
Kurt Meinz © 2005, UC Regents

 i

CS61A Course Reader

Summer 2005

Table of Contents: i

 General Course Information 1

 Assignments:

Labs 11

Homeworks 31

Projects see course website

 Reference Materials:

Lecture Notes 78

 Object-Oriented Programming: Above the Line 157

 OOP Reference Manual 167

Object-Oriented Programming: Below the Line 170

Highlights of GNU Emacs 177

Emacs Quick Reference Guide 197

SICP Errata 200

Berkeley Scheme Extensions 201

Revised (5) Report on Scheme 203

Medical Devices: The Therac-25 253

UNIVERSITY of CALIFORNIA at Berkeley
Department of Electrical Engineering and Computer Sciences

Computer Sciences Division

CS61A Kurt Meinz
Course Info Summer 2005

CS61A: The Structure and Interpretation of Computer Programs

General Course Information

1 Introduction

The CS 61 series is an introduction to computer science, with particular emphasis on software and on ma-
chines from a programmer’s point of view. This first course concentrates mostly on the idea of abstraction,
allowing the programmer to think in terms appropriate to the problem rather than in low-level operations
dictated by the computer hardware. The next course, CS 61B, will deal with the more advanced engineering
aspects of software—on constructing and analyzing large programs and on techniques for handling com-
putationally expensive programs. Finally, CS 61C concentrates on machines and how they carry out the
programs you write.

In CS 61A, we are interested in teaching you about programming per se rather than any programming
language in particular. We consider a series of techniques for controlling program complexity, such as
functional programming, data abstraction, object-oriented programming, and deductive systems. Of course,
to get past generalities you must have programming practice in some particular language, and, in this course,
we will use Scheme, a dialect of Lisp. This language is particularly well-suited to the organizing ideas we
want to teach. Our hope, however, is that once you have learned the essence of programming, you will find
that picking up a new programming language is but a few days’ work.

2 Do You Belong Here?

The summer session version of this course is a bit different from the regular semester version. We cover all
of the usual material, but we do it in half the time. This makes the course very fast. If you fall behind,
you will find it almost impossible to catch up. At the same time, the summer course has no restrictions on
enrollment. Anyone, regardless of prior experience may enroll in the course (until it fills.) We encourage
anyone who’s curious or interested to take this course, even if they aren’t computer science majors!

With that being said, this course will be difficult and time-consuming. Your nominal classroom hours
are roughly 12hrs/week – however, you can expect to be spending, at the very least, another 20hrs/week on
readings and assignments. If you have other time commitments, such as a summer job or another summer
course, you may find yourself stretched too thin. In short, this course will be like a full-time job, so please
plan accordingly.

This course expects some logical sophistication, but does not actually require any prior programming
experience. During the regular semester, Math 1A is a corequisite for 61A, and there is generally a place-
ment exam to test whether or not you are familiar with recursion or induction. (For examples, go to
http://www-inst.eecs.berkeley.edu/∼cs61a/miscellaneous/entrance.html.)

We have found that 80% to 90% of 61A students have had significant prior programming experience, and
that students without such experience are at an initial disadvantage. There is no need for you to be familiar
with any particular programming language, although if all of your experience has been in BASIC then you
probably haven’t used recursion. In addition, the computer labs for the course use UNIX machines. You
may find it time-consuming and sometimes difficult to do the labs and homework if you have not spent time
becoming familiar with UNIX.

1

Therefore, it is up to you to decide if you are prepared for this course. Check out the course materials
yourself, and play around with the labs and homework. My advice is to take the risk and get out as much
as you possibly can! If you are still unsure, you can speak to me about it, however, if you ask my opinion,
I will probably say that you should take it because the course is wonderful and you will learn a great deal
from taking it (regardless of your final grade).

If you don’t feel ready for 61A, we recommend that you take CS 3, which is a Scheme-based introductory
programming course, or CS 3S, the self-paced version. CS 3 and 3S are directed primarily at students who
are not Computer Science majors, but they are also designed to serve as preparation for 61A. You could then
take 61A next semester. If you are interested in learning how to program specifically in C or Java, there are
engineering courses to teach you these courses, and they will server you better than this course.

If you are not strongly interested in computer programming at all, but instead want to learn how to use
computers as a tool, you should consider IDS 110, a course that presents a variety of personal computer
software along with a brief introduction to programming.

If you have substantial prior programming background, you may feel that you can skip 61A. In most
cases, we don’t recommend that. Although 61A is the first course in the CS sequence, it’s quite different
from most introductory courses. Unless you have used this same textbook elsewhere, I think I can promise
that you won’t be bored. If you’re not convinced, spend some time looking over the book and then come
discuss it with me. Instead, perhaps your prior experience will allow you to skip 61B or 61C, which are more
comparable to courses taught elsewhere. See Mike Clancy in the CS department about this.

3 Course Materials

The textbook for this course is Structure and Interpretation of Computer Programs by Abelson, Sussman,
and Sussman, second edition. It should be available in the textbook section of the ASUC bookstore and
other local textbook sellers. You must get the 1996 second edition! Don’t buy a used copy of the
first edition. A paperback version containing all necessary chapters of version 2 may also be available used
at the same books stores. If you cannot afford or don’t want to buy the book, copies of it are on reserve at
the Engineering Library. Also, the entire book is readable online. The URL is given later in this document
and on the course website.

In addition to the textbook, there is a reader containing necessary materials, including most assignments,
information on our computing facilities in general, and about the Scheme language. You can buy the reader
at CopyCentral, 2483 Hearst Avenue (at Euclid.) The summer’s reader is unlike the normal term’s readers,
so don’t borrow your housemate’s old copy. All of the most important material in the reader will also be
available on the course website, so, if you really don’t want to buy the reader, you don’t have to. However,
it has been our experience that most students prefer to purchase the reader.

We have also listed an optional text for the course. This book really is optional! Don’t just buy it because
you saw it on the shelf. The optional text is Simply Scheme, by Harvey and Wright. (Brian Harvey is a
professor here.) This is usually used as the textbook for CS 3; it gives a slower and gentler introduction to
the first five weeks of 61A, for people who feel swamped here.

If you have a home computer, you may want to get a Scheme interpreter for it. The Computer Science
Division can provide you with free versions of Scheme for Linux, Windows, or MacOS. The distribution also
includes the Scheme library programs that we use in this course. For more information on how to get your
home computer to work well with the course materials, check the ’resources’ section of the web site.

The course reader includes the notes for the entire semester, and I will make my presentation slides
available either immediately before or immediately after lecture. These notes are provided so that you can
devote your efforts during lecture to thinking, rather than to frantic scribbling. In addition, any materials
used during lecture but not provided in the reader will be made available on-line.

2

4 Enrollment—Laboratory and Discussion Sections

Summer session is 8 weeks, with every week packing in two standard course weeks. This course is normally
structured so that there is one discussion and one lab meeting each week; but we must pack in both into the
first two days of the week, and again, both into the last two days of the week. Generally, the lab portion
occurs some time after Monday’s lecture and again sometime after Wednesday’s lecture. The discussion
sections meet after lecture on Tuesdays and Thursdays. You will also need to spend additional time working
on the computers in the Soda Hall labs. For most weeks, labs will meet in our laboratory room, 271 Soda
Hall and the discussions will be in 310 Soda. Occasionally there may be two lab sessions and no discussions.
Be sure to check the website and pay attention in lecture.

The discussion and lab sections are run by our Teaching Assistant, Jeff. We anticipate some rear-
rangements during the first week in response to oversubscribed or undersubscribed sections. If you are
waitlisted, you should communicate via email with Jeff about your situation. Please be in a definite dis-
cussion section by the end of this week, though, because some of the coursework will be done in groups of
two students; you are not allowed to form a group with someone in a different section.

You must have a computer account on the 61A course facility. You must set up your account
before Noon on Wednesday, June 22 because that is how we know who is really in the class. Account forms
will be distributed in the LAB SECTIONS. The first time you log in, you will be asked to type in your name
and other information. Please follow the instructions carefully. Be sure to remember the ”secret code”
you use for registration – you will use that secret code to check your grades on-line. You must
get your account and log into it no later than 12:01 PM Wednesday so that we have an accurate class
count. Everyone MUST log in by Wednesday Noon (or have made special arrangements with their TA) OR
YOU WILL BE DROPPED from the course and someone on the waitlist will take your place!

Some of you have personal computers and may want to do the course work at home. This is fine with us,
although you’ll have to be careful to install the class Scheme library on your home computer to make your
computer’s version of Scheme behave like the modified one we use in the lab. In any case, though, you must
get a class account even if you intend never to use it.

If you get a class account and then decide to drop the course, please let me know immediately so that we
can admit another student. Thank you.

5 How to get the most from this course

We recognize that everyone’s style of learning is unique. Some students are excellent at studying–they work
hard, and are extremely diligent. They do all the readings conscientiously, and work all the problems. Some
students are incredibly quick, and get by doing little of the reading, even less of the homework, and still
ace the tests. Some students learn best by listening to lecture, and discussing it with their friends and TAs.
Some students are aiming for the A+, others just to get by with a passing grade. Usually, students are some
of each of these types, or are sometimes one, sometimes another. Since everyone’s style is their own, we try
to have as many opportunities to learn this material as possible. Therefore, use them all, and learn what
works best for you.

That said, we do enforce certain types of interaction. In this course, we encourage and REQUIRE that
you learn to work together in groups for certain assignments. This means you will need to learn how to work
with people whose strengths are not your own. (This is of course the best thing a group can provide!) It
also means you will learn how to work with people whose style you find difficult. But overall, you will learn
best by learning to collaborate, and helping each other when one is not getting the material.

Different people solve problems differently; there are often many right answers to the problems in this
course. And of course, what you find easy, your friend may find hard, and vice versa. Therefore, the best
way to learn is to talk with other people, and ask them questions when you are stuck. Even if you think you
understand everything, you will learn the material better if you have to try to explain it to someone else. In
addition, learning how to think about the problems in many different ways will solidify your understanding
of this material.

3

Finally, it is possible that some of you feel uncomfortable telling others when you don’t understand
something. Many of us find it hard to ask questions–all the more reason to overcome this fear early! The
ability to ask for help is a wonderful strength that will serve you well in life. Throughout this course, I will
try to encourage you to ask each other, the staff, and myself for help.

6 Information Resources

Jeff, the readers, and I available to answer questions. You may drop in during office hours, make appointments
for other times, or communicate with us by email. Feel free to visit any of the staff. You may find that
hearing different people’s explanations helps if at first you do not understand some material.

For technical questions about the homework or projects, or administrative questions such as missing
homework grades, send electronic mail to your reader. You can also send mail about intellectual questions
to me, but if it’s about grades I’ll just refer you to your TA.

In addition, there is an electronic bulletin board system that you can use to communicate with other 61A
students and staff. The ucb newsgroup can be read only from machines in the berkeley.edu domain, so if
your net connection is though a commercial ISP then you must log into a lab machine to read the newsgroup
or try this:

http://www-inst.eecs.berkeley.edu/connecting.html

Please do not send electronic mail to every student individually! That would waste a lot of disk
space, even for a small message. Use the newsgroup instead. Electronic mail is for messages to individuals,
not to groups.

There is a web-based reader for the cs newsgroup available from the course homepage, located at
http://www-inst.eecs.berkeley.edu/~cs61a

The web page for the textbook, with additional study resources, is
http://www-mitpress.mit.edu/sicp/sicp.html

There are also web pages for the Scheme programming language:
http://swissnet.ai.mit.edu/scheme-home.html

http://www.schemers.org/

Additional information to help you in studying, including hints from the course staff and copies of
programs demonstrated in lectures, is available at the course website.

7 Computer Resources

The computing laboratory in 271 Soda Hall consists of about 35 SunRay terminals connected to a Sun
Solaris server. This is our primary lab room, although the CS 61A accounts can also be used from any EECS
Instructional lab in Soda or Cory Hall.

