CS61A — Lab Assignment 2.1 Kurt Meinz
University of California, Berkeley Summer 2005

This lab exercise concerns the change counting program on pages 40-41 of Abelson and Sussman.

1. Identify two ways to change the program to reverse the order in which coins are tried, that is, to change
the program so that pennies are tried first, then nickels, then dimes, and so on.

2. Abelson and Sussman claim that this change would not affect the correctness of the computation. However,
it does affect the efficiency of the computation. Implement one of the ways you devised in exercise 1 for
reversing the order in which coins are tried, and determine the extent to which the number of calls to cc
is affected by the revision. Verify your answer on the computer, and provide an explanation. Hint: limit
yourself to nickels and pennies, and compare the trees resulting from (cc 5 2) for each order.

3. Modify the cc procedure so that its kinds-of-coins parameter, instead of being an integer, is a sentence
that contains the values of the coins to be used in making change. The coins should be tried in the sequence
they appear in the sentence. For the count-change procedure to work the same in the revised program as
in the original, it should call cc as follows:

(define (count-change amount)
(cc amount ’(50 25 10 5 1)) )

4. Many Scheme procedures require a certain type of argument. For example, the arithmetic procedures
only work if given numeric arguments. If given a non-number, an error results.

Suppose we want to write safe versions of procedures, that can check if the argument is okay, and either
call the underlying procedure or return #f for a bad argument instead of giving an error. (We’ll restrict our
attention to procedures that take a single argument.)

> (sqrt ’hello)

ERROR: magnitude: Wrong type in argl hello

> (type-check sqrt number? ’hello)

#f

> (type-check sqrt number? 4)

2

Write type-check. Its arguments are a function, a type-checking predicate that returns #t if and only if the
datum is a legal argument to the function, and the datum.

5. We really don’t want to have to use type-check explicitly every time. Instead, we’'d like to be able to
use a safe-sqrt procedure:

> (safe-sqrt ’hello)
#f

> (safe-sqrt 4)

2

Don’t write safe-sqrt! Instead, write a procedure make-safe that you can use this way:

> (define safe-sqrt (make-safe sqrt number?))

It should take two arguments, a function and a type-checking predicate, and return a new function that
returns #f if its argument doesn’t satisfy the predicate.

14





