
1

Virtual Memory

Review

One Process

Recall that after:
(1) compilation
(2) assembly
(3) linkage

we get an executable with
absolute addresses.

This is the address space
of a single process. code

global

heap

stack

0x00000000

0xFFFFFFFF

> One Process

What happens when
we have more than
one process running
at the same time?

Each process needs
its own address
space, but we only
have one physical
memory.

code
global
heap

stack

code
global
heap

stack

code
global
heap

stack

A B C

Physical Memory

> One Process

code
global
heap

stack

code
global
heap

stack

code
global
heap

stack

A B C

Physical Memory

NOT ENOUGH ROOM!

HOW ARE WE GOING TO SHARE?
HOW ARE WE GOING TO PROTECT?

SOLUTION: VIRTUAL MEMORY

> One Process

A B C

Physical Memory

Virtual
Address
Spaces

Physical
Address
Space

> One Process

A B C

Physical Memory

Virtual
Address
Spaces

Physical
Address
Space

The virtual pages of a process
may be in physical memory
OR on disk.

2

> One Process

A B C

Physical Memory

Virtual
Address
Spaces

Physical
Address
Space

The virtual pages of a process
may be in physical memory
OR on disk.

All of this begs the question:
HOW CAN I FIND MY PAGES?

Page Table
The Question:
How can I find my
pages?

The Answer:
Give each process a
page table that is
used to translate
virtual addresses to
physical addresses

…

Virtual Address Space

…

Page Table
0

1

2

3

Page Table

…

Virtual Address Space

…

Page Table
0

1

2

3

Index is
Virtual Page
Number

Contents is
Physical Page
Number

Page Table

vpn offset

ppn offset

Virtual Address:

Physical Address:

Use the page table
to look up the vpn to
ppn mapping

Use the same
page offset

Use the page table to translate virtual addresses
to physical addresses.

Page Table
What other information could we store in the
page table?

Valid bit (required)
Physical page number (required)
Dirty bit (required)
Referenced bit
Access rights

Why don’t we store the virtual page number?
What are the other bits used for? Why is the
dirty bit required?

ppnbits

Page Table
Why don’t we store the virtual page number?

The vpn is the index for the page table.
What are the other bits used for?

Valid 1 if in memory, 0 if on disk
Dirty has the page been written to?
Reference used to approximate LRU
Access Rights read only, etc.

Why is the dirty bit required?
Memory is always write back, so upon eviction we
need to know whether to write the page back to disk.

3

Ex1

What does it mean when the valid bit is
zero?

Ex1

What does it mean when the valid bit is
zero?

The page is on disk.

Ex2

Virtual addresses: 40 bits
Physical addresses: 30 bits
Page size: 8 KB

How many bits are used for the page offset,
virtual page number, and physical page
number?

Ex2

Virtual addresses: 40 bits
Physical addresses: 30 bits
Page size: 8 KB

How many bits are used for the page offset,
virtual page number, and physical page
number?

offset bits: 13, vpn bits: 27, ppn bits: 17

Ex3

Virtual addresses: 40 bits
Physical addresses: 30 bits
Page size: 8 KB

How many page table entries are required for a
single process?

Ex3

Virtual addresses: 40 bits
Physical addresses: 30 bits
Page size: 8 KB

How many page table entries are required for a
single process?

227. Page Tables are too big, so use two level
page tables!

4

Two Level Page Table

…

First Level
Page Table
0

1

2

3

Physical Page
Number of the
Second Level
Page Table!

…

Second Level
Page Tables
0

1

2

3

Physical Page
Number of the
Page You
Want!

…

0

1

2

3

…

…

Pages

Many More Second Level Page Tables
(one for each entry in the first level)

Two Level Page Table

…

First Level
Page Table
0

1

2

3

Physical Page
Number of the
Second Level
Page Table!

…

Second Level
Page Tables
0

1

2

3

Pages

Physical Page
Number of the
Page You Want!

1st level index 2nd level index page offset

Virtual Address:

Ex4

The two level page table will have more entries
than if we had only used a one level page table.
How exactly are we saving space?

Ex4

The two level page table will have more entries
than if we had only used a one level page table.
How exactly are we saving space?

In the one level page table, the page table had
to stay in memory all the time. In the two level
page table, only the first level page table needs
to stay in memory all the time… huge savings!

Ex5

Assuming our data is in main memory, how
many times do we need to go to memory in
order to do one memory access (assuming that
all you have is a two level page table)?

Ex5

Assuming our data is in main memory, how
many times do we need to go to memory in
order to do one memory access (assuming that
all you have is a two level page table)?

3. One for each level of the page table and one
for the data itself.
This is too slow, so use a cache (TLB) to keep
recently used page table entries.

5

TLB

…

Page Table
0

1

2

3

Main Memory

The TLB is a cache for page table entries

CPU

$

TLB

If we use this
page table entry

We store it in the
TLB – in anticipation
that we will need
that translation
again soon

Ex6

What information should we store in the TLB?

Ex6

What information should we store in the TLB?

Everything we stored in the page table entry
(valid, ppn, dirty, referenced, access rights) AND
the vpn.

vpn ppnbits

Ex7

The TLB is generally much smaller than the data
cache, but the TLB will certainly have a higher
hit rate than the data cache. Why?

Ex7

The TLB is generally much smaller than the data
cache, but the TLB will certainly have a higher
hit rate than the data cache. Why?

Memory accesses in the same page will use the
same TLB entry.
Memory accesses in the same block will use the
same cache entry.
Pages: 1KB-8KB. Blocks: 32B-64B.

Ex8

How (the heck) are page tables, the TLB, the
data cache, main memory, and disk all related?

See lecture notes from 8/4.