The lab in 271 Soda is normally available for use at all times, but you need a card key for access to
the lab; to get a card key, stop by the 3rd floor office of Soda Hall and fill out a form for a card key. You
will need a $20 deposit to get the card key. The card key will give you access to the 2nd and 3rd floors of
Soda Hall so that you may enter at any time, day or night. Do this today! During scheduled lab sessions,
only students enrolled in that particular section may be in the lab. Therefore, you might need to use the
other Soda Hall labs to work on homework outside of class. In particular, 273 Soda Hall should be at your
disposal at all times. When sections are not in session, any 61A student may use any of the 2nd floor labs
on a drop-in basis. If there are no free workstations, please feel free to ask anyone who is not doing course
work to leave. In particular, game playing is not permitted. We are relying on social pressure to discourage
abuse (such as stealing the chairs or monopolizing a workstation for six hours during prime time to play
chess). Therefore, do not feel embarrassed to apply such pressure.

These machines use the Unix operating system, a timesharing system that is quite different from the
microcomputer systems you have probably seen elsewhere. The course reader includes introductory docu-
mentation about Unix and about Emacs, the text editing program we are recommending for your use. (It is

4

one of several Unix text editors; you’ll find that everyone has his or her own favorite editor and hates all the
others.) Although the use of Unix is not extensively taught in 61A lectures, it will be extremely worthwhile
for you to spend some time getting to know how the system works.

If you have a home computer and a modem, you may wish to use your class account remotely. If so, you
are encouraged to use a commercial Internet Service Provider to connect to the campus; several companies
offer student rates. Again, check out

http://www-inst.eecs.berkeley.edu/connecting.html

In addition, you should know that, on occasion, our file servers go on the blink. You can detect this
situation by noticing that your terminal has suddenly stopped typing characters or you get a message along
the lines of ”NFS server not responding...”. If this happens to you (and it will at least once!), don’t
panic; usually the server is back within minutes or hours with your data intact. Please do not put yourself in
a situation where a couple-hour server crash will prevent you from completing your project on-time. ”How
can I avoid such a horrible situation?” you may ask. By starting (and finishing) your assignments early, of
course!

8 Reading, Homework and Programming Assignments

You should try to complete the reading assignment for each week before the lecture. You will have four
subsequent class meetings (two lectures and two discussion/lab sections) to help you understand the readings.
Ideally, you would work in lab and afterward on the exercises, and then complete them the next day after
section. If you’re efficient, you’ll then have that night to read the next reading assignment.

Every week there will be problems assigned for you to work on, many of which will involve writing and
debugging computer programs. These assignments come in three forms:

• Laboratory exercises are short, relatively simple exercises designed to introduce a new topic. Most
weeks you’ll do these during the scheduled lab meeting following Monday and Wednesday’s lecture.
Labs are worth a small but nonnegligible number of points, and are typically checked off by Jeff during
the lab period.

• Homework assignments consist mostly of more difficult problems designed to solidify your under-
standing of the course material; you’ll do these whenever you can schedule time, either in the lab or at
home. You may be accustomed to homeworks with huge numbers of boring, repetitive exercises. You
won’t find that in here! Each assigned exercise teaches an important point.

There are two homework assignments per week, but both are due on the Sunday after they are assigned.
These assignments are included in the course reader and the course homepage. You are encouraged to
discuss the homework with other students. Specific Homework requirements and grading policies are
below.

• Projects are larger assignments intended both to teach you the skill of developing a large program
and to assess your understanding of the course material. There are four projects during the term, and
you’ll work on some of them in groups. Specific project requirements and grading policies are listed
below.

Everything you turn in for grading must show your name(s) and your computer account
login(s)! Please cooperate about this; make sure they’re visible on the top of the files you turn in, not
buried somewhere in a comment or a function.

9 Testing and Grading

The grading policy of the course has these three goals: it should provide a reasonably accurate measure of
your understanding of the material; it should minimize competitiveness and grade pressure, so that you can
focus instead on the intellectual content of the course; and it should minimize the time I spend arguing with

5

you about your grades. To meet these goals, your course grade is computed using a point system with a
total of 300 points:

16 labs @ 1 point each = 16 pts
15 homeworks @ 4 points each = 60 pts
2 mini projects @ 7 points each = 14 pts
2 larger projects @ 10 points each = 20 pts
3 midterms @ 40 points each = 120 pts
1 final = 70 pts

-- ---
39 assignments 300 pts

There will be three midterms (set for the end of the third, fifth, and seventh weeks of the term) and a
final. The exams will be open book, open notes. (You may not use a computer during the exam.) In the
past, some students have worried about time pressure, so we’ll hold the midterms on Fridays ’round Noon
(Room TBA) instead of during the lecture hour. My goal will be to write one-hour tests, but you’ll have
at least two hours to work on them. The relatively large number of midterms is meant to help you learn to
take tests, and to reduce your anxiety about ruining your grade by having a bad day. In this course, the
later topics depend on the early ones, so you must not forget things after each test is over!

Each letter grade corresponds to a range of point scores: 270 points and up is an A, 260–269 is A-, and
so on by steps of ten points to 170–179 points for a D−.

A 270-300 A- 260-269
B+ 250-259 B 240-249 B- 230-239
C+ 220-229 C 210-219 C- 200-209
D+ 190-199 D 180-189 D- 170-179

This grading formula implies that there is no curve; your grade will depend only on how well you (and,
to a small extent, your partner) do, and not on how well everyone else does. (If everyone does exceptionally
badly on some exam, I may decide the exam was at fault rather than the students, in which case I’ll adjust
the grade cutoffs as I deem appropriate. But I won’t adjust in the other direction; if everyone gets an A,
that’s great.)

Extra credit: Extra credit will be granted at the sole election of the staff and is typically reserved for
persons who make a substantical and interesting (in the conceptual sense) addition to an assignment. I will
mention opportunities for extra credit in class.

Exam regrading: If you believe we have misgraded an exam, there will be a regrading policy posted on
the course website. At the very least, your entire exam will be regraded, so be sure that your score will really
improve through this regrading! By University policy, final exams may not be regraded; to make up for this,
we will grade every final exam twice. Final exams may be viewed at times and places to be announced.

Incomplete grades will be granted only for dire medical or personal emergencies that cause you to miss
the final, and only if your work up to that point has been satisfactory.

10 Homework and Project Policies and Grading

In contrast to prior semesters, homework in this course will be done independently. You and your friends
are encouraged to discuss the problems among yourselves, but the work that you turn in must be written
and tested by you alone. Both of each week’s homework assignments are due at 8:00 PM on the following
Sunday. Both homework sets must be submitted electronically unless otherwise noted.

The purpose of the homework is for you to learn the course, not to prove that you already know it.
Therefore, although the weekly homeworks will graded on correctness, you will be afforded an opportunity
to recover points by improving your understanding of the material. If you receive less than 90/100
credit on a particular homework, you can sign up for a face-to-face session with your reader.
During this session, you will have an opportunity to convince your reader that your understanding of the

6

material has improved. If you show sufficient improvement, the reader may adjust your score upwards.
Sign-up sheets for the face-to-face sessions will be posted in the laboratory (and perhaps online). Please
bring a paper copy of your homework to the sessions!

The four programming projects are graded on correctness and style. The first two projects are to be done
individually, and the last two in groups of exactly two. The last two projects are larger, and your group will
work on a single solution, but the problems within each project are divided into two sets, and each of you
will work on one set.

The latter two projects will probably include face-to-face grading with your reader. The reader will ask
questions of each member of your group, and you will be graded by ALL of the group’s members’ ability
to answer correctly. Therefore, you must work together to ensure that your partner understands the entire
project.

Your group will turn in one copy of each project, with both of your names and logins listed on it. The
programming projects must be turned in online as well as in the homework box; the deadline is
usually 11:59 PM on the second Tuesday after it is assigned (i.e. you have two weeks for each project), but
there will be some exceptions. You’ll get further instructions about this when the time comes.

Online turnin: You must create a directory (you’ll learn how to do that in lab) with the official
assignment name, which will be something like hw3 or proj1. Put in that directory all the files that you
want to turn in. Then, while still in that directory, give the shell command submit hw5 (or whatever the
assignment name is). We’ll give more details in the lab.

Paper turnin: There are boxes with slots labelled by course in room 283 Soda Hall. (Don’t put them
in my mailbox or on my office door!) What you turn in should include transcripts showing that you have
tested your solution as appropriate.

11 Collaborative Learning Policies and Cheating

We encourage collaboration. It is the best way to learn and keep up with the wealth of material you are
expected to cover. At the same time, cheating is not permitted. Sometimes the line between collaboration
and cheating doesn’t seem so easy to articulate, so we’ve tried to come up with very clear and enforceable
rules so that you know what is expected and aren’t uncomfortable collaborating, and, at the same time, so
that those who break the rules can be held accountable.

Unlinke the degree of collaboration allowed and expected on homeworks and labs, the tests in this course
must be your own, individual work. I hope that you will work cooperatively with your friends before the test
to help each other prepare by learning the ideas and skills in the course. But during the test you’re on your
own. The EECS Department Policy on Academic Dishonesty says, “Copying all or part of another person’s
work, or using reference materials not specifically allowed, are forms of cheating and will not be tolerated.”
(61A tests are open-book, so reference materials are okay.) The policy statement goes on to explain the
penalties for cheating, which range from a zero grade for the test up to dismissal from the University, for a
second offense.

For the programming projects, copying others’ work, whether from your friend who took the course last
semester or from other current students in other groups is cheating. If you don’t know how to do something,
it’s better to leave it out than to copy someone else’s work. If you do learn something from someone else,
and understand it now, then cite it as theirs. But be prepared to back up that you understand it without
them around. If you do not cite it, it is considered plagiarism, and is again, cheating.

It is highly unlikely that different people would arrive at the exact same solutions on their own. We do
have programs to test for code similarity – and these programs are smart enough to know when only the
variable names have been changed. Don’t cheat–you do a disservice to yourself, to those you copy from, and
ultimately, to the whole course as time is taken away from preparing lectures and answering questions to
deal with cheaters.

For the homework assignments, before you develop your solutions to the problems you are encouraged to
discuss it with other students, in groups as large or small as you like. When you turn in solutions, you
must give credit to any other student(s) who contributed to your work. This does not mean e.g.

7

16 of you should turn in precisely the same work. It means that you may talk about it, work it out, try it,
and then each person writes it up on their own. Working on the homework in groups is both a good way
to learn and a lot more fun! If you take the opportunity to discuss the homework with other students then
you’ll probably solve every problem correctly.

In my experience, most students who cheat do so because they fall behind gradually, and then panic at
the last minute. Some students get into this situation because they are afraid of an unpleasant conversation
with an instructor if they admit to not understanding something. I would much rather deal with your
misunderstanding early than deal with its consequences later. Even if the problem is that you spent the
weekend stoned out of your skull instead of doing your homework, please overcome your feelings of guilt and
ask for help as soon as you need it.

If you are still unclear on the cheating policy, ask yourself this: in all of your talking with other students,
did you UNDERSTAND the solution, or did you merely write down what someone else told you? If you
didn’t understand, that you aren’t doing the work yourself– not honestly. Again, it is better to have the
answer wrong, or only partially right than to rely on someone else’s answer. (Often because they too could
be wrong!)

Working cooperatively in groups is a change from the traditional approach in schools, in which students
work either in isolation or in competition. But cooperative learning has become increasingly popular as
educational research has demonstrated its effectiveness. One advantage of cooperative learning is that it
allows us to give intense assignments, from which you’ll learn a great deal, while limiting the workload for
each individual student. Another advantage, of course, is that it helps you to understand new ideas when
you discuss them with other people. Even if you are the “smartest” person in your group, you’ll find that
you learn a lot by discussing the course with other students. For example, in the past some of our best
students have commented that they didn’t really understand the course until they worked as lab assistants
and had to explain the ideas to later students.

If some medical or personal emergency takes you away from the course for an extended period, or if you
decide to drop the course for any reason, please don’t just disappear silently! You should inform the other
members of your group, and your TA, so that nobody is depending on you to do something you can’t finish.

Penalties for cheating: Generally, the penalty for cheating on any assignment will be, at the very least,
a zero on the assignment and will result in a notice being sent to the Office of Student Conduct. Further
offenses and particularly egregious forms of cheating (like selling answers) will be dealt with more severely.

