
performance between disks and CPUs?

CS 61C L7.2.2 RAID and Performance (4) K. Meinz, Summer 2004 © UCB

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity
Volume
Power
Data Rate
I/O Rate
MTTF
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays potentially high performance, high
MB per cu. ft., high MB per KW,

but what about reliability?

9X
3X

8X

6X

CS 61C L7.2.2 RAID and Performance (5) K. Meinz, Summer 2004 © UCB

Array Reliability
• Reliability - whether or not a component
has failed
• measured as Mean Time To Failure (MTTF)

• Reliability of N disks
= Reliability of 1 Disk ÷ N
(assuming failures independent)

- 50,000 Hours ÷ 70 disks = 700 hour

• Disk system MTTF:
Drops from 6 years to 1 month!

• Disk arrays (JBOD) too unreliable to be
useful!

CS 61C L7.2.2 RAID and Performance (6) K. Meinz, Summer 2004 © UCB

Redundant Arrays of (Inexpensive) Disks
• Files are "striped" across multiple disks

• Redundancy yields high data availability
• Availability: service still provided to user,
even if some components failed

• Disks will still fail

• Contents reconstructed from data
redundantly stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info

CS 61C L7.2.2 RAID and Performance (7) K. Meinz, Summer 2004 © UCB

Berkeley History, RAID-I
• RAID-I (1989)

• Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

• Today RAID is $27
billion dollar industry,
80% nonPC disks
sold in RAIDs

CS 61C L7.2.2 RAID and Performance (8) K. Meinz, Summer 2004 © UCB

“RAID 0”: Striping

• Assume have 4 disks of data for this
example, organized in blocks

• Large accesses faster since transfer
from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html

CS 61C L7.2.2 RAID and Performance (9) K. Meinz, Summer 2004 © UCB

RAID 1: Mirror

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth reduced on write:
• 1 Logical write = 2 physical writes

• Most expensive solution: 100% capacity
overhead

CS 61C L7.2.2 RAID and Performance (10) K. Meinz, Summer 2004 © UCB

RAID 3: Parity

• Parity computed across group to protect
against hard disk failures, stored in P disk

• Logically, a single high capacity, high transfer
rate disk

• 25% capacity cost for parity in this example vs.
100% for RAID 1 (5 disks vs. 8 disks)

CS 61C L7.2.2 RAID and Performance (11) K. Meinz, Summer 2004 © UCB

Inspiration for RAID 5
• Small writes (write to one disk):

• Option 1: read other data disks, create new
sum and write to Parity Disk (access all disks)

• Option 2: since P has old sum, compare old
data to new data, add the difference to P:
1 logical write = 2 physical reads + 2 physical
writes to 2 disks

• Parity Disk is bottleneck for Small writes:
Write to A0, B1 => both write to P disk

A0 B0 C0 D0 P

A1 B1 C1 PD1

CS 61C L7.2.2 RAID and Performance (12) K. Meinz, Summer 2004 © UCB

RAID 5: Rotated Parity, faster small writes

• Independent writes possible because of
interleaved parity

• Example: write to A0, B1 uses
disks 0, 1, 4, 5, so can proceed in parallel

• Still 1 small write = 4 physical disk accesses

CS 61C L7.2.2 RAID and Performance (13) K. Meinz, Summer 2004 © UCB

Outline

• RAID
• Performance
• Intro to x86

CS 61C L7.2.2 RAID and Performance (14) K. Meinz, Summer 2004 © UCB

Performance
• Purchasing Perspective: given a
collection of machines (or upgrade
options), which has the

- best performance ?
- least cost ?
- best performance / cost ?

• Computer Designer Perspective: faced
with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

• All require basis for comparison and
metric for evaluation

•Solid metrics lead to solid progress!

CS 61C L7.2.2 RAID and Performance (15) K. Meinz, Summer 2004 © UCB

Two Notions of “Performance”

Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours 470 286,700

1350
mph

3
hours 132 178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?

•In a computer, time for 1 job called
Response Time or Execution Time

•In a computer, jobs per day called
Throughput or Bandwidth

CS 61C L7.2.2 RAID and Performance (16) K. Meinz, Summer 2004 © UCB

Definitions
• Performance is in units of things per sec

• bigger is better

• If we are primarily concerned with
response time

• performance(x) = 1
execution_time(x)

" F(ast) is n times faster than S(low) " means…
performance(F) execution_time(S)

n = =
performance(S) execution_time(F)

CS 61C L7.2.2 RAID and Performance (17) K. Meinz, Summer 2004 © UCB

Example of Response Time v. Throughput
• Time of Concorde vs. Boeing 747?

