
1

Review Day 3:
Single Cycle, Pipeline, Hazards

CS61C Summer 2004
Pooya Pakzad

Recap: A Single Cycle Datapath
• Rs, Rt, Rd and Imed16 hardwired into datapath from Fetch Unit
• We have everything except control signals (underline)

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd

RegDst

E
xtender

M
ux

Mux

3216
imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32

Adr

Data
Memory

32

MemWr

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

PCSrc

Meaning of the Control Signals
• ExtOp: “zero”, “sign”

• ALUsrc: 0 � regB; 1 � immed
• ALUctr: “add”, “sub”, “or”

° MemWr: 1 � write memory

° MemtoReg: 0 � ALU; 1 � Mem

° RegDst: 0 � “rt”; 1 � “rd”

° RegWr: 1 � write register

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

0

1

0

1

01

=

Decode -> Control->Data Path

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr Zero

Instruction<31:0>

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

PCSrc

Adr

Inst
Memory

DATA PATH

Control

Op

<
21:25>

Fun

RegWr

PLA Implementation of the Main Control

op<0>

op<5>. .op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc

MemtoReg

MemWrite

Branch

Jump

RegDst

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>

A Real MIPS Datapath (CNS T0)

2

Drawback of this Single Cycle Processor
• Long cycle time:

–Cycle time must be long enough for the load
instruction:

PC’s Clock -to-Q +
Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew

• Cycle time for load is much longer than
needed for all other instructions

Problems
• Disadvantages of the Single Cycle Processor

– Long cycle time
– Cycle time is too long for all instructions except the

Load
– No reuse of hardware

• Multiple Cycle Processor:
– Divide the instructions into smaller steps
– Execute each step (instead of the entire instruction) in

one cycle

• Partition datapath into equal size chunks to
minimize cycle time

Pipelining: Big Idea
• Reduce CPI by overlapping many instructions

– Average throughput of approximately 1 CPI with fast clock
– Divide the instructions into smaller steps
– Execute each step (instead of the entire instruction) in one cycle
– Partition datapath into equal size chunks to minimize cycle time

• Utilize capabilities of the Datapath
– start next instruction while working on the current one

– limited by length of longest stage (plus fill/flush)
– detect and resolve hazards

• What makes it easy
– all instructions are the same length

– just a few instruction formats

– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions

– data hazards: an instruction depends on a previous instruction

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Pipelined Laundry: Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

The Five Stages of Load

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction
Decode

• Exec: Calculate the memory address

• Mem: Read the data from the Data Memory

• Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

3

Note: These 5 stages were there all along!
IR <= MEM[PC]

PC <= PC + 4

R-type

ALUout
<= A fun B

R[rd]
<= ALUout

ALUout
<= A op ZX

R[rt]
<= ALUout

ORi

ALUout
<= A + SX

R[rt] <= M

M <=
MEM[ALUout]

LW

ALUout
<= A + SX

MEM[ALUout]
<= B

SW

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

BEQ

0010

If A = B then PC <=
ALUout

ALUout
<= PC +SX

E
xe

cu
te

M
em

or
y

W
rit

e-
ba

ck
D

ec
od

e
F

et
ch

Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two
different ways at the same time

• E.g., combined washer/dryer would be a structural hazard or
folder busy watching TV

– control hazards: attempt to make a decision before condition
is evaluated

• E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

• branch instructions

– data hazards: attempt to use item before it is ready
• E.g., one sock of pair in dryer and one in washer; can’t fold until

get sock from washer through dryer

• instruction depends on result of prior instruction still in the
pipeline

• Can always resolve hazards by waiting
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem Reg

A
LUMem Reg Mem Reg

Detection is easy in this case! (right half highligh t means read, left half write)

Structural Hazard: Separate Caches

• Solution:
–infeasible and inefficient to create second
memory

–so simulate this by having two Level 1
Caches

–have both an L1 Instruction Cache and an
L1 Data Cache

–L2 Cache can be unified.

