
CS61A – Homework 7.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Lazy evaluator, Analyzing evaluator, Nondeterministic evaluator

Lectures: Monday August 4, Tuesday August 5

Reading: Abelson & Sussman, Section 4.1.7–4.3.2 (Pages 393–426) skim the parsing stuff

This assignment is an evaluator potpourri, giving you practice with the lazy and nondeterministic evaluators
mostly “above the line.”

• ~cs61a/lib/lazy.scm – Lazy evaluator

• ~cs61a/lib/vambeval.scm – Nondeterministic evaluator

Please put your solutions into a file called hw7-1.scm and submit it online as usual. Include only the code
you wrote and test cases. The assignment is due at 8 PM on Sunday, August 7.

Question 1. In the lazy evaluator actual-value is called in four places: to evaluate the arguments to a
primitive procedure, to evaluate the operator in a procedure application, to print the results in the REPL
and to evaluate the predicate in a conditional. This question investigates what happens when we replace
actual-value with mc-eval in two of these. For each of the following two scenarios, describe what goes
wrong and include a brief session with the lazy evaluator that demonstrates the problem.

A. Suppose we change the application clause to use mc-eval, like this:

((application? exp)
(mc-apply (mc-eval (operator exp) env) ;; was actual-value

(operands exp)
env))

B. Suppose we change eval-if to use mc-eval, like this:

(define (eval-if exp env)
(if (true? (mc-eval (if-predicate exp) env)) ;; was actual-value

(mc-eval (if-consequent exp) env)
(mc-eval (if-alternative exp) env)))

The adventure continues on the next page.

69



Question 2. We’d like to write a nondeterministic program to crack a combination lock. Since there is
only a finite number of combinations, all it takes is time! We will represent locks as message-passing objects
created with the following procedure:

(define (make-lock combination)
(lambda (message combo)

(cond ((eq? message ’try) (if (equal? combo combination) ’open ’nice-try))
(else (error "I don’t understand " message)))))

As you can see, it’s not a very sophisticated lock; it only knows the message try, which comes with one
argument taken to be a test combination. If the test combination matches the real combination, the lock
says open; otherwise it says nice-try.

A. Your task is to write a nondeterministic program code-breaker that takes a lock and returns the
combination that opens it. Assume that a combination is a list of three elements

((left n) (right n) (left n))

where n is between 0 and 20, inclusive, and the directions are exactly as shown: left, right, left. Here
is the desired behavior:

;;; Amb-Eval input:
(define lock1 (make-lock ’((left 10) (right 14) (left 3))))

;;; Starting a new problem
;;; Amb-Eval value:
ok

;;; Amb-Eval input:
(code-breaker lock1)

;;; Starting a new problem
;;; Amb-Eval value:
((left 10) (right 14) (left 3))

B. Now let’s remove the left-right-left requirement. Combinations are still three-element lists, but the
directions can be in any order. Each of the following are valid combinations:

((left 3) (left 4) (left 5))
((right 17) (left 4) (left 15))
((right 20) (right 20) (right 20))

Modify your program from Part A to crack these locks.

70