12 Lateness

A programming project that is not ready by the deadline may be turned in until 24 hours after the due date.
These late projects will count for 2/3 of the earned score. No credit will be given for late homeworks, late
labs, or for projects turned in after 24 hours. Please do not beg and plead for exceptions. If some personal
crisis disrupts your schedule one week, don’t waste your time and ours by trying to fake it; just be sure you
do the next week’s work on time.

By the way, if you wait until the night before to do the homework or a project, you will probably
experience some or all of the following: a shortage of available workstations, an unusually slow computer
response, or a file server crash.

13 Lost and Found

When people bring me found items from lecture or lab, I take them to the Computer Science office, 387
Soda. Another place to check for lost items is the campus police office in Sproul Hall.

14 Questions and Answers

8

Q: Is it true that 61A is the weed-out course for wannabe CS majors?

A: No. The lower division sequence as a whole does determine admission to the major, but no one course is
crucial. More to the point, the work in all of these courses is not designed to be especially hard; the upper
division courses are much harder. The grading policy in 61A is not harsh and is not curved as it would be
if we had weeding out in mind. However, you may take this course as an opportunity to weed yourself out;
if you find that you don’t enjoy the work, perhaps you aren’t a computer scientist at heart.

Q: Why don’t we learn some practical language like C++?

A: Firstly, Lisp is practical. Of the hundreds of languages that have been invented, Lisp is the second-oldest
survivor, after Fortran. It hasn’t lasted 35 years by being useless. Secondly, and more importantly, the goal
of 61A isn’t to teach you a language. The language is just the medium for the ideas in the course, and Lisp
gets in the way less than most languages because it has very little syntax and because you don’t have to
worry about what’s where in the computer memory. (Next semester you’ll learn Java.) Finally, our textbook
is the best computer science book ever written. It happens to use Lisp; if they’d used COBOL, we’d
probably teach COBOL for the sake of this text.

Q: What’s your advice on surviving this course?

A: Two things: Don’t leave the homework and projects until the last minute, and ask for help as soon
as you don’t understand something.

Q: I am disabled and need special facilities or arrangements to do the course work. What should I do about
it?

A: If you need special arrangements about class attendance, taking tests, etc., I’ll be glad to accommodate
you; please take the initiative about letting me know what you need. For example, if you want to take
tests separately, that’s fine, as long as you ensure that we’ve worked out the arrangements before the test.
The Disabled Students Program (ext. 2-0518) has voice response terminals from which blind students can
connect to our computers. If English is not your native language, and you have trouble understanding
the course materials or lectures for that reason, please ask for help about that too.

Q: I don’t like (or have a conflict with) my pre-assigned discussion section. Can I switch?

A: You must negotiate this with Jeff.

Q: What should we call you?

A: ”Kurt” is just fine.

Q: I’m having trouble understanding the assignments. I’ve never had a problem like this in school before.
Does this mean I’m not as good a programmer as I thought, or should I just wait a week or two and see if
things clear up?

A: Neither. THIS COURSE IS CHALLENGING! In some ways, it might be the most challenging CS
course you EVER take as an undergraduate. Most Berkeley students found high school pretty easy, and
for many of you, this course will be the first real intellectual challenge you’ve met. You may have come
to believe that everything should be easy for you. On the contrary; if you find your courses easy, you’re
taking the wrong courses! The whole reason you chose an excellent university was to stretch your mind. (If
you chose Berkeley for the sake of a prestigious diploma, maybe you should consider majoring in Business
Administration.) There is nothing shameful about asking for help. You will learn a lot even if you do not get
an A+. Every semester a few intelligent students end up in trouble in this course because they’re too proud

9

to come to office hours with questions. If you wait two weeks before you ask your question, by then you’ll
feel hopelessly behind, because the topics for those two weeks depend on the idea that you don’t understand
now.

Q: I have no prior programming experience, unlike those who have taken CS 3 that you regularly mention.
Am I at a disadvantage to those students in terms of workload, grades, etc.?

A: Well, for the first couple weeks, youre definitely at a disadvantage. The cs3 students have already spent
an entire semester learning scheme, higher-order procs, lambdas, recursion, and abstraction there is no
reason why any of them should get less than perfect scores on any assignment from the first couple weeks.
So, you will probably be spending more time and effort than they will for the first couple weeks and your
grades over the first few assignments still (probably) wont be as good as theirs.

Fortunately, the class is not curved. It doesn’t matter how well the cs3 students do; you need only be
concerned with yourself. Many persons who have not taken cs3 get As in 61a. I havent seen the numbers
myself, but I have heard that, statistically speaking, there is no difference between the average final grades
of cs3 and non-cs3 students.

Q: I’m completely lost; I feel very awkward using scheme (I like my c++ much better) and I’m thinking
about dropping the course. What do you think?

A: It’s almost ironic that scheme is often harder to learn for people who have prior programming experience
in other languages than for those who have never programmed before. Scheme requires a different way
of thinking about problems and this can work against people who have had another, different sense of
programming per se ingrained in them from the use of other languages.

Once you have become accustomed to it, however, you will begin thinking about problems in scheme-
terms and feeling awkward coding in anything else. By the end of the course, scheme will be a tool that you
use without even thinking about it (like writing with a pen). (Heidegger, anyone?)

How quickly you overcome your initial awkwardness with scheme is up to you: the more you play around
with it, the faster you will become proficient. This class is really about thinking logically; if you are rational,
reasonably intelligent, and willing to work very hard at absorbing new concepts, you will do very well in the
course. If you fail to satisfy any of the three (especially the last), you will have a hard time.

If you do decide to stick it out, please be aware that the TAs and I are happy to help anyone who tries
to help himself or herself. Dont be afraid to schedule office hours, etc. were here for you. Also, you may
want to look into the recommended text ’Simply Scheme’ by Brian Harvey. It is the book used in cs3.

15 First Assignments

Read section 1.1 of Abelson and Sussman as soon as possible. By Wednesday, read 1.3 of Abelson and
Sussman. The first homework assignment is due next Sunday (check the reader or web site). You must log
into your class account by Wednesday.

10

CS61A – Lab Assignment 1.1 Kurt Meinz
University of California, Berkeley Summer 2005

Don’t panic if you don’t finish everything today; you will have two labs sessions to finish this first lab.

0. Login to your user account and change your password – a sample interaction is shown below. Be aware
that it may take several minutes for your new password to be recognized by all the machines.

nova[1] ~ > ssh po

po[1] ~ > passwd [NOTE: this is NOT "password"]

< ... Do some password stuff ... >

po[2] ~ > exit [NOTE: make sure you do this!]

nova[2] ~ > [We’re back! Move on to the next exercise...]

1. Set up the newsgroup. Details are in A Quick Introduction to Using CS61A Computing Resources.

2. Read Basic Emacs Guide for CS 61A Students. Now, start the Emacs editor, either by typing emacs in
your main window or by selecting it from the right-mouse-button menu. (Your TA will show you how to do
this.)

3. Start Scheme, either by typing stk in your main window or by typing meta-S in your Emacs window.
Type each of the following expressions into Scheme, ending the line with the Enter (carriage return) key.
Think about the results! Try to understand how Scheme interprets what you type.
3 (first ’hello)

(+ 2 3) (first hello)

(+ 5 6 7 8) (first (bf ’hello))

(+) (+ (first 23) (last 45))

(sqrt 16) (define pi 3.14159)

(+ (* 3 4) 5) pi

+ ’pi

’+ (+ pi 7)

’hello (* pi pi)

’(+ 2 3) (define (square x) (* x x))

’(good morning) (square 5)

(first 274) (square (+ 2 3))

(butfirst 274)

4. Use Emacs to create a file called pigl.scm in your directory containing the Pig Latin program shown
below. Make sure to save this file before proceeding to the next exercise.
(define (pigl wd) (define (pl-done? wd)

(if (pl-done? wd) (vowel? (first wd)))

(word wd ’ay)

(pigl (word (bf wd) (first wd))))) (define (vowel? letter)

(member? letter ’(a e i o u)))

5. Now run Scheme. You are going to create a transcript of a session using the file you just created, like
this:
(transcript-on "lab1") ; This starts the transcript file.

(load "pigl.scm") ; This reads in the file you created earlier.

(pigl ’scheme) ; Try out your program.

; Feel free to try more test cases here!

(trace pigl) ; This is a debugging aid. Watch what happens

(pigl ’scheme) ; when you run a traced procedure.

(transcript-off)

(exit)

Continued on next page.

11

Lab Assignment 1.1 continued...

6. Use lpr to print your transcript file – a sample interaction is shown below.
nova[1] ~ > lpr lab1

7. Predict what Scheme will print in response to each of these expressions. Then try it and make sure your
answer was correct, or if not, that you understand why!
(define a 3)

(define b (+ a 1))

(+ a b (* a b))

(= a b)

(if (and (> b a) (< b (* a b)))

b

a)

(cond ((= a 4) 6)

((= b 4) (+ 6 7 a))

(else 25))

(+ 2 (if (> b a) b a))

(* (cond ((> a b) a)

((< a b) b)

(else -1))

(+ a 1))

((if (< a b) + -) a b)

8. In the shell, type the command

cp ~cs61a/lib/plural.scm .

(Note the period at the end of the line!) This will copy a file from the class library to your own directory.
Then, using emacs to edit the file, modify the procedure so that it correctly handles cases like (plural ’boy).

9. Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two
larger numbers.

10. Write a procedure dupls-removed that, given a sentence as input, returns the result of removing
duplicate words from the sentence. It should work this way:
> (dupls-removed ’(a b c a e d e b))

(c a d e b)

> (dupls-removed ’(a b c))

(a b c)

> (dupls-removed ’(a a a a b a a))

(b a)

12

CS61A – Lab Assignment 1.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. For each expression, give a definition of f such that evaluating the expression will not cause an error, and
say what the expression’s value will be, given your definition.

a. f d. ((f))

b. (f) e. (((f)) 3)

c. (f 3)

2. Find the values of the expressions
a. ((t 1+) 0) b. ((t (t 1+)) 0) c. (((t t) 1+) 0)

where 1+ is a primitive procedure that adds 1 to its argument, and t is defined as follows:
(define (t f)

(lambda (x) (f (f (f x)))))

Work this out yourself before you try it on the computer!

3. Find the values of the expressions
a. ((t s) 0) b. ((t (t s)) 0) c. (((t t) s) 0)

where t is defined as in question 2 above, and s is defined as follows:
(define (s x)

(+ 1 x))

4. Write a procedure substitute that takes three arguments: a new word, an old word, and a sentence. It
should return a copy of the sentence, but with every occurrence of the old word replaced by the new word.
> (substitute ’maybe ’yeah ’(she loves you yeah yeah yeah))

(she loves you maybe maybe maybe)

5. First, type the definitions
(define a 7)

(define b 6)

into Scheme. Then, fill in the blank in the code below with an expression whose value depends on both a
and b to determine a return value of 24. Verify in Scheme that the desired value is obtained.
(let

((a 3) (b (+ a 2)))

)

6. Write and test the make-tester procedure. Given a word w as argument, make-tester returns a procedure
of one argument x that returns true if x is equal to w and false otherwise. Examples:
> ((make-tester ’hal) ’hal)

#t

> ((make-tester ’hal) ’cs61a)

#f

> (define sicp-author-and-astronomer? (make-tester ’gerry))

> (sicp-author-and-astronomer? ’hal)

#f

> (sicp-author-and-astronomer? ’gerry)

#t

13

CS61A – Lab Assignment 2.1 Kurt Meinz
University of California, Berkeley Summer 2005

This lab exercise concerns the change counting program on pages 40–41 of Abelson and Sussman.

1. Identify two ways to change the program to reverse the order in which coins are tried, that is, to change
the program so that pennies are tried first, then nickels, then dimes, and so on.

2. Abelson and Sussman claim that this change would not affect the correctness of the computation. However,
it does affect the efficiency of the computation. Implement one of the ways you devised in exercise 1 for
reversing the order in which coins are tried, and determine the extent to which the number of calls to cc
is affected by the revision. Verify your answer on the computer, and provide an explanation. Hint: limit
yourself to nickels and pennies, and compare the trees resulting from (cc 5 2) for each order.