–need more complex hardware to control
when both caches miss

Structural Hazard #2: Registers (1/2)

Can’t read and write to registers simultaneously

I$

sw

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Structural Hazard #2: Registers (2/2)

• Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

• Solution: introduce convention
–always Write to Registers during first half of
each clock cycle

–always Read from Registers during second
half of each clock cycle

–Result: can perform Read and Write during
same clock cycle

This is what we have talked about as internal forwarding
in the regFile

4

• Stall: wait until decision is clear
• Impact: 2 lost cycles (i.e. 3 clock cycles for Beq

instruction above) => slow
• Move decision to end of decode

– save 1 cycle per branch, may stretch clock cycle

Control Hazard Solution #1: Stall
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Beq

Add

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem RegMem

Lost
potential

• Predict: guess one direction then back up if wrong
• Impact: 0 lost cycles per branch instruction if guess

right, 1 if wrong (right ~ 50% of time)
– Need to “Squash” and restart following instruction if wrong

• More dynamic schemes: history of branch behavior
(~90-99%)

Control Hazard Solution #2: Predict
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Mem
A

LUReg Mem Reg

• Delayed Branch: Redefine branch behavior (takes place
after next instruction)

• Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (~50% of time)

• As launch more instruction per clock cycle, less useful

Control Hazard Solution #3: Delayed Branch

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Mem

A
LUReg Mem Reg

Load Mem

A
LUReg Mem Reg

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

• Consider the following sequence of
instructions

Dependencies backwards in time are hazards
Data Hazards (2/2)

sub $t4,$t0 ,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0 ,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0 ,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0 ,$t10

A
L

UI$ Reg D$ Reg

add $t0 ,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)
• Forward result from one stage to another

Data Hazard Solution: Forwarding

sub $t4,$t0 ,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0 ,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0 ,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0 ,$t10

A
L

UI$ Reg D$ Reg

add $t0 ,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

“or” hazard solved by register hardware

5

• Dependencies backwards in time are
hazards

Data Hazard: Loads (1/4)

sub $t3,$t0 ,$t2

A
L

UI$ Reg D$ Reg

lw $t0 ,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

• Can’t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

• Hardware must stall pipeline
• Called “interlock ”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

Data Hazard: Loads (3/4)

• Instruction slot after a load is called “load
delay slot”

• If that instruction uses the result of the
load, then the hardware interlock will stall it
for one cycle.

• If the compiler puts an unrelated instruction
in that slot, then no stall

• Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop
in the slot (except the latter uses more
code space)

Data Hazard: Loads (4/4)
• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

UReg D$

lw $t0, 0($t1) A
L

UI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

nop

How long to execute?
• Assume delayed branch, 5 stage pipeline,
forwarding/bypassing, interlock on
unresolved load hazards
(after 1000 iterations, so pipeline is full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

• How many pipeline stages (clock cycles)
per loop iteration to execute this code?

A. 4 or fewer

B. 5

C. 6

D. 7

E. 8

F. 9 or more

1.
2. (data hazard so stall)

3.
4.
5.
6.

(delayed branch so exec. nop)8.

7. (data hazard so stall)

How long to execute?
• Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible

Loop: lw $t0, 0($s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

• How many pipeline stages (clock cycles)
per loop iteration to execute your revised
code? (assume pipeline is full)

A. 4 or fewer

B. 5

C. 6

D. 7

E. 8

F. 9 or more

6

How long to execute?

• How many pipeline stages (clock cycles)
per loop iteration to execute your revised
code? (assume pipeline is full)

A. 4 or fewer

B. 5

C. 6

D. 7

E. 8

F. 9 or more

• Rewrite this code to reduce clock cycles per loop
to as few as possible:

Loop: lw $t0, 0($s1)
addiu $s1, $s1, -4
addu $t0, $t0, $s2
bne $s1, $zero, Loop
sw $t0, +4($s1)

(no hazard since extra cycle)

1.

3.
4.
5.

2.

(modified sw to put past addiu)

