CS61A — Homework 2.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Recursion and iteration
Lectures: Monday June 30, Tuesday July 1
Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (Pages 31-47)

In this assignment you’ll practice writing procedures that evolve iterative processes. The homework is due at
8 PM on Sunday, July 3. Please put your solutions into a file called hw2-1.scm and submit electronically
by typing submit hw2-1 in the appropriate directory. Include test cases and make sure that your .scm files
loads without errors.

Question 1. You've seen the keep higher-order function in lecture. It takes two arguments: a predicate
and a sentence. It returns a new sentence of only those elements that satisfy the predicate (i.e. those for
which the predicate returns a true value):

STk> (keep odd? (1 2 3 456 7))

(1357

STk> (keep (lambda (x) (equal? x ’foo)) ’(follow the white rabbit))
O

Write keep so it generates an iterative process.

Question 2. The fast-expt procedure presented on Page 45 performs exponentiation in a logarithmic
number of steps using successive squaring. Its order of growth is approximately ©(loga(n)), which is pretty
damn good. However, the book’s version evolves a recursive process: each time n is even a call to square is
left to be done before the function returns. Re-write fast-expt so it evolves an iterative process (and still
uses a logarithmic number of steps, of course). The idea behind successive squaring is:

b= () = ()2

To adapt this to an iterative algorithm, you’ll need to maintain an extra iteration variable, call it a for
“answer,” that is taken to be 1 initially; the final value of a will be the result of fast-expt. The value of ab™
should not change from one iteration to the next. In other words, ab™ should remain invariant throughout
the computation. The individual values of a, b and n may change from iteration to iteration.

STk> (fast-expt 3 6)
729

STk> (fast-expt 2 32)
4294967296

The adventure continues on the next page.
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Question 3. Read and complete Exercise 1.37 from SICP. Don’t get intimidated by the math. This question
has nothing to do with ¢, the special number 1.6180, except that its inverse can be approximated with the

continued fraction: )
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14---
You don’t need to understand the mathematical significance of ¢. However, your cont-frac function should
give a good approximation to é:

STk> (cont-frac (lambda (i) 1.0) (lambda (x) 1.0) 100)
0.618033988749895

But before you start approximating %, test your function with a small k-term finite continued fraction like:
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There are just three terms in this fraction, making it easy to compute by hand:

STk> (/1 (+ 1 (/2 (+2 (/33
0.6

Using cont-frac should give matching results:

STk> (cont-frac (lambda (x) x) (lambda (x) x) 3)
0.6

Hint: You will find it easier to count up from one to & in the recursive version, and to count down from k
to zero in the iterative version.

Question 4. A perfect number is defined as a number equal to the sum of all its factors less than itself.
For example, the first perfect number is 6, because 1+ 2 4+ 3 = 6. The second perfect number is 28, because
14+2+44 7+ 14 = 28. What is the third perfect number? Write a procedure next-perfect that takes a
single number n and tests numbers starting with n until a perfect number is found:

STk> (next-perfect 4)
6
STk> (next-perfect 6)
6
STk> (next-perfect 7)
28

To find the third perfect number evaluate (next-perf 29). To do this problem, you’ll need a sum-of-factors
subprocedure. If you run this program when the system is heavily loaded, it may take a while to compute
the answer! Make sure your program can find 6 and 28 first.

Does next-perfect evolve an iterative or recursive process?
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