CS61A — Homework 2.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Recursion and iteration
Lectures: Monday June 30, Tuesday July 1
Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (Pages 31-47)

In this assignment you’ll practice writing procedures that evolve iterative processes. The homework is due at
8 PM on Sunday, July 3. Please put your solutions into a file called hw2-1.scm and submit electronically
by typing submit hw2-1 in the appropriate directory. Include test cases and make sure that your .scm files
loads without errors.

Question 1. You've seen the keep higher-order function in lecture. It takes two arguments: a predicate
and a sentence. It returns a new sentence of only those elements that satisfy the predicate (i.e. those for
which the predicate returns a true value):

STk> (keep odd? (1 2 3 456 7))

(1357

STk> (keep (lambda (x) (equal? x ’foo)) ’(follow the white rabbit))
O

Write keep so it generates an iterative process.

Question 2. The fast-expt procedure presented on Page 45 performs exponentiation in a logarithmic
number of steps using successive squaring. Its order of growth is approximately ©(loga(n)), which is pretty
damn good. However, the book’s version evolves a recursive process: each time n is even a call to square is
left to be done before the function returns. Re-write fast-expt so it evolves an iterative process (and still
uses a logarithmic number of steps, of course). The idea behind successive squaring is:

b= () = ()2

To adapt this to an iterative algorithm, you’ll need to maintain an extra iteration variable, call it a for
“answer,” that is taken to be 1 initially; the final value of a will be the result of fast-expt. The value of ab™
should not change from one iteration to the next. In other words, ab™ should remain invariant throughout
the computation. The individual values of a, b and n may change from iteration to iteration.

STk> (fast-expt 3 6)
729

STk> (fast-expt 2 32)
4294967296

The adventure continues on the next page.

36



Question 3. Read and complete Exercise 1.37 from SICP. Don’t get intimidated by the math. This question
has nothing to do with ¢, the special number 1.6180, except that its inverse can be approximated with the

continued fraction: )

1+
1+

14---
You don’t need to understand the mathematical significance of ¢. However, your cont-frac function should
give a good approximation to é:

STk> (cont-frac (lambda (i) 1.0) (lambda (x) 1.0) 100)
0.618033988749895

But before you start approximating %, test your function with a small k-term finite continued fraction like:

1

2
1+ ——

2—|—3
3

There are just three terms in this fraction, making it easy to compute by hand:

STk> (/1 (+ 1 (/2 (+2 (/33
0.6

Using cont-frac should give matching results:

STk> (cont-frac (lambda (x) x) (lambda (x) x) 3)
0.6

Hint: You will find it easier to count up from one to & in the recursive version, and to count down from k
to zero in the iterative version.

Question 4. A perfect number is defined as a number equal to the sum of all its factors less than itself.
For example, the first perfect number is 6, because 1+ 2 4+ 3 = 6. The second perfect number is 28, because
14+2+44 7+ 14 = 28. What is the third perfect number? Write a procedure next-perfect that takes a
single number n and tests numbers starting with n until a perfect number is found:

STk> (next-perfect 4)
6
STk> (next-perfect 6)
6
STk> (next-perfect 7)
28

To find the third perfect number evaluate (next-perf 29). To do this problem, you’ll need a sum-of-factors
subprocedure. If you run this program when the system is heavily loaded, it may take a while to compute
the answer! Make sure your program can find 6 and 28 first.

Does next-perfect evolve an iterative or recursive process?

37





