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Use Arrays of Small Disks…

14”
10”5.25”3.5”

3.5”

Disk Array:    
1 disk design

Conventional:                 
4 disk  
designs

Low End High End

• Katz and Patterson asked in 1987: 
• Can smaller disks be used  to close gap in 
performance between disks and CPUs?
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Replace Small Number of Large Disks with 
Large Number of Small Disks! (1988 Disks)

Capacity 
Volume 
Power
Data Rate 
I/O Rate   
MTTF  
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays potentially high performance, high 
MB per cu. ft., high MB per KW, 

but what about reliability?

9X
3X

8X

6X
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Array Reliability
• Reliability - whether or not a component 
has failed
• measured as Mean Time To Failure (MTTF)

• Reliability of N disks 
= Reliability of 1 Disk ÷ N
(assuming failures independent)

- 50,000 Hours ÷ 70 disks = 700 hour

• Disk system MTTF: 
Drops from 6 years  to 1 month!

• Disk arrays (JBOD) too unreliable to be 
useful!
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Redundant Arrays of (Inexpensive) Disks
• Files are "striped" across multiple disks

• Redundancy yields high data availability
• Availability: service still provided to user, 
even if some components failed

• Disks will still fail

• Contents reconstructed from data   
redundantly stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info
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Berkeley History, RAID-I
• RAID-I (1989) 

• Consisted of a Sun 
4/280 workstation with 
128 MB of DRAM, four 
dual-string SCSI 
controllers, 28 5.25-
inch SCSI disks and 
specialized disk 
striping software

• Today RAID is $27 
billion dollar industry, 
80% nonPC disks 
sold in RAIDs
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“RAID 0”: Striping

• Assume have 4 disks of data for this 
example, organized in blocks

• Large accesses faster since transfer 
from several disks at once

This and next 5 slides from RAID.edu,  http://www.acnc.com/04_01_00.html
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RAID 1: Mirror

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth reduced on write:
• 1 Logical write = 2 physical writes

• Most expensive solution: 100% capacity 
overhead
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RAID 3: Parity 

• Parity computed across group to protect 
against hard disk failures, stored in P disk

• Logically, a single high capacity, high transfer 
rate disk

• 25% capacity cost for parity in this example vs. 
100% for RAID 1 (5 disks vs. 8 disks)

CS 61C L7.2.2 RAID and Performance (11) K. Meinz, Summer 2004 © UCB

Inspiration for RAID 5
• Small writes (write to one disk): 

• Option 1: read other data disks, create new 
sum and write to Parity Disk (access all disks)

• Option 2: since P has old sum, compare old 
data to new data, add the difference to P: 
1 logical write = 2 physical reads + 2 physical 
writes to 2 disks

• Parity Disk is bottleneck for Small writes: 
Write to A0, B1 => both write to P disk 

A0 B0 C0 D0 P

A1 B1 C1 PD1
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RAID 5: Rotated Parity, faster small writes

• Independent writes possible because of 
interleaved parity

• Example: write to A0, B1 uses 
disks 0, 1, 4, 5, so can proceed in parallel

• Still 1 small write = 4 physical disk accesses
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Performance
• Purchasing Perspective: given a 
collection of machines (or upgrade 
options), which has the 

- best performance ?
- least cost ?
- best performance / cost ?

• Computer Designer Perspective: faced 
with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

• All require basis for comparison and 
metric for evaluation

•Solid metrics lead to solid progress!
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Two Notions of “Performance”

Plane

Boeing 
747

BAD/Sud
Concorde

Top
Speed

DC to 
Paris

Passen-
gers

Throughput 
(pmph)

610 
mph

6.5 
hours 470 286,700

1350 
mph

3 
hours 132 178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?

•In a computer, time for 1 job called
Response Time or Execution Time

•In a computer, jobs per day called
Throughput or Bandwidth
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Definitions
• Performance is in units of things per sec

• bigger is better

• If we are primarily concerned with 
response time

• performance(x) =           1                   
execution_time(x)

" F(ast) is n times faster than S(low) "  means…
performance(F) execution_time(S)

n = =
performance(S) execution_time(F)
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Example of Response Time v. Throughput
• Time of Concorde vs. Boeing 747?

• Concord is 6.5 hours / 3 hours 
= 2.2 times faster

• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 pmph / 178,200 pmph

= 1.6   times faster
• Boeing is 1.6 times (“60%”) faster in 

terms of throughput
• Concord is 2.2 times (“120%”) faster in 

terms of flying time (response time)
We will focus primarily on execution 

time for a single job
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Confusing Wording on Performance

• Will (try to) stick to “n times faster”; 
its less confusing than “m % faster”

• As faster means both increased
performance and decreased execution 
time, to reduce confusion will use 
“improve performance” or 
“improve execution time”
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What is Time?
• Straightforward definition of time: 

• Total time to complete a task, including disk 
accesses, memory accesses, I/O activities, 
operating system overhead, ...

