
CS61A – Homework 7.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Nondeterministic evaluator

Lectures: Wednesday August 6, Thursday August 7

Reading: Abelson & Sussman, Section 4.3 (Pages 412–437)

In this homework you will gain experience modifying the nondeterministic evaluator. Most of this assignment
is very much “below the line.” Two versions of the amb evaluator are available:

• ~cs61a/lib/ambeval.scm — This is the nondeterministic interpreter from the book, based on the
analyzing evaluator (which we have not covered).

• ~cs61a/lib/vambeval.scm — This is a version of the nondeterministic interpreter based on the
metacircular evaluator. This is also the version described in lecture. Most students find this one
easier to understand. (The “v” is for vanilla.)

Copy whichever version you wish to use to do the homework into a file hw7-2.scm and make all modifications
in this file. Clearly indicate what you changed. When you are done, you will have a nondeterministic
interpreter that supports quit, permanent-set!, or and if-fail. You should include test cases either in
this file (commented out), or a separate file called tests. Please put your answer to Question 1 into a file
question1.scm. Submit all files electronically. The assignment is due at 8 PM on Sunday, August 7.

All problems that ask you to add something to the nondeterministic evaluator have very short solutions.
You should not be writing a lot of code at all! Wrapping your brain around continuations is the tricky part.

Question 1. Read and complete Exercise 4.42 in SICP. This is the only “above the line” problem on the
homework.

Question 2. We’d like to be able to quit the amb evaluator at any point in the execution of a program.
Add a quit feature to the nondeterministic evaluator that immediately returns control to STk. It must be
a clean exit—don’t cause an error! The return value of quit is up to you; ours returns the string “Have
a nice day.” The following are some examples of how quit should behave; quit must exit the amb evaluator
not just from the toplevel, but from any depth in the evaluation (the bars separate different sessions with
the evaluator):

;;; Amb-Eval input:
(quit) ;; exit from toplevel

;;; Starting a new problem
"Have a nice day"

STk>

;;; Amb-Eval input:
(list 1 2 (quit) 3) ;; exit from subexpression evaluation

;;; Starting a new problem
"Have a nice day"

STk>

The question continues on the next page.

71



;;; Amb-Eval input:
(define (factorial n)

(if (= n 0)
(begin (newline) (quit)) ;; exit from arbitrarily deep recursion
(begin (display n)

(display " ")
(* n (factorial (- n 1))))))

;;; Amb-Eval input:
(factorial 14)

;;; Starting a new problem 14 13 12 11 10 9 8 7 6 5 4 3 2 1
"Have a nice day"

STk>

Hint: Remember that control flow is done via continuations in the nondeterministic evaluator. To continue
the computation you must invoke the success continuation; to backtrack you invoke the fail continuation.
What if you call neither?

Question 3. One of the really neat things about the nondeterministic evaluator is that variable assignments
are “undone” when backtracking occurs. Backtracking occurs automatically when (amb) is encountered;
it also can be forced when the user types try-again. Therefore, assignments can be undone by saying
try-again. Watch:

;;; Amb-Eval input:
(define neo 2) ;; return value omitted

;;; Amb-Eval input:
(define trinity 4)

;;; Amb-Eval input:
(define cypher 6)

;;; Amb-Eval input:
(begin (set! neo (* neo neo))

(set! trinity (* trinity trinity))
(set! cypher ’bloody-rat)
(list neo trinity cypher))

;;; Starting a new problem
;;; Amb-Eval value:
(4 16 bloody-rat) ;; clearly the assignment takes effect

;;; Amb-Eval input:
try-again ;; but it is not permanent

;;; There are no more values of ...

;;; Amb-Eval input:
(list neo trinity cypher)

;;; Starting a new problem
;;; Amb-Eval value:
(2 4 6) ;; back to their old values

Sometimes, however, we want assignments to be permanent. Add a special form permanent-set! that is
just like set! but does not get rolled back when backtracking occurs.

The question continues on the next page.

72



You can use permanent-set! to count the number of times the nondeterministic evaluator backtracks:
;;; Amb-Eval input:
(define count 0) ;; return value omitted

;;; Amb-Eval input:
(let ((x (an-element-of ’(a b c)))

(y (an-element-of ’(a b a))))
(permanent-set! count (+ 1 count))
(require (not (eq? x y)))
(list x y count))

;;; Starting a new problem
;;; Amb-Eval value:
(a b 2)

;;; Amb-Eval input
try-again

;;; Amb-Eval value:
(b a 4)

Hint: This question does not ask you to add new functionality, but to subtract from what’s already there.
Find the line(s) in eval-assignment that implement this undo effect and get rid of them. The failure
continuation is a good place to look.

Question 4. Add the or special form to the nondeterministic evaluator by writing an evaluation procedure
eval-or that handles it. Do not add or as a derived expression. As in regular Scheme, or should take
any number of arguments and return the value of the first one that is true, or #f if none are.

You should model eval-or very heavily on get-args (code from vambeval.scm):
(define (get-args exps env succeed fail)

(if (null? exps)
(succeed ’() fail)
(ambeval (car exps)

env
(lambda (arg fail2) ;; first success continuation

(get-args (cdr exps)
env
(lambda (args fail3) ;; second success continuation

(succeed (cons arg args) fail3))
fail2))

fail)))

Like list-of-values in the MCE, the job of get-args is to evaluate a sequence of Scheme expressions,
exps, and return a list of their values:
STk> (get-args ’((+ 2 3) (first ’neo) (bf ’trinity))

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

(5 n rinity)

There are two success continuations. The first one is invoked if evaluating the very first expression in the
sequence does not cause a failure; in this case, arg refers to the value of that first expression. The second one
is invoked if the remaining expressions in the sequence were evaluated without failure; in this case, args is
a list of their values. Notice how the list of values is built up in this second success continuation by consing
arg into args.

The question continues on the next page.

73



A good place to start is by adding this clause to ambeval

((or? exp) (eval-or (cdr exp) env succeed fail)) ;; cdr to strip off "or" tag

and defining eval-or to do exactly what get-args does. Of course this means that or will evaluate all of
its arguments and return a list of their results, which is not quite what we want, but it’s a start! Try it out.
Then tinker with this eval-or to make it behave as specified above. Here are some sample calls:

STk> (eval-or ’((= 2 3) (list 1 2) this-should-not-be-evaluated)
the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

(1 2)
STk> (eval-or ’((= 2 3) (amb) this-should-not-be-evaluated)

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

failed
STk> (eval-or ’()

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

#f

And here is how or can be used in the interpreter:

;;; Amb-Eval input:
(or (amb 1 2 #f) ’hello)

;;; Starting a new problem
;;; Amb-Eval value:
1

;;; Amb-Eval input:
try-again

;;; Amb-Eval value:
2

;;; Amb-Eval input:
try-again

;;; Amb-Eval value:
hello

;;; Amb-Eval input:
try-again

;;; There are no more values of
(or (amb 1 2 #f) ’hello)

The assignment continues on the next page.

74



Question 5. Read and complete Exercise 4.52 in the book. This question is more difficult than the others
since you’ll need to come up with the if-fail special form from scratch. Assuming your function for
handling if-fail is called eval-if-fail and takes the entire expression as argument, here is how you
might test it in isolation:

STk> (eval-if-fail ’(if-fail (amb) ’hello)
the-global-environment
(lambda (result new-fail) result)
(lambda () ’failed))

hello
STk> (eval-if-fail ’(if-fail (amb) (amb))

the-global-environment
(lambda (result new-fail) result)
(lambda () ’failed))

failed

Hint: To make something happen on failure, you must put it into the fail continuation.

75