3. Modify the cc procedure so that its kinds-of-coins parameter, instead of being an integer, is a sentence
that contains the values of the coins to be used in making change. The coins should be tried in the sequence
they appear in the sentence. For the count-change procedure to work the same in the revised program as
in the original, it should call cc as follows:

(define (count-change amount)

(cc amount ’(50 25 10 5 1)))

4. Many Scheme procedures require a certain type of argument. For example, the arithmetic procedures
only work if given numeric arguments. If given a non-number, an error results.

Suppose we want to write safe versions of procedures, that can check if the argument is okay, and either
call the underlying procedure or return #f for a bad argument instead of giving an error. (We’ll restrict our
attention to procedures that take a single argument.)

> (sqrt ’hello)

ERROR: magnitude: Wrong type in arg1 hello

> (type-check sqrt number? ’hello)

#f

> (type-check sqrt number? 4)

2

Write type-check. Its arguments are a function, a type-checking predicate that returns #t if and only if the
datum is a legal argument to the function, and the datum.

5. We really don’t want to have to use type-check explicitly every time. Instead, we’d like to be able to
use a safe-sqrt procedure:

> (safe-sqrt ’hello)

#f

> (safe-sqrt 4)

2

Don’t write safe-sqrt! Instead, write a procedure make-safe that you can use this way:

> (define safe-sqrt (make-safe sqrt number?))

It should take two arguments, a function and a type-checking predicate, and return a new function that
returns #f if its argument doesn’t satisfy the predicate.

14

CS61A – Lab Assignment 2.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. Try these in Scheme:

(define x (cons 4 5)) (define y (cons ’hello ’goodbye))

(car x) (define z (cons x y))

(cdr x) (car (cdr z))

(cdr (cdr z))

2. Predict the result of each of these before you try it:

(cdr (car z))

(car (cons 8 3))

(car z)

(car 3)

3. Enter these definitions into Scheme:

(define (make-rational num den)

(cons num den))

(define (numerator rat)

(car rat))

(define (denominator rat)

(cdr rat))

(define (*rat a b)

(make-rational (* (numerator a) (numerator b))

(* (denominator a) (denominator b))))

(define (print-rat rat)

(word (numerator rat) ’/ (denominator rat)))

4. Try this:

(print-rat (make-rational 2 3))

(print-rat (*rat (make-rational 2 3) (make-rational 1 4)))

5. Define a procedure +rat to add two rational numbers, in the same style as *rat above.

6. Suppose the constructor for rational numbers was changed to

(define (make-rational num den)

(sentence num den))

Rewrite the rest of the functions in exercise 3 such that it preserves the behavior of exercises 4 and 5.

7. SICP ex. 2.4

8. SICP ex. 2.18; this should take some thought, and you should make sure you get it right, but don’t get
stuck on it for the whole hour. Note: Your solution should reverse lists, not sentences! That is, you should
be using cons, list, and append, not first, butfirst, sentence, etc.

15

CS61A – Lab Assignment 3.1 Kurt Meinz
University of California, Berkeley Summer 2005

1. SICP ex. 2.25 and 2.53; these should be quick and easy.

2. SICP ex. 2.55; explain your answer to your TA.

3. SICP ex. 2.27. This is the central exciting adventure of today’s lab! Think hard about it.

4. Each person individually make up a procedure named mystery that, given two lists as arguments, returns
the result of applying exactly two of cons, append, or list to mystery’s arguments, using no quoted values
or other procedure calls. Here are some examples of what is and is not fair game:

okay not okay

(define (mystery L1 L2) (define (mystery L1 L2)

(cons L1 (append L2 L1))) (cons L1 (cons L2 (cons L1 L2))))

(define (mystery L1 L2) (define (mystery L1 L2)

(list L1 (list L1 L1))) (cons L1 L2))

(define (mystery L1 L2) (define (mystery L1 L2)

(append (cons L2 L2) L1)) (append L1 (cons L1 ’(A B C))))

Type your mystery definition into a file, and have one of your partners load it into Scheme and try to guess
what it is by trying it out with various arguments.

After everyone has tried someone else’s procedure, decide with your partners which procedure was hardest
to guess and why, and what test cases were most and least helpful in revealing the definitions.

16

CS61A – Lab Assignment 3.2 Kurt Meinz
University of California, Berkeley Summer 2005

Start by reading SICP section 2.3.3 (pages 151–161).

1. SICP ex. 2.62.

2. The file ~cs61a/lib/bst.scm contains the binary search tree procedures from pages 156–157 of SICP.
Using adjoin-set, construct the trees shown on page 156.

3. SICP ex. 2.74.

17

CS61A – Lab Assignment 4.1 Kurt Meinz
University of California, Berkeley Summer 2005

1. Modify the person class given in the lecture notes for week 3 (it’s in the file demo2.scm in the
~cs61a/lectures/3.0 directory) to add a repeat method, which repeats the last thing said. Here’s an
example of responses to the repeat message.

> (define brian (instantiate person ’brian))

brian

> (ask brian ’repeat)

()

> (ask brian ’say ’(hello))

(hello)

> (ask brian ’repeat)

(hello)

> (ask brian ’greet)

(hello my name is brian)

> (ask brian ’repeat)

(hello my name is brian)

> (ask brian ’ask ’(close the door))

(would you please close the door)

> (ask brian ’repeat)

(would you please close the door)

2. This exercise introduces you to the usual procedure described on page 9 of “Object-oriented Programming
– Above-the-line View”. Read about usual there to prepare for lab. Suppose that we want to define a class
called double-talker to represent people that always say things twice, for example as in the following
dialog.

> (define mike (instantiate double-talker ’mike))

mike

> (ask mike ’say ’(hello))

(hello hello)

> (ask mike ’say ’(the sky is falling))

(the sky is falling the sky is falling)

Consider the following three definitions for the double-talker class. (They can be found online in the file
~cs61a/lib/double-talker.scm.)

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (se (usual ’say stuff) (ask self ’repeat))))

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (se stuff stuff)))

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (usual ’say (se stuff stuff))))

Determine which of these definitions work as intended. Determine also for which messages the three versions
would respond differently.

18

CS61A – Lab Assignment 4.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. Given below is a simplified version of the make-account procedure on page 223 of Abelson and Sussman.

(define (make-account balance)

(define (withdraw amount)

(set! balance (- balance amount)) balance)

(define (deposit amount)

(set! balance (+ balance amount)) balance)

(define (dispatch msg)

(cond

((eq? msg ’withdraw) withdraw)

((eq? msg ’deposit) deposit)))

dispatch)

Fill in the blank in the following code so that the result works exactly the same as the make-account
procedure above, that is, responds to the same messages and produces the same return values. The differences
between the two procedures are that the inside of make-account above is enclosed in the let below, and
the names of the parameter to make-account are different.

(define (make-account init-amount)
(let ()

(define (withdraw amount)
(set! balance (- balance amount)) balance)

(define (deposit amount)
(set! balance (+ balance amount)) balance)

(define (dispatch msg)
(cond

((eq? msg ’withdraw) withdraw)
((eq? msg ’deposit) deposit)))

dispatch))

2. Modify either version of make-account so that, given the message balance, it returns the current account
balance, and given the message init-balance, it returns the amount with which the account was initially
created. For example:

> (define acc (make-account 100)
acc
> (acc ’balance)
100

Continued on next page...

19

Lab Assignment 4.2 continued:

3. Modify make-account so that, given the message transactions, it returns a list of all transactions made
since the account was opened. For example:

> (define acc (make-account 100))
acc
> ((acc ’withdraw) 50)
50
> ((acc ’deposit) 10)
60
> (acc ’transactions)
((withdraw 50) (deposit 10))

4. Given this definition:

(define (plus1 var)
(set! var (+ var 1))
var)

Show the result of computing

(plus1 5)

using the substitution model. That is, show the expression that results from substituting 5 for var in the
body of plus1, and then compute the value of the resulting expression. What is the actual result from
Scheme?

Continued on next page...

20

Lab Assignment 4.2 continued:

This lab activity consists of example programs for you to run in Scheme. Predict the result before you try
each example. If you don’t understand what Scheme actually does, ask for help! Don’t waste your time by
just typing this in without paying attention to the results.

(define (make-adder n) ((lambda (x)

(lambda (x) (+ x n))) (let ((a 3))

(+ x a)))

(make-adder 3) 5)

((make-adder 3) 5) (define k

(let ((a 3))

(define (f x) (make-adder 3)) (lambda (x) (+ x a))))

(f 5) (k 5)

(define g (make-adder 3)) (define m

(lambda (x)

(g 5) (let ((a 3))

(+ x a))))

(define (make-funny-adder n)

(lambda (x) (m 5)

(if (equal? x ’new)

(set! n (+ n 1)) (define p

(+ x n)))) (let ((a 3))

(lambda (x)

(define h (make-funny-adder 3)) (if (equal? x ’new)

(set! a (+ a 1))

(define j (make-funny-adder 7)) (+ x a)))))

(h 5) (p 5)

(h 5) (p 5)

(h ’new) (p ’new)

(h 5) (p 5)

(j 5) (define r

(lambda (x)

(let ((a 3)) (let ((a 3))

(+ 5 a)) (if (equal? x ’new)

(set! a (+ a 1))

(let ((a 3)) (+ x a)))))

(lambda (x) (+ x a)))

(r 5)

((let ((a 3))

(lambda (x) (+ x a))) (r 5)

5)

(r ’new)

(r 5)

Continued on next page...

21

Lab Assignment 4.2 continued:

(define s (define (ask obj msg . args)

(let ((a 3)) (apply (obj msg) args)))

(lambda (msg)

(cond ((equal? msg ’new) (ask s ’add 5)

(lambda ()

(set! a (+ a 1)))) (ask s ’new)

((equal? msg ’add)

(lambda (x) (+ x a))) (ask s ’add 5)

(else (error "huh?"))))))

(define x 5)

(s ’add)

(let ((x 10)

(s ’add 5) (f (lambda (y) (+ x y))))

(f 7))

((s ’add) 5)

(define x 5)

(s ’new)

((s ’add) 5)

((s ’new))

((s ’add) 5)

22

CS61A – Lab Assignment 5.1 Kurt Meinz
University of California, Berkeley Summer 2005

1. Exercise 3.12 of Abelson and Sussman.

2. Suppose that the following definitions have been provided.

(define x (cons 1 3)) (define y 2) A CS 61A student, intending to change the value of x to a pair with

car equal to 1 and cdr equal to 2, types the expression (set! (cdr x) y) instead of (set-cdr! x y) and
gets an error. Explain why.

3a. Provide the arguments for the two set-cdr! operations in the blanks below to produce the indicated
effect on list1 and list2. Do not create any new pairs; just rearrange the pointers to the existing ones.

> (define list1 (list (list ’a) ’b))

list1

> (define list2 (list (list ’x) ’y))

list2

> (set-cdr!)

okay

> (set-cdr!)

okay

> list1

((a x b) b)

> list2

((x b) y)

3b. After filling in the blanks in the code above and producing the specified effect on list1 and list2, draw
a box-and-pointer diagram that explains the effect of evaluating the expression (set-car! (cdr list1)
(cadr list2)) .

4. Exercises 3.13 and 3.14 in Abelson and Sussman.

23

CS61A – Lab Assignment 5.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. What is the type of the value of (delay (+ 1 27))? What is the type of the value of (force (delay
(+ 1 27)))?

2. Evaluation of the expression

(stream-cdr (stream-cdr (cons-stream 1 ’(2 3))))

produces an error. Why?

3. Consider the following two procedures.

(define (enumerate-interval low high)

(if (> low high)

’()

(cons low (enumerate-interval (+ low 1) high))))

(define (stream-enumerate-interval low high)

(if (> low high)

the-empty-stream

(cons-stream low (stream-enumerate-interval (+ low 1) high))))

What’s the difference between the following two expressions?

(delay (enumerate-interval 1 3))

(stream-enumerate-interval 1 3)

4. An unsolved problem in number theory concerns the following algorithm for creating a sequence of positive
integers s1, s2, ...

