Review Day 3:
Single Cycle, Pipeline, Hazards

CS61C Summer 2004
Pooya Pakzad

Recap: A Single Cycle Datapath

* Rs, Rt, Rd and Imed16 hardwired into datapath from Fetch Unit
+ We have everything except control signals (underline)

Instruction<31:0>

PCSrc —f Inslrucliqn & Ala é,
|Rd |Rt Fetch Unit E 2 |E B
o
RegDst Clk—o v < l\j;l' v
Rt Rs Rd Immi6
Lls 5* 5* AL Uctr Zero
busA MemWr MemtoReg
busW Rw Ra Rb
3232-bit 2 3
32|k Registers c
K
m
=3
i ——3
imm16 6 3|3
Q Clk
ALUSrc

ExtOp

Meaning of the Control Signals

. ExtOp: “zero”, “sign” ° MemWwr: 1 = write memory

« ALUsrc: 0 = regB; 1 = immed ° MemtoReg: 0 = ALU; 1 = Mem
+ ALUctr: “add”, “sub”, “or”

° RegDst: 0=t 1 =“rd”
° RegWr: 1 = write register
RegDs
|Rd | Rt Equal ALUctr MemWr MemtoReg
Regwt st 5)(5)(
busA .
busw Rw Ra Rb =
3232-bit 32 >
32 Registers bu: 0 c| 32|
O 3 =
Clk s
m sl 32 WrEn Adr
1) Daaln
imm16— = 3|3 Data

Clk Memory

Decode -> Control->Data Path

Instruction<31:0>

Inst &8 (2 |2 |a
Memory 5 Sl s e
bl o

§ (9[99

PCSrc RegWr RegDst ExtOp ALUSrc ALUctr MemWr MemtoReg ‘ Zero

DATA PATH

PLA Implementation of the Main Control

op<5> op<5> op<5> op<5> op<5>
<0> op<0>
R-type, jumy
i —J—P—ﬁ\ RegWrite
e
T~ ALUSrc
)
RegDst
MemtoReg
MemWrite
Branch
¢ Jum
D_ExtOp
AL Uop<2>
ALUop<1>
op<e:

A Real MIPS Datapath (CNS T0)

cpuadd o et
wagen epUGHg

cpuadd

Drawback of this Single Cycle Processor

eLong cycle time:
—Cycle time must be long enough for the load
instruction:
PC’s Clock -to-Q +
Instruction Memory Access Time +
Register File Access Time +
ALU Delay (address calculation) +
Data Memory Access Time +
Register File Setup Time +
Clock Skew

« Cycle time for load is much longer than
needed for all other instructions

Problems

« Disadvantages of the Single Cycle Processor
— Long cycle time
— Cycle time is too long for all instructions except the
Load
— No reuse of hardware

* Multiple Cycle Processor:
— Divide the instructions into smaller steps
— Execute each step (instead of the entire instruction) in
one cycle
« Partition datapath into equal size chunks to
minimize cycle time

Pipelining: Big Idea

« Reduce CPI by overlapping many instructions
— Average throughput of approximately 1 CPI with fast clock
— Divide the instructions into smaller steps
— Execute each step (instead of the entire instruction) in one cycle
— Partition datapath into equal size chunks to minimize cycle time
« Utilize capabilities of the Datapath
— start next instruction while working on the current one
— limited by length of longest stage (plus fill/flush)
— detect and resolve hazards
« What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores
* What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

oo

~oa=~0

Sequential Laundry

6 PM 7 8 9 10 11 Midnight

[Time
\ \ \ \ \ \ \ I | I I |
"'40 '20'30 ' 40 '20 30 ' 40 '20 30 ' 40 '20'

@-ﬁ? .
Tés
S
&

» Sequential laundry takes 6 hours for 4 loads
* If they learned pipelining, how long would laundry take?

Pipelined Laundry Start work ASAP

6 PM 7 8 10 11 Midnight

|
I Time

| | |
30 40 40 40 40 20

| ® 5
Z‘ -lf?
)

* Pipelined laundry takes 3.5 hours for 4 loads

The Five Stages of Load

Cycle 1 ;Cyc\eQ Cycle 3 ;CycleA ;Cycles
e

Loadl Ifetch IReg/DecI Exec | Mem | wr |

« Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory
* Reg/Dec: Registers Fetch and Instruction
Decode
« Exec: Calculate the memory address
* Mem: Read the data from the Data Memory
« Wr: Write the data back to the register file

Note: These 5 stages were there all along!

5 IR <= MEM[PC]
E PC<=PC+4
& /~ 0000
% ALUout
§ <=PC +SX
8 0001
BEQ
S
2
3 ALUout ALUout ALUout If A =B then PC <
3 <=Aopzx <=A+SX <=A+SX ALUout
] 0110 1000 1011
0010
[}
E\ M<=
E MEMIALUout] MEM[ALUout]
& 1001 <=B
= 7 1100
§) 0
g -
-§ 1010
N

Can pipelining get us into trouble?