• Concord is 6.5 hours / 3 hours
= 2.2 times faster

• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 pmph / 178,200 pmph

= 1.6 times faster
• Boeing is 1.6 times (“60%”) faster in

terms of throughput
• Concord is 2.2 times (“120%”) faster in

terms of flying time (response time)
We will focus primarily on execution

time for a single job
CS 61C L7.2.2 RAID and Performance (18) K. Meinz, Summer 2004 © UCB

Confusing Wording on Performance

• Will (try to) stick to “n times faster”;
its less confusing than “m % faster”

• As faster means both increased
performance and decreased execution
time, to reduce confusion will use
“improve performance” or
“improve execution time”

CS 61C L7.2.2 RAID and Performance (19) K. Meinz, Summer 2004 © UCB

What is Time?
• Straightforward definition of time:

• Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...

• “real time”, “response time” or
“elapsed time”

• Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)

• “CPU execution time” or “CPU time”
• Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS 61C L7.2.2 RAID and Performance (20) K. Meinz, Summer 2004 © UCB

How to Measure Time?
• User Time ⇒ seconds
• CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware

• These discrete time intervals called
clock cycles (or informally clocks or
cycles)

• Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

CS 61C L7.2.2 RAID and Performance (21) K. Meinz, Summer 2004 © UCB

Measuring Time using Clock Cycles (1/2)

• or

= Clock Cycles for a program
Clock Rate

• CPU execution time for program
= Clock Cycles for a program

x Clock Cycle Time

CS 61C L7.2.2 RAID and Performance (22) K. Meinz, Summer 2004 © UCB

Measuring Time using Clock Cycles (2/2)

• One way to define clock cycles:
Clock Cycles for program
= Instructions for a program

(called “Instruction Count”)

x Average Clock cycles Per Instruction
(abbreviated “CPI”)

• CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS 61C L7.2.2 RAID and Performance (23) K. Meinz, Summer 2004 © UCB

Performance Calculation (1/2)

• CPU execution time for program
= Clock Cycles for program

x Clock Cycle Time
• Substituting for clock cycles:

CPU execution time for program
= (Instruction Count x CPI)

x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time

CS 61C L7.2.2 RAID and Performance (24) K. Meinz, Summer 2004 © UCB

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Seconds
Program

• Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS 61C L7.2.2 RAID and Performance (25) K. Meinz, Summer 2004 © UCB

How Calculate the 3 Components?

• Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

• Instruction Count:
• Count instructions in loop of small program
• Use simulator to count instructions
• Hardware counter in spec. register

- (Pentium II,III,4)
• CPI:

• Calculate: Execution Time / Clock cycle time
Instruction Count

• Hardware counter in special register (PII,III,4)
CS 61C L7.2.2 RAID and Performance (26) K. Meinz, Summer 2004 © UCB

Calculating CPI Another Way

• First calculate CPI for each individual
instruction (add, sub, and, etc.)

• Next calculate frequency of each
individual instruction

• Finally multiply these two for each
instruction and add them up to get
final CPI (the weighted sum)

CS 61C L7.2.2 RAID and Performance (27) K. Meinz, Summer 2004 © UCB

Example (RISC processor)
Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)

2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS 61C L7.2.2 RAID and Performance (28) K. Meinz, Summer 2004 © UCB

Example: What about Caches?
• Can Calculate Memory portion of CPI separately
• Miss rates: say L1 cache = 5%, L2 cache = 10%
• Miss penalties: L1 = 5 clock cycles, L2 = 50 clocks
• Assume miss rates, miss penalties same for
instruction accesses, loads, and stores
• CPImemory

= Instruction Frequency * L1 Miss rate *
(L1 miss penalty + L2 miss rate * L2 miss penalty)
+ Data Access Frequency * L1 Miss rate *
(L1 miss penalty + L2 miss rate * L2 miss penalty)

= 100%*5%*(5+10%*50)+(20%+10%)*5%*(5+10%*50)
= 5%*(10)+(30%)*5%*(10) = 0.5 + 0.15 = 0.65