• “real time”, “response time” or
“elapsed time”

• Alternative: just time processor (CPU) 
is working only on your program (since 
multiple processes running at same time)

• “CPU execution time” or “CPU time”
• Often divided into system CPU time (in OS)
and user CPU time (in user program)
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How to Measure Time?
• User Time ⇒ seconds
• CPU Time: Computers constructed 
using a clock that runs at a constant 
rate and determines when events take 
place in the hardware

• These discrete time intervals called 
clock cycles (or informally clocks or 
cycles)

• Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock 
rate (e.g., 500 megahertz, or 500 MHz), 
which is the inverse of the clock period; 
use these!
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Measuring Time using Clock Cycles (1/2)

• or

= Clock Cycles for a program
Clock Rate

• CPU execution time for program
= Clock Cycles for a program

x Clock Cycle Time
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Measuring Time using Clock Cycles (2/2)

• One way to define clock cycles:
Clock Cycles for program
= Instructions for a program

(called “Instruction Count”)

x Average Clock cycles Per Instruction
(abbreviated “CPI”)

• CPI one way to compare two machines 
with same instruction set, since 
Instruction Count would be the same
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Performance Calculation (1/2)

• CPU execution time for program
= Clock Cycles for program

x Clock Cycle Time
• Substituting for clock cycles: 

CPU execution time for program
= (Instruction Count x CPI)

x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time
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Performance Calculation (2/2)

CPU time = Instructions  x  Cycles    x   Seconds
Program Instruction Cycle

CPU time = Instructions  x  Cycles    x   Seconds
Program Instruction Cycle

CPU time = Instructions  x  Cycles    x   Seconds
Program Instruction Cycle

CPU time =   Seconds
Program

• Product of all 3 terms: if missing a term, can’t 
predict time, the real measure of performance
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How Calculate the 3 Components?

• Clock Cycle Time: in specification of 
computer (Clock Rate in advertisements)

• Instruction Count:
• Count instructions in loop of small program
• Use simulator to count instructions
• Hardware counter in spec. register

- (Pentium II,III,4)
• CPI:

• Calculate: Execution Time / Clock cycle time
Instruction Count

• Hardware counter in special register (PII,III,4)
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Calculating CPI Another Way

• First calculate CPI for each individual 
instruction (add, sub, and, etc.)

• Next calculate frequency of each 
individual instruction

• Finally multiply these two for each 
instruction and add them up to get 
final CPI (the weighted sum)
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Example (RISC processor)
Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)

2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)
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Example: What about Caches?
• Can Calculate Memory portion of CPI separately
• Miss rates: say L1 cache = 5%, L2 cache = 10%
• Miss penalties: L1 = 5 clock cycles, L2 = 50 clocks
• Assume miss rates, miss penalties same for   
instruction accesses, loads, and stores
• CPImemory

= Instruction Frequency * L1 Miss rate * 
(L1 miss penalty + L2 miss rate * L2 miss penalty) 
+ Data Access Frequency * L1 Miss rate * 
(L1 miss penalty + L2 miss rate * L2 miss penalty)

= 100%*5%*(5+10%*50)+(20%+10%)*5%*(5+10%*50)
= 5%*(10)+(30%)*5%*(10) = 0.5 + 0.15 = 0.65

Overall CPI = 2.2 + 0.65 = 2.85
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What Programs Measure for Comparison?
• Ideally run typical programs with 
typical input before purchase, 
or before even build machine

• Called a “workload”; For example: 
• Engineer uses compiler, spreadsheet
• Author uses word processor, drawing 
program, compression software

• In some situations it’s hard to do
• Don’t have access to machine to 
“benchmark” before purchase

• Don’t know workload in future
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Example Standardized Benchmarks (1/2)

• Standard Performance Evaluation 
Corporation (SPEC) SPEC CPU2000

• CINT2000 12 integer (gzip, gcc, crafty, perl, ...)
• CFP2000 14 floating-point (swim, mesa, art, ...)
• All relative to base machine 
Sun 300MHz 256Mb-RAM Ultra5_10, which 
gets score of 100

• www.spec.org/osg/cpu2000/

• They measure
- System speed (SPECint2000)
- System throughput (SPECint_rate2000)
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Example Standardized Benchmarks (2/2)
• SPEC

• Benchmarks distributed in source code
• Big Company representatives select workload

- Sun, HP, IBM, etc.
• Compiler, machine designers target 
benchmarks, so try to change every 3 years
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Example PC Workload Benchmark
• PCs: Ziff-Davis Benchmark Suite

• “Business Winstone is a system-level, 
application-based benchmark that measures 
a PC's overall performance when running 
today's top-selling Windows-based 32-bit 
applications… it doesn't mimic what these 
packages do; it runs real applications 
through a series of scripted activities and 
uses the time a PC takes to complete those 
activities to produce its performance scores.