Choose s1 to be some positive integer.

For n > 1,
if sn is odd, then sn+1 is 3 sn + 1;
if sn is even, then sn+1 is sn / 2.

No matter what starting value is chosen, the sequence always seems to end with the values 1, 4, 2, 1, 4, 2,
1, ... However, it is not known if this is always the case.

4a. Write a procedure num-seq that, given a positive integer n as argument, returns the stream of values
produced for n by the algorithm just given. For example, (num-seq 7) should return the stream representing
the sequence 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...

4b. Write a procedure seq-length that, given a stream produced by num-seq, returns the number of values
that occur in the sequence up to and including the first 1. For example, (seq-length (num-seq 7)) should
return 17. You should assume that there is a 1 somewhere in the sequence.

24

CS61A – Lab Assignment 6.1 Kurt Meinz
University of California, Berkeley Summer 2005

1. List all the procedures in the metacircular evaluator that call mc-eval.

2. List all the procedures in the metacircular evaluator that call mc-apply.

3. Abelson and Sussman, exercise 4.1

4. In this exercise, we will begin to write a postfix version of the metacircular evaluator. For now, do
not worry about special forms; we will only provide postfix support for procedure calls, self-evaluating
expressions, etc.

a. Make a new copy of mceval.scm and call it postfix-mceval.scm (we don’t want these changes to conflict
with future exercises). Make all changes for this exercise in postfix-mceval.scm.

b. Our postfix expressions will look the same as our prefix expressions, except that the operator will go on
the right. Examples:

(2 3 +)

(((3 1 +) 8 *) 9 -)

(’(one no trump) car)

To make this somewhat efficient (by only looking at each subexpression once), we will maintain a stack in
mc-eval. The purpose of this stack is to keep track of evaluated subexpressions until we get to the operator.

Example: We want to evaluate (2 (3 4 +) +)

-> mc-eval called with exp = (2 (3 4 +) +) stack = () ;; not at operator yet

-> mc-eval called with exp = 2 stack = () ;; .. so evaluate first arg

-> mc-eval called with exp = ((3 4 +) +) stack = (2) ;; not at operator yet -> evaluate 2nd arg

-> mc-eval called with exp = (3 4 +) stack = () ;; .. second arg is a nested exp

-> mc-eval called with exp = 3 stack = () ;; evaluate 1st arg of nested exp

-> mc-eval called with exp = (4 +) stack = (3) ;; .. not at operator yet

-> mc-eval called with exp = 4 stack = () ;; evaluate 2nd arg of nested exp

-> mc-eval called with exp = (+) stack = (3 4) ;; .. found the operator

-> mc-eval called with exp = + stack = () ;; so evaluate op and perform operation

-> mc-eval called with exp = (+) stack = (2 7) ;; found the operator

;; .. so evaluate op and perform operation

As you can see, everytime we start evaluating a new expression, we start with an empty stack. At the top
of mceval.scm, give a definition of the-empty-stack, which will be used to represent such an empty stack.

c. Modify the code for mc-eval so that it now takes in an additional argument: the stack

d. Modify the application? clause of mc-eval so that it deals with postfix expressions and exhibits the
behavior in the example in step b. Do not worry about data abstraction.

e. Modify the code so that all calls to mc-eval have an appropriate stack.

f. Try it out!

g. Given the current modifications, what types of expressions will not work in postfix notation. What
additional modifications are necessary?

25

CS61A – Lab Assignment 6.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. Explain why make-procedure does not call eval.

2. In setup-environment, what is the purpose of import?

3. Abelson and Sussman, exercise 4.2

4. Abelson and Sussman, exercise 4.4

5. Abelson and Sussman, exercise 4.5

26

CS61A – Lab Assignment 7.1 Kurt Meinz
University of California, Berkeley Summer 2005

Part A: Abelson and Sussman, exercises 4.27 and 4.29.

Part B: In this lab exercise you will become familiar with the Logo programming language, for which you’ll
be writing an interpreter in project 4.

To begin, type logo at the Unix shell prompt — not from Scheme! You should see something like this:

Welcome to Berkeley Logo version 3.4
?

The question mark is the Logo prompt, like the > in Scheme. (Later, in some of the examples below, you’ll
see a > prompt from Logo, while in the middle of defining a procedure)

1. Type each of the following instruction lines and note the results. (A few of them will give error messages.)
If you can’t make sense of a result, ask for help.

print 2 + 3

print 2 + 3

print sum 2 3

print (sum 2 3 4 5)

print sum 2 3 4 5

2 + 3

print "yesterday

print "julia"

print revolution

print [blue jay way]

show [eight days a week]

show first [golden slumbers]

print first bf [she loves you]

pr first first bf [yellow submarine]

to second :stuff

output first bf :stuff

end

second "something

print second "piggies

pr second [another girl]

pr first second [carry that weight]

pr second second [i dig a pony]

to pr2nd :thing

print first bf :thing

end

pr2nd [the 1 after 909]

print first pr2nd [hey jude]

repeat 5 [print [this boy]]

if 3 = 1 + 1 [print [the fool on the hill]]

print ifelse 2=1+1 ~

[second [your mother should know]] ~

[first "help]

print ifelse 3 = 1 + 2 ~

[strawberry fields forever] ~

[penny lane]

print ifelse 4 = 1 + 2 ~

["flying] ~

[[all you need is love]]

Continued on next page...

27

Lab Assignment 7.1 continued...

to greet :person

say [how are you,]

end

to say :saying

print sentence :saying :person

end

greet "ringo

show map "first [paperback writer]

show map [word first ? last ?] ~

[lucy in the sky with diamonds]

to who :sent

foreach [pete roger john keith] "describe

end

to describe :person

print se :person :sent

end

who [sells out]

print :bass

make "bass "paul

print :bass

print bass

to bass

output [johnny cymbal]

end

print bass

print :bass

print "bass

to countdown :num

if :num=0 [print "blastoff stop]

print :num

countdown :num-1

end

countdown 5

to downup :word

print :word

if emptyp bl :word [stop]

downup bl :word

print :word

end

downup "rain

;;;; The following stuff will work

;;;; only on an X workstation:

cs

repeat 4 [forward 100 rt 90]

cs

repeat 10 [repeat 5 [fd 150 rt 144] rt 36]

cs repeat 36 [repeat 4 [fd 100 rt 90]

setpc remainder pencolor+1 8

rt 10]

to tree :size

if :size < 3 [stop]

fd :size/2

lt 30 tree :size*3/4 rt 30

fd :size/3

rt 45 tree :size*2/3 lt 45

fd :size/6

bk :size

end

cs pu bk 100 pd ht tree 100

2. Devise an example that demonstrates that Logo uses dynamic scope rather than lexical scope. Your
example should involve the use of a variable that would have a different value if Logo used lexical scope.
Test your code with Berkeley Logo.

3. Explain the differences and similarities among the Logo operators " (double-quote), [] (square brackets),
and : (colon).

28

CS61A – Lab Assignment 7.2 Kurt Meinz
University of California, Berkeley Summer 2005

1. Abelson and Sussman, exercises 4.35 and 4.38.

2. In this exercise we learn what a continuation is. Suppose we have the following definition:

(define (square x cont)
(cont (* x x))

Here x is the number we want to square, and cont is the procedure to which we want to pass the result.
Now try these experiments:

> (square 5 (lambda (x) x))

> (square 5 (lambda (x) (+ x 2)))

> (square 5 (lambda (x) (square x (lambda (x) x))))

> (square 5 display)

> (define foo 3)
> (square 5 (lambda (x) (set! foo x)))
> foo

Don’t just type them in – make sure you understand why they work! The nondeterministic evaluator works
by evalutating every expression with two continuations, one used if the computation succeeds, and one used
if it fails.

(define (reciprocal x yes no)
(if (= x 0)

(no x)
(yes (/ 1 x))))

> (reciprocal 3 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

> (reciprocal 0 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

29

CS61A – Lab Assignment 8.1 Kurt Meinz
University of California, Berkeley Summer 2005

Abelson and Sussman, exercises 4.55 and 4.62:

4.55: Give simple queries that retrieve the following information from the data base:

All people supervised by Ben Bitdiddle;

The names and jobs of all people in the accounting division;

The names and addresses of all people who live in Slumerville.

4.62: Define rules to implement the last-pair operation of exercise 2.17, which returns a list containing
the last element of a nonempty list. Check your rules on queries such as

(last-pair (3) ?x)

(last-pair (1 2 3) ?x)

(last-pair (2 ?x) (3))

Do your rules work correctly on queries such as (last-pair ?x (3))?

For the lab exercises and the homework problems that involve writing queries or rules, test your solutions
using the query system. To run the query system and load in the sample data:

scm

(load "~cs61a/lib/query.scm")

(initialize-data-base microshaft-data-base)

(query-driver-loop)

You’re now in the query system’s interpreter. To add an assertion:

(assert! (foo bar))

To add a rule:

(assert! (rule (foo) (bar)))

Anything else is a query.

30

CS61A – Homework 1.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Functional programming

Lectures: Monday June 23, Tuesday June 24

Reading: Abelson & Sussman, Section 1.1

In this assignment you’ll write simple recursive programs to manipulate words and sentences, as well as
explore what makes special forms special. You should use the functions sentence, first, butfirst, last
and butlast presented in lecture to operate on words and sentences. These functions are not discussed in
the book. If you have taken CS3 and know about higher-order procedures such as every, please do not use
them; use explicit recursion.

This homework is due at 8 PM on Sunday, June 26. Please put your answers into a file called hw1-1.scm
and submit it electronically by typing submit hw1-1 in the directory where the file is located. You will
probably find it convenient to make a new directory (folder) for every week of the course and store the
associated labs and homeworks in it; to create a folder called week1 type mkdir week1 at the Unix prompt.
We understand that many of you have never used Unix before and will be struggling to find your way around.
If you run into problems submitting the homework electronically don’t freak out. We’ll be quite lenient the
first time around. Get your TA to help you submit on Monday. In subsequent weeks, we expect you to have
mastered the online submission process.

Be sure to test each function you write; the sample calls given here do not guarantee your code is bug-free.
Include your test cases in your submission, but make sure to comment them out (the semicolon character
begins a one-line comment in Scheme) so the file loads smoothly. Unless explicitly disallowed, you may
always write helper procedures.

One final note: Please ensure that your submitted .scm file loads into STk via the (load "hw1-1.scm")
command smoothly. Submissions that cause errors on loading may lose points.

Question 1. Write a procedure increment that takes two arguments: a number n and a sentence of
numbers. It should increment each number in the sentence by n and return a sentence of the results:

STk> (increment 5 (se 1 2 -5 10))
(6 7 0 15)

Question 2. Write a procedure ends-vow that takes a sentence as its argument and returns a sentence
containing only those words of the argument whose last letter is a vowel (a, e, i, o, u):

STk> (ends-vow ’(please put the salami above the blue elephant))
(please the salami above the blue)
STk> (ends-e ’(absolutely nothing))
()

Question 3. Write a procedure reverse which reverses a sentence:

STk> (reverse ’(the matrix cannot tell you who you are))
(are you who you tell cannot matrix the)
STk> (reverse ’(kurt alex greg carolen))
(carolen greg alex kurt)

The adventure continues on the next page.

31

Question 4. Write a predicate non-decreasing? that takes a non-empty sentence of numbers as its
argument. It should return a true value if the numbers are in non-decreasing order and a false value
otherwise:

STk> (non-decreasing? ’(1 4 8 17))
#t
STk> (non-decreasing? ’(2 5 4))
#f
STk> (non-decreasing? ’(17))
#t
STk> (non-decreasing? ’(1 1))
#t

Question 5. This question concerns special forms.

A. Most versions of Lisp provide and and or procedures like the ones described on Page 19 of the book.
In principle there is no reason why these can’t be ordinary procedures, but some versions of Lisp make
them special forms. Suppose we evaluate:

STk> (or (= x 0) (= y 0) (= z 0))

If or is an ordinary procedure, all three argument expressions will be evaluated when or is invoked.
But if the variable x has the value 0, we know that or should return true regardless of the values of y
and z. There is no reason to evaluate the other two expressions! A Lisp interpreter in which or is a
special form can evaluate the arguments one by one until either a true one is found or it runs out of
arguments. (This is called short-circuit evaluation.)

