
CS61A – Lab Assignment 1.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. For each expression, give a definition of f such that evaluating the expression will not cause an error, and
say what the expression’s value will be, given your definition.

a. f d. ((f))

b. (f) e. (((f)) 3)

c. (f 3)

2. Find the values of the expressions
a. ((t 1+) 0) b. ((t (t 1+)) 0) c. (((t t) 1+) 0)

where 1+ is a primitive procedure that adds 1 to its argument, and t is defined as follows:
(define (t f)

(lambda (x) (f (f (f x)))) )

Work this out yourself before you try it on the computer!

3. Find the values of the expressions
a. ((t s) 0) b. ((t (t s)) 0) c. (((t t) s) 0)

where t is defined as in question 2 above, and s is defined as follows:
(define (s x)

(+ 1 x))

4. Write a procedure substitute that takes three arguments: a new word, an old word, and a sentence. It
should return a copy of the sentence, but with every occurrence of the old word replaced by the new word.
> (substitute ’maybe ’yeah ’(she loves you yeah yeah yeah))

(she loves you maybe maybe maybe)

5. First, type the definitions
(define a 7)

(define b 6)

into Scheme. Then, fill in the blank in the code below with an expression whose value depends on both a
and b to determine a return value of 24. Verify in Scheme that the desired value is obtained.
(let

((a 3) (b (+ a 2)))

)

6. Write and test the make-tester procedure. Given a word w as argument, make-tester returns a procedure
of one argument x that returns true if x is equal to w and false otherwise. Examples:
> ((make-tester ’hal) ’hal)

#t

> ((make-tester ’hal) ’cs61a)

#f

> (define sicp-author-and-astronomer? (make-tester ’gerry))

> (sicp-author-and-astronomer? ’hal)

#f

> (sicp-author-and-astronomer? ’gerry)

#t

13