• Also tests for CDs, Content-creation, Audio, 
3D graphics, battery life

http://www.etestinglabs.com/benchmarks/
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Performance Evaluation

• Good products created when have:
• Good benchmarks
• Good ways to summarize performance

• Given sales is a function of 
performance relative to competition, 
should invest in improving product as 
reported by performance summary?

• If benchmarks/summary inadequate, 
then choose between improving 
product for real programs vs. 
improving product to get more sales; 
Sales almost always wins!
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“And in conclusion…”
• Benchmarks

• Attempt to predict performance
• Updated every few years
• Measure everything from simulation of 
desktop graphics programs to battery life

• Megahertz Myth
• MHz ≠ performance, it’s just one factor

• It’s non-trivial to try to help people in 
developing countries with technology

• Viruses have damaging potential the 
likes of which we can only imagine.
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MIPS is example of RISC
• RISC = Reduced Instruction Set 
Computer

• Term coined at Berkeley, ideas pioneered 
by IBM, Berkeley, Stanford

• RISC characteristics:
• Load-store architecture
• Fixed-length instructions (typically 32 bits)
• Three-address architecture

• RISC examples: MIPS, SPARC, 
IBM/Motorola PowerPC, Compaq Alpha, 
ARM, SH4, HP-PA, ... 
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MIPS vs. 80386

• Address:  32-bit
• Page size: 4KB 
• Data aligned
• Destination reg: Left

•add $rd,$rs1,$rs2

• Regs: $0, $1, ..., $31
• Reg = 0: $0
• Return address: $31

• 32-bit
• 4KB
• Data unaligned
• Right

•add %rs1,%rs2,%rd

• %r0, %r1, ..., %r7
• (n.a.)
• (n.a.)
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MIPS vs. Intel 80x86

• MIPS: “Three-address architecture”
• Arithmetic-logic specify all 3 operands 
add $s0,$s1,$s2 # s0=s1+s2

• Benefit: fewer instructions ⇒ performance

• x86: “Two-address architecture”
• Only 2 operands, 
so the destination is also one of the sources 
add $s1,$s0 # s0=s0+s1

• Often true in C statements: c += b;
• Benefit: smaller instructions ⇒ smaller code
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MIPS vs. Intel 80x86
• MIPS: “load-store architecture”

• Only Load/Store access memory; rest 
operations register-register; e.g., 
lw $t0, 12($gp) 
add $s0,$s0,$t0 # s0=s0+Mem[12+gp]

• Benefit: simpler hardware ⇒ easier to pipeline, 
higher performance

• x86: “register-memory architecture”
• All operations can have an operand in memory; 
other operand is a register; e.g., 
add 12(%gp),%s0 # s0=s0+Mem[12+gp]

• Benefit: fewer instructions ⇒ smaller code
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MIPS vs. Intel 80x86

• MIPS: “fixed-length instructions”
• All instructions same size, e.g., 4 bytes 
• simple hardware ⇒ performance
• branches can be multiples of 4 bytes

• x86: “variable-length instructions”
• Instructions are multiple of bytes: 1 to 17; 
⇒ small code size (30% smaller?)
• More Recent Performance Benefit:

better instruction cache hit rates
• Instructions can include 8- or 32-bit immediates
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Unusual features of 80x86
• 8 32-bit Registers have names; 
16-bit 8086 names with “e” prefix:

•eax, ecx, edx, ebx, esp, ebp, esi, edi
• 80x86 word is 16 bits, double word is 32 bits

• PC is called eip (instruction pointer)
•leal (load effective address)

• Calculate address like a load, but load address
into register, not data

• Load 32-bit address:
leal -4000000(%ebp),%esi
# esi = ebp - 4000000
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Instructions:MIPS vs. 80x86

• addu, addiu

• subu

• and,or, xor

• sll, srl, sra

• lw

• sw

• mov

• li

• lui

• addl

• subl

• andl, orl, xorl

• sall, shrl, sarl

• movl mem, reg

• movl reg, mem

• movl reg, reg

• movl imm, reg

• n.a.
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80386 addressing  (ALU instructions too) 
• base reg + offset (like MIPS)