Devise a test that will determine whether Scheme’s and and or are a short-circuiting special forms or
ordinary functions. That is, do and and or evaluate all their arguments all the time or do they stop
as soon as they know the correct value to return?

B. Scheme has two special forms for making choices, cond and if. Is it possible to define one in terms of
the other? Specifically, say we attempt to define our own if procedure:

STk> (define (my-if predicate consequent alternative)
(cond (predicate consequent)

(else alternative)))

Let’s take it out for a spin:

STk> (my-if (= 5 6) ’yes ’no)
no

It seems to work, so try something more interesting:

STk> (define (my-factorial n)
(my-if (= n 0)

1
(* n (my-factorial (- n 1)))))

What happens when you attempt to use my-factorial? Why?

32

CS61A – Homework 1.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Higher-order procedures

Lectures: Wednesday June 25, Thursday June 26

Reading: Abelson & Sussman, Section 1.3

In this assignment you’ll gain experience with Scheme’s first class procedures and the lambda special form
for creating anonymous functions.

This homework is due at 8 PM on Sunday, June 26. Please put your answers into a file called hw1-2.scm
and submit electronically by typing submit hw1-2 in the directory where the file is located.

The book’s treatment of this subject is highly mathematical because it doesn’t introduce symbolic data (such
as words and sentences) until later. Don’t panic if you have trouble with the half-interval example on Page
67; you can just skip it. Try to read and understand everything else.

Question 1. Use higher-order functions such as every and keep presented in lecture to write the function
permute; don’t use explicit recursion! Permute takes two arguments,a sentence and a word. The first
sentence, called the template, contains only numbers. A number n in the template corresponds to the nth
letter in the second argument to permute (counting from 1). Permute should rearrange its second argument
to conform to the template:

STk> (permute ’(1 1 2 1) ’hello)
hheh
STk> (permute ’(3 2 1) ’chicken)
ihc
STk> (permute ’() ’lalala)
()

Don’t check for out-of-bounds numbers in the template. You may find item useful.

Question 2. This question builds on the sum procedure defined on Page 58.

A. The sum function allows one to add up the elements of a pattern defined by the parameters term and
next over some range [a, b]. Use sum to define a function sum-evens that takes two numbers and
returns the sum of all even numbers between them, inclusive: 88

STk> (sum-evens 1 10)
30 ;; 2 + 4 + 6 + 8 + 10
STk> (sum-evens 4 9)
18 ;; 4 + 6 + 8
STk> (sum-evens 8 8)
7 ;; 8

Your definition of sum-odds must have the following form:

(define (sum-odds a b)
(sum ?? ?? ?? ??))

You may assume the first argument to sum-odds will be less than or equal to the second.

The excitement continues on the next page.

33

B. What if we want to multiply numbers over a range? Define a function product that takes the same
arguments as sum but does multiplication rather than addition:

STk> (sum (lambda (x) 10) 1 (lambda (x) (+ x 1)) 3)
30
STk> (product (lambda (x) 10) 1 (lambda (x) (+ x 1)) 3)
1000

C. The factorial of a number n is 1 · 2 · 3 · ... · n. Use product to define a factorial function.

D. Now use product to approximate π using the formula:

π

4
=

2 · 4 · 4 · 6 · 6 · 8 · ...
3 · 3 · 5 · 5 · 7 · 7 · ...

Do this by writing a function pi that takes one numeric argument i. This parameter should in some
way control the number of terms computed; hence a larger value of i should yield a closer approximation
to π. Exactly what is meant by “number of terms” is up to you. All we care about is that a larger
value of i produces a better approximation. For example, our solution takes i to be the largest number
in the numerator:

STk> (pi 1000)
3.1431607055322752

Depending on the meaning you give to i and the algorithm you employ, you might not get as close an
approximation (or you might get an even closer one!). It is likely that making i too big will overload
the machine, so don’t be overeager.

One way to do this problem is to compute the numerator and denominator independently, then divide
them. While this can be done, it’s trickier than it looks because you have to ensure the same number
of terms in both, and, as you can see, the numerator and denominator don’t line up nicely. If you’re
stuck, try treating 2·4

3·3 as one unit.

E. Writing product after sum should have seemed redundant. They differ in only two ways: the combiner
function and the value returned in the base case (often called the “null value”). We’d like to generalize
the pattern exhibited by both functions to create a still more powerful procedure called accumulate.
This function should take all the arguments that sum and product do plus the two additional parame-
ters: the combiner and the null value. Once you have written accumulate both sum and product may
be defined in terms of it like this:

STk> (define (sum term a next b) (accumulate + 0 term a next b))
sum
STk> (define (product term a next b) (accumulate * 1 term a next b))
product

Use accumulate to define the function enumerate-interval, which takes two numeric arguments a
and b, where a ≤ b. It returns a sentence of all the numbers between a and b, inclusive:

STk> (enumerate-interval 10 3)
(10 9 8 7 6 5 4 3)
STk> (enumerate-interval 3 -3)
(3 2 1 0 -1 -2 -3)

The excitement continues on the next page.

34

Question 2. This question explores procedures as return values.

A. Define a procedure triple that takes a one-argument function f and returns a procedure that
applies f thrice:

STk> (define 1+ (lambda (x) (+ x 1)))
1+
STk> (define 3+ (triple 1+))
3+
STk> ((triple 3+) 10)
16

What value is returned by the following? Try to figure it out in your head first!

STk> (((triple (triple triple)) 1+) 5)

B. Now generalize triple by writing a procedure repeated that takes two arguments: a unary function
f and and a nonnegative integer n which is the number of times f should be applied. It should return
a procedure which applies f that many times:

STk> (repeaed square 2)
#[closure arglist=(x) cd7fdc] ;; returns a procedure!
STk> ((repeated square 2) 5)
625
STk> ((repeated bf 3) ’(the matrix has you))
(you)
STk> ((repeated first 0) ’(luke i am your father)) ;; identity function
(luke i am your father)

A particularly elegant solution exists that uses compose from Exercise 1.42 in the book.

35

CS61A – Homework 2.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Recursion and iteration

Lectures: Monday June 30, Tuesday July 1

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (Pages 31–47)

In this assignment you’ll practice writing procedures that evolve iterative processes. The homework is due at
8 PM on Sunday, July 3. Please put your solutions into a file called hw2-1.scm and submit electronically
by typing submit hw2-1 in the appropriate directory. Include test cases and make sure that your .scm files
loads without errors.

Question 1. You’ve seen the keep higher-order function in lecture. It takes two arguments: a predicate
and a sentence. It returns a new sentence of only those elements that satisfy the predicate (i.e. those for
which the predicate returns a true value):

STk> (keep odd? ’(1 2 3 4 5 6 7))
(1 3 5 7)
STk> (keep (lambda (x) (equal? x ’foo)) ’(follow the white rabbit))
()

Write keep so it generates an iterative process.

Question 2. The fast-expt procedure presented on Page 45 performs exponentiation in a logarithmic
number of steps using successive squaring. Its order of growth is approximately Θ(log2(n)), which is pretty
damn good. However, the book’s version evolves a recursive process: each time n is even a call to square is
left to be done before the function returns. Re-write fast-expt so it evolves an iterative process (and still
uses a logarithmic number of steps, of course). The idea behind successive squaring is:

bn = (b
n
2)2 = (b2)

n
2

To adapt this to an iterative algorithm, you’ll need to maintain an extra iteration variable, call it a for
“answer,” that is taken to be 1 initially; the final value of a will be the result of fast-expt. The value of abn

should not change from one iteration to the next. In other words, abn should remain invariant throughout
the computation. The individual values of a, b and n may change from iteration to iteration.

STk> (fast-expt 3 6)
729
STk> (fast-expt 2 32)
4294967296

The adventure continues on the next page.

36

Question 3. Read and complete Exercise 1.37 from SICP. Don’t get intimidated by the math. This question
has nothing to do with φ, the special number 1.6180, except that its inverse can be approximated with the
continued fraction:

1

1 +
1

1 +
1

1 + · · ·
You don’t need to understand the mathematical significance of φ. However, your cont-frac function should
give a good approximation to 1

φ :

STk> (cont-frac (lambda (i) 1.0) (lambda (x) 1.0) 100)
0.618033988749895

But before you start approximating 1
φ , test your function with a small k-term finite continued fraction like:

1

1 +
2

2 +
3
3

There are just three terms in this fraction, making it easy to compute by hand:

STk> (/ 1 (+ 1 (/ 2 (+ 2 (/ 3 3)))))
0.6

Using cont-frac should give matching results:

STk> (cont-frac (lambda (x) x) (lambda (x) x) 3)
0.6

Hint: You will find it easier to count up from one to k in the recursive version, and to count down from k
to zero in the iterative version.

Question 4. A perfect number is defined as a number equal to the sum of all its factors less than itself.
For example, the first perfect number is 6, because 1 + 2 + 3 = 6. The second perfect number is 28, because
1 + 2 + 4 + 7 + 14 = 28. What is the third perfect number? Write a procedure next-perfect that takes a
single number n and tests numbers starting with n until a perfect number is found:

STk> (next-perfect 4)
6
STk> (next-perfect 6)
6
STk> (next-perfect 7)
28

To find the third perfect number evaluate (next-perf 29). To do this problem, you’ll need a sum-of-factors
subprocedure. If you run this program when the system is heavily loaded, it may take a while to compute
the answer! Make sure your program can find 6 and 28 first.

Does next-perfect evolve an iterative or recursive process?

37

CS61A – Homework 2.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Data abstraction

Lectures: Wednesday July 2, Thursday July 3

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (Pages 79–106)

In this assignment you’ll practice working with Scheme lists. Although lists look like sentences, you should
treat them as a completely separate type. Do not use sentence operators on lists! Below is a table of sentence
functions and their list counterparts:

Sentences Lists
first butfirst car cdr
last butlast none
sentence list append cons
every map
keep filter
member? member
item list-ref
empty? null?
count length

The homework is due at 8 PM Sunday, July 3. Please put your solutions into a file called hw2-2.scm and
submit them online. Include test cases, but comment them out so the file loads cleanly.

Question 1. In the sentence world, keep can be written in terms of every, like this:

STk> (define (keep pred sent)
(every (lambda (e) (if (pred e) e ’())) sent))

STk> (keep number? ’(in 1 day it will be 1999))
(1 1999)

Can you use a similar trick to write filter using map, which is defined on Page 105? Why or why not?

Question 2. Read and complete Exercise 2.12 in SICP. Here is the interval ADT:

(define (make-interval a b) (cons a b))

(define (upper-bound interval) (car interval))

(define (lower-bound interval) (cdr interval))

We’ll represent percentages as decimal values in the range [0, 1]. Here is the desired behavior:

STk> (define my-interval (make-center-percent 10 .1)) ;; 10% tolerance
STk> (center my-interval)
10
STk> (percent my-interval)
.1
STk> (lower-bound my-interval)
9
STk> (upper-bound my-interval)
11

The fun continues on the next page.

38

Question 3. The great thing about lists is that they can hold any Scheme value: numbers, booleans, even
procedures! Watch:

STk> (define procs (list + * =)) ;; why doesn’t ’(+ * =) work?
procs
STk> ((car procs) 10 10 10)
30
STk> ((caddr procs) 9 11)
#f

A. We’d like to exploit this feature by writing a function call-all that takes two arguments: a list of
unary procedures and an arbitrary Scheme value x. It should invoke all the procedures in the list on
x in the intuitive order (the rightmost procedure is the last one invoked):

STk> (call-all (list (lambda (x) (- x 6)) abs sqrt) -10)
4
STk> (call-all (list cdr cdr cdr null?) ’(free your mind))
#t
STk> (call-all nil ’foo) ;; identity function
foo
STk> (call-all (list list list list) ’foo)
(((foo)))

Write call-all; there is a very simple recursive solution.