Overall CPI = 2.2 + 0.65 = 2.85

CS 61C L7.2.2 RAID and Performance (29) K. Meinz, Summer 2004 © UCB

What Programs Measure for Comparison?
• Ideally run typical programs with
typical input before purchase,
or before even build machine

• Called a “workload”; For example:
• Engineer uses compiler, spreadsheet
• Author uses word processor, drawing
program, compression software

• In some situations it’s hard to do
• Don’t have access to machine to
“benchmark” before purchase

• Don’t know workload in future

CS 61C L7.2.2 RAID and Performance (30) K. Meinz, Summer 2004 © UCB

Example Standardized Benchmarks (1/2)

• Standard Performance Evaluation
Corporation (SPEC) SPEC CPU2000

• CINT2000 12 integer (gzip, gcc, crafty, perl, ...)
• CFP2000 14 floating-point (swim, mesa, art, ...)
• All relative to base machine
Sun 300MHz 256Mb-RAM Ultra5_10, which
gets score of 100

• www.spec.org/osg/cpu2000/

• They measure
- System speed (SPECint2000)
- System throughput (SPECint_rate2000)

CS 61C L7.2.2 RAID and Performance (31) K. Meinz, Summer 2004 © UCB

Example Standardized Benchmarks (2/2)
• SPEC

• Benchmarks distributed in source code
• Big Company representatives select workload

- Sun, HP, IBM, etc.
• Compiler, machine designers target
benchmarks, so try to change every 3 years

CS 61C L7.2.2 RAID and Performance (32) K. Meinz, Summer 2004 © UCB

Example PC Workload Benchmark
• PCs: Ziff-Davis Benchmark Suite

• “Business Winstone is a system-level,
application-based benchmark that measures
a PC's overall performance when running
today's top-selling Windows-based 32-bit
applications… it doesn't mimic what these
packages do; it runs real applications
through a series of scripted activities and
uses the time a PC takes to complete those
activities to produce its performance scores.

• Also tests for CDs, Content-creation, Audio,
3D graphics, battery life

http://www.etestinglabs.com/benchmarks/

CS 61C L7.2.2 RAID and Performance (33) K. Meinz, Summer 2004 © UCB

Performance Evaluation

• Good products created when have:
• Good benchmarks
• Good ways to summarize performance

• Given sales is a function of
performance relative to competition,
should invest in improving product as
reported by performance summary?

• If benchmarks/summary inadequate,
then choose between improving
product for real programs vs.
improving product to get more sales;
Sales almost always wins!

CS 61C L7.2.2 RAID and Performance (34) K. Meinz, Summer 2004 © UCB

“And in conclusion…”
• Benchmarks

• Attempt to predict performance
• Updated every few years
• Measure everything from simulation of
desktop graphics programs to battery life

• Megahertz Myth
• MHz ≠ performance, it’s just one factor

• It’s non-trivial to try to help people in
developing countries with technology

• Viruses have damaging potential the
likes of which we can only imagine.

CS 61C L7.2.2 RAID and Performance (35) K. Meinz, Summer 2004 © UCB

Outline

• RAID
• Performance
• Intro to x86

CS 61C L7.2.2 RAID and Performance (36) K. Meinz, Summer 2004 © UCB

MIPS is example of RISC
• RISC = Reduced Instruction Set
Computer

• Term coined at Berkeley, ideas pioneered
by IBM, Berkeley, Stanford

• RISC characteristics:
• Load-store architecture
• Fixed-length instructions (typically 32 bits)
• Three-address architecture

• RISC examples: MIPS, SPARC,
IBM/Motorola PowerPC, Compaq Alpha,
ARM, SH4, HP-PA, ...

CS 61C L7.2.2 RAID and Performance (37) K. Meinz, Summer 2004 © UCB

MIPS vs. 80386

• Address: 32-bit
• Page size: 4KB
• Data aligned
• Destination reg: Left

•add $rd,$rs1,$rs2

• Regs: $0, $1, ..., $31
• Reg = 0: $0
• Return address: $31

• 32-bit
• 4KB
• Data unaligned
• Right

•add %rs1,%rs2,%rd

• %r0, %r1, ..., %r7
• (n.a.)
• (n.a.)