* Yes: Pipeline Hazards
— structural hazards: attempt to use the same resource two
different ways at the same time
« E.g., combined washer/dryer would be a structural hazard or
folder busy watching TV
— control hazards: attempt to make a decision before condition
is evaluated
« E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in
« branch instructions
— data hazards: attempt to use item before it is ready
« E.g., one sock of pair in dryer and one in washer; can't fold until
get sock from washer through dryer
+ instruction depends on result of prior instruction still in the
pipeline
» Can always resolve hazards by waiting
— pipeline control must detect the hazard
— take action (or delay action) to resolve hazards

Single Memory is a Structural Hazard

Time (clock cycles)

1
| Load Mem
.
,r. Instr 1
o
o | Instr2 v
. N
r =Y vem
st 3 2
1%
nsie 4 o
1d

Detection is easy in this case! (right half highligh t means read, left half write)

Structural Hazard: Separate Caches

* Solution:

—infeasible and inefficient to create second
memory

—so0 simulate this by having two Level 1
Caches

—have both an L1 Instruction Cache and an
L1 Data Cache

—L2 Cache can be unified.

—need more complex hardware to control
when both caches miss

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

|

n

s

t [sw
- [instr 1
O |Instr 2
r

d Instr 3
€ Yinstr 4
r

Can't read and write to registei’s simultaneously

Structural Hazard #2: Registers (2/2)

« Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

« Solution: introduce convention

—always Write to Registers during first half of
each clock cycle

—always Read from Registers during second
half of each clock cycle

—Result: can perform Read and Write during
same clock cycle

This is what we have talked about as internal forwarding
in the regFile

Control Hazard Solution #1: Stall Control Hazard Solution #2: Predict

Time (clock cycles)
1 Time (clock cycles) n
n s
s ¢ | Add
! |Load "
o
Beq
o
. |Beq ;
d e
Load
¢ | Add !
« Predict: guess one direction then back up if wrong

« Impact: 0 lost cycles per branch instruction if guess
! . o A
» Impact: 2 lost cycles (i.e. 3 clock cycles for Beq right, 1d'f VY’O”g r(:gh; 50? (lJlf t'_me_) on it
instruction above) => slow — Need to Sc!uas an restar.l ollowing instruction i wro.ng
« Move decision to end of decode « More dynamic schemes: history of branch behavior
(~90-99%)
— save 1 cycle per branch, may stretch clock cycle

« Stall: wait until decision is clear

Control Hazard Solution #3: Delayed Branch
Data Hazards (1/2)

i Time (clock cycles)
am « Consider the following sequence of
- instructions
o
L P add $t0, $t1, $t2
oM sub $t4, $t0 ,$t3
Load
and $t5, $t0 ,$t6

Delayed Branch: Redefine branch behavior (takes place
after next instruction) or $t7, $t0 ,$t8

_Impact:_O clock cycles per branch in_struction if can find xor $t9, $t0 ,$t10
instruction to put in “slot” (~50% of time) I
« As launch more instruction per clock cycle, less useful

Data Hazards (2/2) Data Hazard Solution: Forwarding

Dependencies backwards in time are hazards e Forward result from one stage to another
Time (clock cycles) P

IF_:ID/I

add $t0 $t1,5t2[1s Jifres]

sub $t4,$10 $t3

and $t5,$t0 ,$t6

IF_: IDIR

|

n

f add $10,$t1,$t2| 1s |
r. |sub $t4,$t0 $t3

and $t5,$t0 ,$t6
or $t7,$t0 ,$t8

or $t7,$t0 ,$t8
xor $t9,$t0 ,$t10

xor $t9,$t0 ,$t10

~-oa-=0

“or " hazard solved by register hardware

Data Hazard: Loads (1/4)

« Dependencies backwards in time are
hazards

IF_} IDIRE

iw $t0,0($t2)[s J
sub $13,$10 32 |

 Can't solve with forwarding
» Must stall instruction dependent on
load, then forward (more hardware)

¢ Hardware must stall pipeline
* Called “interlock "

IF_: ID/RF

Iw $tO, O($t1)

sub $t3,$t0,$t2

and $t5,$t0,$t4

Data H " Loads (3/4)

« Instruction slot after a load is called “load
delay slot”

«If that instruction uses the result of the
load, then the hardware interlock will stall it
for one cycle.

« If the compiler puts an unrelated instruction
in that slot, then no stall

e Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop
in the slot (except the latter uses more
code space)

« Stall is equi

Iw $t0, 0($t1)

sub $t3,$t0,$t2
and $t5,$t0,$t4

nop

How long to execute?

« Assume delayed branch, 5 stage pipeline,
forwarding/bypassing, interlock on
ur}resol(\)/gg load hazards line is ful
(after 1 |terat|ons,2§oop|tp(?]|ne| S(L)J s)tall)

zZar
Loop: % l\(/jvd 311)
. addu , S
4. SW , [
5 add| u , $Sl, lg(zf'ltahazard so stall)
g- bne , $zero, Loop

- NOP (delayed branch so exec. nop)

«How man piP_eIine stages (clock cycles)
per loop iteration to execute this code?
A.4 or fewer D. 7

Bl
C.6 9 or more

How long to execute?

* Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible

Loop: Iw $t 0, 0($sl%§
addu $t0, $t0, 3$s2
sw _ $t0, 0(%$s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

*How manty pi?eline stages (clock cycles)
per loop iferation to execute Your revised
code? Fassume pipeline is full)

A. 4 or fewer D. 7

Bls 8

C.6 9 or more

How long to execute?

« Rewrite this code to reduce clock cycles per loop
to as few as possible:

Loop: 1.

$51: $zero, Loop
sw $t0,/ﬂ($sl)

(modified sw to put past addiu)

arwn
=3
=}
®

«How man pl?.elme stages (clock cycles)
per loop iteration to execute your révised
E%&memmMeBMD
A. 4 or fewer D. 7

code?

E_8
C.6 . 9 or more

