
1

C and MIPS Review

CS61C Summer 2004
Navtej Sadhal

Dynamic Tree Structure in C
• We wish to develop a tree structure comprised of nodes

with a flexible number of children.
• Each node may have a different number of child nodes.

Children are the same type as their parent.
• The structure must contain an integer of data, a integer

indicating the number of children, and an array of pointers
to the children. It should look like this in memory:

Integers and pointers are both 32 bits each.

ChPtrN…ChPtr2ChPtr1NData

Dynamic Tree Structure in C
How can we define a struct node in C that will have this

structure in memory?

ChPtrN…ChPtr2ChPtr1NData

Dynamic Tree Structure in C
How can we define a struct node in C that will have this

structure in memory?

struct node {
int data;
int numChildren;

ChPtrN…ChPtr2ChPtr1NData

Dynamic Tree Structure in C
How can we define a struct node in C that will have this

structure in memory?

struct node {
int data;
int numChildren;

struct node * children[]
}

ChPtrN…ChPtr2ChPtr1NData

Dynamic Tree Structure in C
How can we define a struct node in C that will have this

structure in memory?

struct node {
int data;
int numChildren;

struct node * children[]
}

What does this say about the size of our struct?

ChPtrN…ChPtr2ChPtr1NData

2

Dynamic Tree Structure in C
How can we define a struct node in C that will have this

structure in memory?

struct node {
int data;
int numChildren;

struct node * children[]
};

What does this say about the size of our struct?
It’s variable!

ChPtrN…ChPtr2ChPtr1NData

Traversing the tree
• We would now like to write a function which will search

the tree for an integer. If it exists, return 1, otherwise return
0.

bool contains(int num, struct node * tree) {

Traversing the tree
• We would now like to write a function which will search

the tree for an integer. If it exists, return 1, otherwise return
0.

bool contains(int num, struct node * tree) {
int i;
if (tree == null) return 0;
if (tree->data == num) return 1;
for (i=0; i < tree->numChildren; i++)

if (contains(num, (tree->children)[i]))
return 1;

return 0;
}

Traversing the tree
• We would now like to write a function which will search

the tree for an integer. If it exists, return 1, otherwise return
0.

bool contains(int num, struct node * tree) {
int i;
if (tree == null) return 0;
if (tree->data == num) return 1;
for (i=0; i < tree->numChildren; i++)

if (contains(num, (tree->children)[i]))
return 1;

return 0;
}

• Now translate this to MIPS. Assume num is in $a0 and tree
is in $a1. Put the result in $v0.

Translating C to MIPS
mv $a0, $s0
addu $a1, $s1, $s2
lw $a1, 8($a1)
jal contains
bne $v0, $0, end1
addiu $s2, $s2, 4
j loop

end1:
li $v0, 1
j end

end0:

mv $v0, $0
end:

lw $ra, 0($sp)
lw $s0, 4($sp)
lw $s1, 8($sp)
lw $s2, 12($sp)
lw $s3, 16($sp)
addiu $sp, $sp, 20
jr $ra

contains:

addiu $sp, $sp, -20
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $s1, 8($sp)
sw $s2, 12($sp)
sw $s3, 16($sp)

mv $s0, $a0
mv $s1, $a1

beqz $s1, end0
lw $t0, 0($s1)
beq $t0, $s0, end1

mv $s2, $0
lw $s3, 4($s1)
sll $s3, $s3, 2

loop:
beq $s2, $s3, end0

Translating C to MIPS
• Why is this solution inefficient?

3

Translating C to MIPS
• Why is this solution inefficient?

– It does stack operations every time, even when tree is null or num
is found in top level node.

• These cases happen at every leaf of the tree

Translating C to MIPS
• Why is this solution inefficient?

– It does stack operations every time, even when tree is null or num
is found in top level node.

• These cases happen at every leaf of the tree

• How can we improve this?

Translating C to MIPS
• Why is this solution inefficient?

– It does stack operations every time, even when tree is null or num
is found in top level node.

• These cases happen at every leaf of the tree

• How can we improve this?
– Do these cases before we do stack operations because $sX

registers are unnecessary for these cases anyway.

Using Malloc
• Now write a function in C which will add a node as a child

to another node:

void addChild(struct node ** parent, struct node * child) {

Using Malloc
• Now write a function in C which will add a node as a child

to another node:

void addChild(struct node ** parent, struct node * child) {
int i, numChildren = (*parent)->numChildren;
struct node * temp = malloc(2*sizeof(int) +

(numChildren + 1)*sizeof(struct node *));
temp->data = (*parent)->data;
temp->numChildren = numChildren + 1;
for (i=0; i<numChildren; i++)

(temp->children)[i] = ((*parent)->children)[i];
(temp->children)[numChildren] = child;
*parent = temp;

}