CS 61C L7.2.2 RAID and Performance (38) K. Meinz, Summer 2004 © UCB

MIPS vs. Intel 80x86

• MIPS: “Three-address architecture”
• Arithmetic-logic specify all 3 operands
add $s0,$s1,$s2 # s0=s1+s2

• Benefit: fewer instructions ⇒ performance

• x86: “Two-address architecture”
• Only 2 operands,
so the destination is also one of the sources
add $s1,$s0 # s0=s0+s1

• Often true in C statements: c += b;
• Benefit: smaller instructions ⇒ smaller code

CS 61C L7.2.2 RAID and Performance (39) K. Meinz, Summer 2004 © UCB

MIPS vs. Intel 80x86
• MIPS: “load-store architecture”

• Only Load/Store access memory; rest
operations register-register; e.g.,
lw $t0, 12($gp)
add $s0,$s0,$t0 # s0=s0+Mem[12+gp]

• Benefit: simpler hardware ⇒ easier to pipeline,
higher performance

• x86: “register-memory architecture”
• All operations can have an operand in memory;
other operand is a register; e.g.,
add 12(%gp),%s0 # s0=s0+Mem[12+gp]

• Benefit: fewer instructions ⇒ smaller code
CS 61C L7.2.2 RAID and Performance (40) K. Meinz, Summer 2004 © UCB

MIPS vs. Intel 80x86

• MIPS: “fixed-length instructions”
• All instructions same size, e.g., 4 bytes
• simple hardware ⇒ performance
• branches can be multiples of 4 bytes

• x86: “variable-length instructions”
• Instructions are multiple of bytes: 1 to 17;
⇒ small code size (30% smaller?)
• More Recent Performance Benefit:

better instruction cache hit rates
• Instructions can include 8- or 32-bit immediates

CS 61C L7.2.2 RAID and Performance (41) K. Meinz, Summer 2004 © UCB

Unusual features of 80x86
• 8 32-bit Registers have names;
16-bit 8086 names with “e” prefix:

•eax, ecx, edx, ebx, esp, ebp, esi, edi
• 80x86 word is 16 bits, double word is 32 bits

• PC is called eip (instruction pointer)
•leal (load effective address)

• Calculate address like a load, but load address
into register, not data

• Load 32-bit address:
leal -4000000(%ebp),%esi
esi = ebp - 4000000

CS 61C L7.2.2 RAID and Performance (42) K. Meinz, Summer 2004 © UCB

Instructions:MIPS vs. 80x86

• addu, addiu

• subu

• and,or, xor

• sll, srl, sra

• lw

• sw

• mov

• li

• lui

• addl

• subl

• andl, orl, xorl

• sall, shrl, sarl

• movl mem, reg

• movl reg, mem

• movl reg, reg

• movl imm, reg

• n.a.

CS 61C L7.2.2 RAID and Performance (43) K. Meinz, Summer 2004 © UCB

80386 addressing (ALU instructions too)
• base reg + offset (like MIPS)

•movl -8000044(%ebp), %eax

• base reg + index reg (2 regs form addr.)
•movl (%eax,%ebx),%edi
edi = Mem[ebx + eax]

• scaled reg + index (shift one reg by 1,2)
•movl(%eax,%edx,4),%ebx
ebx = Mem[edx*4 + eax]

• scaled reg + index + offset
•movl 12(%eax,%edx,4),%ebx
ebx = Mem[edx*4 + eax + 12]

CS 61C L7.2.2 RAID and Performance (44) K. Meinz, Summer 2004 © UCB

Branches in 80x86

• Rather than compare registers, x86
uses special 1-bit registers called
“condition codes” that are set as a
side-effect of ALU operations

• S - Sign Bit
• Z - Zero (result is all 0)
• C - Carry Out
• P - Parity: set to 1 if even number of ones
in rightmost 8 bits of operation

• Conditional Branch instructions then
use condition flags for all
comparisons: <, <=, >, >=, ==, !=

CS 61C L7.2.2 RAID and Performance (45) K. Meinz, Summer 2004 © UCB

Branch: MIPS vs. 80x86

• beq

• bne

• slt; beq

• slt; bne

• jal

• jr $31

• (cmpl;) je
if previous operation
set condition code, then
cmpl unnecessary

• (cmpl;) jne

• (cmpl;) jlt

• (cmpl;) jge

• call

• ret

CS 61C L7.2.2 RAID and Performance (46) K. Meinz, Summer 2004 © UCB

while (save[i]==k)
i = i + j;