B. It’d be a lot nicer if instead of taking two arguments call-all could take any number of arguments,
the last of which is x, like this:

STk> (call-all cdr cdr cdr null? ’(free your mind))
#t
STk> (call-all ’foo) ;; identity function
foo

Scheme provides a special dotted-tail notation for definitions that allows procedures to take an arbitrary
number of arguments. For example:

STk> (define (f x y . z) (list x y z))

The procedure f can be called with two or more arguments. The first will be in x; the second in y and
any remaining arguments will be put into a list z:

STk> (f 1 2 3 4)
(1 2 (3 4))
STk> (f 1 2)
(1 2 ())
STk> (f 1)
*** Error: wrong number of arguments to procedure: (f 1)

As another example, the primitive operator list can be defined like this:

STk> (define (list . args) args)
list
STk> (list 1 2 ’three)
(1 2 three)

Use dotted-tail notation to create a new version of call-all that behaves as above. It should accept
one or more arguments.

The fun continues on the next page.

39

Question 4. Since lists can contain lists, it becomes possible to create nested lists. Next week we’ll explore
nested lists and other hierarchical data structures. As a prelude, write a function group-2 that takes a single
list as argument. The number of things in the list will always be a multiple of two. The function should
group every two consecutive elements into a list, returning a list of lists:

STk> (group-2 ’(a b c d e f g h))
((a b) (c d) (e f) (g h))
STk> (group-2 ’(hello (mr)))
((hello (mr)))

First write group-2 so it generates a recursive process. Next write a version that generates an iterative
process. The iterative solution is a bit more difficult; you may find append useful.

40

CS61A – Homework 3.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Hierarchical data

Lectures: Monday July 7, Tuesday July 8

Reading: Abelson & Sussman, Section 2.2.2–2.2.3, 2.3.1, 2.3.3

In this assignment you’ll gain experience working with structures that have variable depth such as lists of
lists and the Tree and Mobile abstract data types. However, the book does not have a tree ADT. In fact,
when the book refers to “trees”—as in scale-tree on Page 112—it’s really talking about deep lists.

Our tree ADT—which consists of the functions make-tree, children and datum—is itself usually imple-
mented using lists:

(define make-tree cons)
(define datum car)
(define children cdr)

But remember, the underlying representation of any ADT is irrelevant! We can define make-tree and friends
in a thousand different ways. As you do this homework, fight the desire to think of a Mobile or a Tree in
terms of their underlying representations as lists.

This assignment is due at 8 PM on Sunday, July 10. Put your answers into a file called hw3-1.scm and
turn it in online with submit hw3-1 as usual.

Question 1. Write a function deep-map that takes a unary function and a (possibly) nested list. It should
apply the function to each atomic element of the list and return a new list with the same nested structure:

STk> (deep-map not ’(#f ((#f) (#t))))
(#t ((#t) (#f)))
STk> (deep-map (lambda (a) ’foo) ’())
()
STk> (deep-map (lambda (x) ’foo) ’(((((3) 4) (5)) 6)))
(((((foo) foo) (foo)) foo))
STk> (deep-map square ’(1 2 (3) 4))
(1 4 (9) 16)
STk> (deep-map list ’(1 2 (3) 4))
((1) (2) ((3)) (4))

The hard work continues on the next page.

41

Question 2. In this question we’ll make use of the Tree ADT presented in lecture. A Tree can have any
number of children. The constructor is make-tree and takes two arguments, the second of which is a list of
Trees which are the children. The selectors are datum and children. The following code builds up the tree
at right (from the bottom up):

(define eight (make-tree 8 ’())) 1
(define twelve (make-tree 12 ’())) / | \
(define ten (make-tree 10 ’())) / | \
(define six (make-tree 6 ’())) 2 12 3
(define seven (make-tree 7 ’())) | / | \
(define two (make-tree 2 (list eight))) 8 6 9 7
(define nine (make-tree 9 (list ten))) |
(define three (make-tree 3 (list six nine seven))) 10
(define one (make-tree 1 (list two twelve three)))
(define thirteen (make-tree 13 ’()))
(define fourteen (make-tree 14 ’()))
(define fifteen (make-tree 15 (list thirteen fourteen)))
(define zero (make-tree 0 (list one fifteen)))

This is a large Tree specifically so that you can play with it. In testing your code, you may want to work
with one of the subtrees, such as three or nine.

Write a function fringe that takes a Tree and returns a list of the datums of the leaf nodes, in any order:

STk> (fringe zero)
(8 12 6 10 7 13 14)
STk> (fringe three)
(6 10 7)
STk> (fringe six)
(6)

Question 3. This question explores a Mobile ADT. A Mobile is like a tree with only two branches at every
node: a right branch and a left branch. From each branch hangs either a weight, which is just a number, or
another Mobile. Here is a constructor:

(define (make-mobile left-branch right-branch)
(list ’mobile left-branch right-branch))

A branch also consists of two parts: a length and a structure. The length of a branch is numeric; the
structure at the end, however, can be either another Mobile or a weight (a number).

(define (make-branch branch-length branch-structure)
(list ’branch branch-length branch-structure))

The following code builds up the Mobile at right (from the bottom up):

O
8 / \ 5

STk> (define mobile-1 (make-mobile (make-branch 4 5) / \
(make-branch 2 10))) O 10

STk> (define mobile-2 (make-mobile (make-branch 3 10) 3 / \ 2
(make-branch 2 mobile-1))) / \

STk> (define mobile-3 (make-mobile (make-branch 8 mobile-2) 10 O
(make-branch 5 10))) 4 / \ 2

/ \
5 10

The learning continues on the next page.

42

A. There are four selectors that need to be written. Two are for Mobiles: right-branch and left-branch,
and two are for branches: branch-structure and branch-length. We’ll build a simple error check
into the selectors to ensure they’re applied to the right type:

(define (left-branch mobile)
(if (and (list? mobile) (equal? (car mobile) ’mobile))

(cadr mobile)
(error "Not a mobile -- LEFT-BRANCH: " mobile)))

Write the three remaining selectors analogously. Try them out on mobile-3 above:

STk> (branch-structure (right-branch mobile-3))
10
STk> (branch-length (left-branch (branch-structure (left-branch mobile-3))))
3
STk> (branch-structure

(left-branch
(branch-structure

(right-branch (branch-structure (left-branch mobile-3))))))
5

B. Write a function total-weight which returns the weight of a Mobile. Assume branches are weightless;
hence, only the weights increase the total weight of a Mobile:

STk> (total-weight mobile-1)
15
STk> (total-weight mobile-2)
25
STk> (total-weight mobile-3)
35

Students tend to solve this problem by performing an unnecessarily exhaustive case analysis: is the
left branch a weight? is the right branch a weight? are both of them weights? This approach indicates
that you don’t trust the recursion. You only need one base case and one recursive case! Ask yourself,
what are the “leaves” of a Mobile?

C. A mobile is said to be balanced if the torque applied by its top-left branch is equal to that applied
by its top-right branch, and if all the other mobiles hanging beneath it are themselves balanced. The
“torque applied by a branch” means the product of the branch-length and the total-weight of the
branch-structure. For example, the torque applied by the top-right branch of the mobile (whose
length is 5 and whose structure is the weight 10) is 50. Write a balanced? predicate that takes a
Mobile and returns a true value if it is balanced, #f otherwise:

STk> (balanced? mobile-1)
#t
STk> (balanced? mobile-2)
#t
STk> (balanced? mobile-3)
#f

Aim for the simplest possible base case. You may assume that a weight by itself is always balanced.

Question 4. We can represent a set as a list of distinct, unordered elements. We’d like to find the subsets
of such a set. The subsets of a set S are all the sets that can be formed by selecting any number of the
elements of S. For example:

STk> (subsets ’(1 2 3))
(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

43

Notice that the empty set is a subset of every set, and every set is a subset of itself. Complete the following
definition of subsets.

(define (subsets s)
(if (null? s)

(list ’())
(let ((rest (subsets (cdr s))))

(append rest (map ?? rest)))))

Trust the recursion!

44

CS61A – Homework 3.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Representing abstract data

Lectures: Wednesday July 10, Thursday July 11

Reading: Abelson & Sussman, Sections 2.4 through 2.5.2 (Pages 169–200)

This assignment gives you practice with data-directed programming and message-passing. Part of the as-
signment involves understanding and modifying the generic arithmetic system described in the book.

The file ~cs61a/lib/packages.scm contains the code from the book that implements generic arithmetic. It
has the definitions of install-rectangular-package, install-polar-package, install-scheme-number-
package, install-rational-package and install-complex-package. But remember, these are just pro-
cedure definitions. You have to invoke them to populate the table! For convenience, we’ve provided
the function install-all-packages which is defined as:

(define (install-all-packages)
(install-polar-package)
(install-rectangular-package)
(install-complex-package)
(install-scheme-number-package)
(install-rational-package)
’engage-warp-9)

The file also contains apply-generic from Page 184, the generic procedures from Pages 184 and 189, the
relevant constructors and other supporting code.

This assignment is due at 8 PM on Sunday, July 10. Put your answers into a file called hw3-2.scm and
turn it in electronically. Comment out your test cases so the file loads smoothly.

Question 1. Write a function add-up-complex that takes a list of complex numbers (in polar or rectangular
form) and returns a complex number representing their sum. The result should be in polar form.

STk> (define x (make-complex-from-real-imag 3 4))
x
STk> (define y (make-complex-from-real-imag 10 0))
y
STk> (define z (make-complex-from-mag-ang 5 1.2))
z
STk> (add-up-complex (list x y z))
(complex rectangular 14.8117887723834 . 8.66019542983613)
STk> (add-up-complex ’())
(complex rectangular 0 . 0)

The adventure continues on the next page.

45

Question 2. Read and complete Exercise 2.77 on Page 192. You might want to trace the apply-generic
procedure.

In case this is not clear, when Louis types

(put ’magnitude ’(complex) magnitude)

the magnitude procedure actually inserted into the table is the one defined on Page 184. The definitions of
real-part, imag-part and angle are there, too.

A good place to start is by reproducing Louis’ error:

STk> (load "~cs61a/lib/packages.scm")
okay
STk> (install-all-packages)
engage-warp-9
STk> (define z (make-complex-from-real-imag 3 4))
z
STk> (magnitude z)
*** Error:

No method for these types -- APPLY-GENERIC (magnitude (complex))

Question 3. We’d like to create a generic procedure zero? that tests if its argument is equal to zero. We’re
going to use apply-generic to define it:

(define (zero? x) (apply-generic ’zero? x))

Your job is to add something to the complex, rational and scheme-number packages to make this generic
definition work. Here is the desired behavior:

STk> (zero? (make-rational 1 2))
#f
STk> (zero? (make-complex-from-real-imag 0 0))
#t
STk> (zero? (make-complex-from-mag-ang 0 1.4)) ;; zero magnitude
#t
STk> (zero? (make-scheme-number 43))
#f
STk> (zero? (make-rational 0 234))
#t
STk> (zero? (make-scheme-number 0))
#t

Show just the parts you added.

The learning continues on the next page.

46

Question 4. Berkeley is a great place to buy coffee. So many vendors to choose from: Starbucks, Tullys,
Peets, Strada, etc. Some of these places offer a bulk discount: the more coffee you buy the less it costs. We’ll
model the pricing scheme of a given coffee vendor with a function that takes the quantity of coffee you’d like
to purchase and returns the total price. Suppose we’ve set up a table keyed by vendor name and coffee type
like this:

STk> (put ’starbucks ’frap (lambda (n) (* n 3.50)))

STk> (put ’starbucks ’mocha (lambda (n) (* n 1.50)))

STk> (put ’coffee-source ’frap (lambda (n)
(cond ((< n 5) (* n 4.00))

((< n 10) (* n 3.00))
(else (* n 2.50)))))

STk> (put ’tullys ’frap (lambda (n)
(cond ((< n 10) (* n 3.50))

((< n 30) (* n 3.00))
(else (* n 2.50)))))

STk> (put ’peets ’frap (lambda (n)
(if (< n 50)

(* n 4.00)
(* n 2.00))))

To find out how much ten Starbucks fraps cost you’d type:

STk> ((get ’starbucks ’frap) 10)
35.0

Write a function best-deal that takes three arguments: the type of coffee, the quantity you want to purchase
and a list of vendors at least one of which sells the desired item. It should return the name of the
vendor with the best price for that quantity of goods. If multiple vendors exists with the same low price
best-deal should return the first one in the list.