•movl -8000044(%ebp), %eax

• base reg + index reg (2 regs form addr.)
•movl (%eax,%ebx),%edi
# edi = Mem[ebx + eax]

• scaled reg + index (shift one reg by 1,2)
•movl(%eax,%edx,4),%ebx 
# ebx = Mem[edx*4 + eax]

• scaled reg + index + offset
•movl 12(%eax,%edx,4),%ebx 
# ebx = Mem[edx*4 + eax + 12]
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Branches in 80x86

• Rather than compare registers, x86 
uses special 1-bit registers called 
“condition codes” that are set as a 
side-effect of ALU operations

• S - Sign Bit
• Z - Zero (result is all 0)
• C - Carry Out
• P - Parity: set to 1 if even number of ones 
in rightmost 8 bits of operation

• Conditional Branch instructions then 
use condition flags for all 
comparisons: <, <=, >, >=, ==, !=
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Branch: MIPS vs. 80x86

• beq

• bne

• slt; beq

• slt; bne

• jal

• jr $31

• (cmpl;) je
if previous operation 
set condition code, then 
cmpl unnecessary

• (cmpl;) jne

• (cmpl;) jlt

• (cmpl;) jge

• call

• ret
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while (save[i]==k) 
i = i + j;

(i,j,k: %edx,%esi,%ebx)
leal -400(%ebp),%eax

.Loop: cmpl %ebx,(%eax,%edx,4)
jne .Exit
addl %esi,%edx
j .Loop

.Exit:

While in C/Assembly: 80x86

C

x
8
6

Note:  cmpl replaces sll, add, lw in loop 
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Unusual features of 80x86

• Memory Stack is part of instruction set
•call places return address onto stack, 
increments esp (Mem[esp]=eip+6; esp+=4)

•push places value onto stack, increments esp
•pop gets value from stack, decrements esp

•incl, decl (increment, decrement)
incl %edx # edx = edx + 1

• Benefit: smaller instructions ⇒ smaller code
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Intel Internals

• Hardware below instruction set called 
"microarchitecture"

• Pentium Pro, Pentium II, Pentium III all 
based on same microarchitecture
(1994)

• Improved clock rate, increased cache size

• Pentium 4 has new microarchitecture
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Dynamic Scheduling in Pentium Pro, II, III

• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel 
instructions into 72-bit "micro-operations" 
(~ MIPS instructions)
• Takes 1 clock cycle to determine length 
of 80x86 instructions + 2 more to create 
the micro-operations
• Most instructions translate to 1 to 4 
micro-operations
•10 stage pipeline for micro-operations
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Hardware support
• Out-of-Order execution: allow a 
instructions to execute before branch 
is resolved (“HW undo”)

• When instruction no longer 
speculative, write results (instruction 
commit)

• Fetch in-order, execute out-of-order, 
commit in order
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Hardware for out of order execution

• Need HW buffer for 
results of uncommitted 
instructions: reorder 
buffer

• Reorder buffer can be 
operand source

• Once operand commits, 
result is found in 
register

• Discard results on 
mispredicted branches 
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations
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Dynamic Scheduling in Pentium Pro
Max. instructions issued/clock 3
Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40
2 integer functional units (FU), 1 floating 
point FU, 1 branch FU, 1 Load FU, 1 Store 
FU
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Pentium 4
• Still translate from 80x86 to micro-ops
• P4 has better branch predictor, more FUs
• Clock rates:

• Pentium III 1 GHz v. Pentium IV 1.5 GHz
• 10 stage pipeline vs. 20 stage pipeline

• Faster memory bus: 400 MHz v. 133 MHz
• Caches

• Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
• Pentium 4: L1I 8 KB, L1D 8 KB, L2 256 KB
• Block size: PIII 32B v. P4 128B
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Pentium 4 features

• Multimedia instructions 128 bits wide 
vs. 64 bits wide => 144 new instructions

• When used by programs??

• Instruction Cache holds micro-
operations vs. 80x86 instructions 

• no decode stages of 80x86 on cache hit
• called “trace cache” (TC)

• Using RAMBUS DRAM
• Bandwidth faster, latency same as SDRAM
• Cost 3X vs. SDRAM
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Pentium, Pentium Pro, Pentium 4 Pipeline

• Pentium (P5) = 5 stages
Pentium Pro, II, III (P6) = 10 stages
Penitum 4 (NetBurst) = 20 stages

“Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00
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Block Diagram of Pentium 4 Microarchitecture

• BTB = Branch Target Buffer (branch predictor)
• I-TLB = Instruction TLB, Trace Cache = Instruction cache
• RF = Register File; AGU = Address Generation Unit
• "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s