(i,j,k: %edx,%esi,%ebx)
leal -400(%ebp),%eax

.Loop: cmpl %ebx,(%eax,%edx,4)
jne .Exit
addl %esi,%edx
j .Loop

.Exit:

While in C/Assembly: 80x86

C

x
8
6

Note: cmpl replaces sll, add, lw in loop

CS 61C L7.2.2 RAID and Performance (47) K. Meinz, Summer 2004 © UCB

Unusual features of 80x86

• Memory Stack is part of instruction set
•call places return address onto stack,
increments esp (Mem[esp]=eip+6; esp+=4)

•push places value onto stack, increments esp
•pop gets value from stack, decrements esp

•incl, decl (increment, decrement)
incl %edx # edx = edx + 1

• Benefit: smaller instructions ⇒ smaller code

CS 61C L7.2.2 RAID and Performance (48) K. Meinz, Summer 2004 © UCB

CS 61C L7.2.2 RAID and Performance (49) K. Meinz, Summer 2004 © UCB

Intel Internals

• Hardware below instruction set called
"microarchitecture"

• Pentium Pro, Pentium II, Pentium III all
based on same microarchitecture
(1994)

• Improved clock rate, increased cache size

• Pentium 4 has new microarchitecture

CS 61C L7.2.2 RAID and Performance (50) K. Meinz, Summer 2004 © UCB

Dynamic Scheduling in Pentium Pro, II, III

• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel
instructions into 72-bit "micro-operations"
(~ MIPS instructions)
• Takes 1 clock cycle to determine length
of 80x86 instructions + 2 more to create
the micro-operations
• Most instructions translate to 1 to 4
micro-operations
•10 stage pipeline for micro-operations

CS 61C L7.2.2 RAID and Performance (51) K. Meinz, Summer 2004 © UCB

Hardware support
• Out-of-Order execution: allow a
instructions to execute before branch
is resolved (“HW undo”)

• When instruction no longer
speculative, write results (instruction
commit)

• Fetch in-order, execute out-of-order,
commit in order

CS 61C L7.2.2 RAID and Performance (52) K. Meinz, Summer 2004 © UCB

Hardware for out of order execution

• Need HW buffer for
results of uncommitted
instructions: reorder
buffer

• Reorder buffer can be
operand source

• Once operand commits,
result is found in
register

• Discard results on
mispredicted branches
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

CS 61C L7.2.2 RAID and Performance (53) K. Meinz, Summer 2004 © UCB

Dynamic Scheduling in Pentium Pro
Max. instructions issued/clock 3
Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40
2 integer functional units (FU), 1 floating
point FU, 1 branch FU, 1 Load FU, 1 Store
FU

CS 61C L7.2.2 RAID and Performance (54) K. Meinz, Summer 2004 © UCB

Pentium 4
• Still translate from 80x86 to micro-ops
• P4 has better branch predictor, more FUs
• Clock rates:

• Pentium III 1 GHz v. Pentium IV 1.5 GHz
• 10 stage pipeline vs. 20 stage pipeline

• Faster memory bus: 400 MHz v. 133 MHz
• Caches

• Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
• Pentium 4: L1I 8 KB, L1D 8 KB, L2 256 KB
• Block size: PIII 32B v. P4 128B

CS 61C L7.2.2 RAID and Performance (55) K. Meinz, Summer 2004 © UCB

Pentium 4 features

• Multimedia instructions 128 bits wide
vs. 64 bits wide => 144 new instructions

• When used by programs??

• Instruction Cache holds micro-
operations vs. 80x86 instructions

• no decode stages of 80x86 on cache hit
• called “trace cache” (TC)

• Using RAMBUS DRAM
• Bandwidth faster, latency same as SDRAM
• Cost 3X vs. SDRAM

CS 61C L7.2.2 RAID and Performance (56) K. Meinz, Summer 2004 © UCB

Pentium, Pentium Pro, Pentium 4 Pipeline

• Pentium (P5) = 5 stages
Pentium Pro, II, III (P6) = 10 stages
Penitum 4 (NetBurst) = 20 stages

“Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS 61C L7.2.2 RAID and Performance (57) K. Meinz, Summer 2004 © UCB

Block Diagram of Pentium 4 Microarchitecture

• BTB = Branch Target Buffer (branch predictor)
• I-TLB = Instruction TLB, Trace Cache = Instruction cache
• RF = Register File; AGU = Address Generation Unit
• "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

