CS61A — Lab Assignment 6.1 Kurt Meinz
University of California, Berkeley Summer 2005

1. List all the procedures in the metacircular evaluator that call mc-eval.
2. List all the procedures in the metacircular evaluator that call mc-apply.
3. Abelson and Sussman, exercise 4.1

4. In this exercise, we will begin to write a postfix version of the metacircular evaluator. For now, do
not worry about special forms; we will only provide postfix support for procedure calls, self-evaluating
expressions, etc.

a. Make a new copy of mceval.scm and call it postfix-mceval.scm (we don’t want these changes to conflict
with future exercises). Make all changes for this exercise in postfix-mceval.scm.

b. Our postfix expressions will look the same as our prefix expressions, except that the operator will go on
the right. Examples:

(2 3 +)
(((31+4) 8% 9 -)
(’ (one no trump) car)

To make this somewhat efficient (by only looking at each subexpression once), we will maintain a stack in
mc-eval. The purpose of this stack is to keep track of evaluated subexpressions until we get to the operator.

Example: We want to evaluate (2 (3 4 +) +)

-> mc-eval called with exp = (2 (3 4 +) +) stack = () ;; not at operator yet
-> mc-eval called with exp = 2 stack = () ;3 .. so evaluate first arg
-> mc-eval called with exp = ((3 4 +) +) stack = (2) ;3 not at operator yet -> evaluate 2nd arg
-> mc-eval called with exp = (3 4 +) stack = O ;; .. second arg is a nested exp
-> mc-eval called with exp = 3 stack = () ;5 -... evaluate 1st arg of nested exp
-> mc-eval called with exp = (4 +) stack = (3) ;3 .. not at operator yet
-> mc-eval called with exp = 4 stack = () ;3 -... evaluate 2nd arg of nested exp
-> mc-eval called with exp = (+) stack = (3 4) ;3 .. found the operator
-> mc-eval called with exp = + stack = () ;5 -... so evaluate op and perform operation
-> mc-eval called with exp = (+) stack = (2 7) ;3 found the operator

;3 .. so evaluate op and perform operation

As you can see, everytime we start evaluating a new expression, we start with an empty stack. At the top
of mceval.scm, give a definition of the-empty-stack, which will be used to represent such an empty stack.

¢. Modify the code for mc-eval so that it now takes in an additional argument: the stack

d. Modify the application? clause of mc-eval so that it deals with postfix expressions and exhibits the
behavior in the example in step b. Do not worry about data abstraction.

e. Modify the code so that all calls to mc-eval have an appropriate stack.
f. Try it out!

g. Given the current modifications, what types of expressions will not work in postfix notation. What
additional modifications are necessary?

25