STk> (best-deal ’frap 1 ’(starbucks tullys office-depot))
starbucks
STk> (best-deal ’frap 10000 ’(starbucks walmart peets tullys strada))
peets
STk> (best-deal ’frap 13 ’(coffee-source tullys))
coffee-source
STk> (best-deal ’mocha 87 ’(peets starbucks coffee-source))
starbucks

As you can see, not all the vendors will sell the product desired. Some of the vendors might not even be in
the table! At least one will. Recall that get returns #f if it does not find anything in the table matching
both keys.

You may want to use the following helper function, which returns the first vendor in a list of vendors that
sells a specific good.

(define (vendor-that-sells good vendors)
(if (get (car vendors) good)

(car vendors)
(vendor-that-sells good (cdr vendors))))

STk> (vendor-that-sells ’mocha ’(copy-central peets starbucks))
starbucks

The excitement continues on the next page.

47

Question 5. In the last homework, you implemented a Mobile ADT and wrote functions total-weight
and balanced? that worked on Mobiles. Here is the Mobile constructor:

(define (make-mobile left-branch right-branch)
(list ’mobile left-branch right-branch))

We’d now like to implement Mobiles as message-passing objects, similar to make-from-real-imag on Page
186. Here is the new Mobile constructor:

(define (make-mobile left-branch right-branch)
(define (dispatch op)

(cond ((eq? op ’left-branch) left-branch)
((eq? op ’right-branch) right-branch)
(else (error "I don’t understand -- MAKE-MOBILE: " op))))

dispatch)

Implement make-branch, the constructor for branches, in message-passing style. Then write the four selectors
left-branch, right-branch, branch-structure and branch-length to work with this implementation of
Mobiles and branches. Test them on mobile-3, defined in the last homework. Your total-weight and
balanced? functions should work without modification with this new representation of Mobiles.

48

CS61A – Homework 4.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Object-oriented programming

Lectures: Monday July 14, Tuesday July 15

Reading: “Object-Oriented Programming—Above-the-line view” (in course reader)

This homework gives your practice with our OOP system for Scheme. To use it, you must load
~cs61a/lib/obj.scm. The assignment is due at 8 PM Sunday, July 17. Put your solutions into a file
hw4-1.scm, yadda, yadda, yadda ... you know the drill.

Question 1. Create a class called random-generator that takes one instantiation argument, a number n.
An instance of this class should respond to the message new by returning a random number that is less than
n. (Recall that (random 10) returns a random number between 0 and 9.) Any other message should cause
the instance to spit out the number it returned the last time:

STk> (define rand1 (instantiate random-generator 10))
rand1
STk> (ask rand1 ’new)
4
STk> (ask rand1 ’new)
9
STk> (ask rand1 ’foo)
9
STk> (ask rand1 ’bar)
9
STk> (ask rand1 ’baz)
9

If a newly instantiated random-generator is given a message that is not new, it may return anything.

Question 2. Create a coke-machine class. Instances of this class have one instantiation variable, the price
(in cents) of a coke, and respond to five messages:

• num-cokes — Returns the number of cokes currently in the machine. Initially, zero.

• fill n — Fills the machine with n cokes. Machines start out empty. Returns anything.

• price — Returns the price of a coke.

• deposit n — Deposits n cents into the machine toward the purchase of a coke. You can deposit
several coins and the machine should remember the total. Return value is up to you.

• coke — Returns the string "Machine empty", the string "Not enough money") or your change, which
signifies the successful purchase of a beverage. Decreases the number of cokes in the machine by one
and clears the money in the machine.

Here’s an example:

STk> (define my-machine (instantiate coke-machine 70))

STk> (ask my-machine ’num-cokes)
0

The question continues on the next page.

49

STk> (ask my-machine ’coke)
"Machine empty"

STk> (ask my-machine ’fill 60) ;; return value up to you

STk> (ask my-machine ’deposit 25) ;; return value up to you

STk> (ask my-machine ’coke)
"Not enough money"

STk> (ask my-machine ’deposit 25) ;; now there’s 50 cents in there

STk> (ask my-machine ’deposit 25) ;; now there’s 75 cents

STk> (ask my-machine ’coke)
5 ;; 5 cents change

STk> (ask my-machine ’num-cokes)
59

You may assume that the machine has an infinite supply of change and infinite space to store cokes.

Question 3. The OOP construct usual forwards a message to the parent class, up exactly one level in
the inheritance hierarchy. Extend this capability by writing a method called n-usual that sends a message
to the nth ancestor in the inheritance hierarchy. This feature need only work with single inheritance. The
method will take two arguments: n and a message. If n is zero, the message should be given to self. In
order for this to work, each class in the hierarchy must have the same n-usual method. Here is the desired
behavior (with return values omitted for clarity):

STk> (define-class (a)
(method (foo) (display "Foo in A") (newline))
(method (n-usual n message) ...))

STk> (define-class (b)
(parent (a))
(method (foo) (display "Foo in B") (newline))
(method (n-usual n message) ...))

STk> (define (c)
(parent (b))
(method (foo) (display "Foo in C") (newline))
(method (n-usual n message) ...))

STk> (define a1 (instantiate a))

STk> (define b1 (instantiate b))

STk> (define c1 (instantiate c))

STk> (ask c1 ’n-usual 0 ’foo)
Foo in C

STk> (ask c1 ’n-usual 1 ’foo)
Foo in B

STk> (ask c2 ’n-usual 2 ’foo)
Foo in A

Assume the nth ancestor can handle the message, and that the message takes no arguments. This problem
is trickier than it looks. You’ll need more than one base case.

The assignment continues on the next page.

50

Question 4. This exercise is mindblowingly cool. We can use OOP to represent cons pairs, and out of these
OOP pairs we can make lists! For simplicity, assume throughout this exercise that our OOP lists will contain
only atomic data, such as words and numbers. We’ll need two classes, oop-pair and the-null-list:

(define-class (oop-pair the-car the-cdr)
(method (length)

(+ 1 (ask the-cdr ’length)))
(method (list-ref n)

(if (= n 0)
the-car
(ask the-cdr ’list-ref (- n 1)))))

(define-class (the-null-list)
(method (length) 0)
(method (list-ref n)

(error "Can’t LIST-REF into null list")))

Just like a proper list made of primitive cons pairs must end in nil, a proper OOP list must end in an
instance of the-null-list class. Here is how you can use these definitions to construct the list (a b c):

STk> (define my-oop-list (instantiate oop-pair ’a
(instantiate oop-pair ’b

(instantiate oop-pair ’c
(instantiate the-null-list)))))

my-oop-list

STk> my-oop-list
#[closure arglist=(message) 32ddec] ;; it’s an object!

STk> (ask my-oop-list ’length)
3

STk> (ask my-oop-list ’list-ref 2)
c

Pause here to make sure you understand how this works.

A. It’s not very convenient to construct these OOP lists as above. Define a procedure regular->oop-list
that takes a regular Scheme list and returns the equivalent OOP list:

STk> (define oop-list-1 (regular->oop-list ’(holy cow)))
oop-list-1

STk> oop-list-1
#[closure arglist=(message) d2d88c] ;; it’s an object!

STk> (ask oop-list-1 ’length)
2

STk> (ask oop-list-1 ’list-ref 0)
holy

The assignment continues on the next page.

51

B. It’s also not very convenient to view the contents of an OOP list. Add a print method to the oop-pair
and the-null-list classes that has this behavior:

STk> (define oop-list-2 (regular->oop-list ’(2 soon 2 tell)))
oop-list-2

STk> (ask oop-list-2 ’print)
[2 soon 2 tell]
okay ;; return value up to you
STk> (ask (instantiate the-null-list) ’print)
[]
okay

Use the display procedure to print the elements of the list. The return value of the print method is
up to you. We only care about its side-effect. Don’t worry about extra spaces in the output.

C. Lastly, add a member? method to the two class definitions:

STk> (define oop-list-3 (regular->oop-list ’(a prison for your mind)))
oop-list-3

STk> (ask oop-list-3 ’member? ’prison)
#t

STk> (ask oop-list-3 ’member? ’jail)
#f

52

CS61A – Homework 4.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Assignment, state, environments

Lectures: Wednesday July 16, Thursday July 17

Reading: Abelson & Sussman Sections 3.1, 3.2 (Pages 217-251) and
“Object-Oriented Programming—Below-the-line view” (in course reader)

This assignment gives you practice with procedures that have local state and with the environment model
of evaluation. Do not use OOP; use regular Scheme. This assignment is due at 8 PM on Sunday, July
17. Please put your answers to Questions 1-3 into a file hw4-2.scm and submit electronically. Question 4
asks you to draw an environment diagram. Please do this on a blank sheet of paper and turn it into the
box labeled with your TA’s name in 283 Soda before lecture on Monday. Don’t forget to write your name
and login on the paper.

Question 1. To instrument a procedure means to make it do something in addition to what it already does.
For example, a procedure can be instrumented to keep statistics about itself, such as how many times it has
been called.

A. Write a procedure instrument that takes a one-argument procedure f . It should return an instru-
mented version of f that keeps track of how many times it was called using a local counter. If the
instrumented procedure is called with the special symbol times-called, it should return the number
of times it has been invoked. If it’s called with reset, the internal counter should be set to zero. Any
other argument should be passed directly to f :

STk> (define i-square (instrument (lambda (x) (* x x))))
i-square
STk> (i-square 5)
25
STk> ((repeated i-square 3) 2)
256
STk> (i-square ’times-called)
4
STk> (i-square ’reset)
ok ;; return value up to you
STk> (i-square ’times-called)
0

B. We’d like to keep track of how many times factorial is called (including recursive calls). So we try:

STk> (define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

factorial
STk> (define i-factorial (instrument factorial))
i-factorial
STk> (i-factorial 5)
120
STk> (i-factorial ’times-called)
1

Explain why i-factorial thinks it’s only been called once, not five times. You may find it useful to
draw an environment diagram, though you don’t have to.

53

Question 2. Modify the make-account procedure on Page 223 to create password-protected accounts. You
choose the password when you create an account; you must then supply that same password when you wish
to withdraw or deposit:

STk> (define a1 (make-account 100 ’this-is-my-password))
a1
STk> ((a1 ’withdraw ’this-is-my-password) 40)
60
STk> ((a1 ’withdraw ’this-is-not-my-password) 10)
Incorrect Password ;; print this and
ok ;; return something
STk> ((a1 ’deposit ’this-is-my-password) 10)
70

If an account is accessed three consecutive times with wrong password, display the following warning: ”Do
it again and I’ll call the police”. If an account is accessed more than three consecutive times with the wrong
password, invoke this procedure (or your own variant):

(define (police)
(display "Bad boys, bad boys\n")
(display "Watcha gonna do whatcha gonna do when they come for you\n")
(display "Bad boys, bad boys\n")
(display "Watcha gonna do whatcha gonna do when they come for you\n")
(display "...\n")
(display "Nobody naw give you no break\n")
(display "Police naw give you no break\n"))

(Lyrics from www.geocities.com/tvshowthemelyrics/CopsSong.html)

Question 3. Under the substitution model of evaluation, the order in which arguments were evaluated
(e.g., left to right or right to left) didn’t matter. With the introduction of assignment—or other side-effects,
such as printing—the order in which expressions are evaluated matters a great deal; different results are
possible if arguments are evaluated from left to right instead of right to left. Devise a way to test the order
in which arguments are evaluated. Determine which way does +, (lambda (x y z) (list x y z)) and
cons evaluate their arguments in STk.

The fun continues on the next page.

54

Question 4. Draw an environment diagram for the following expressions. Also fill in the return value in
each blank:

STk> (define make-counter
(let ((total 0))

(lambda ()
(let ((count 0))
(lambda ()

(set! count (+ 1 count))
(set! total (+ 1 total))
(list count total))))))

STk> (define c1 (make-counter))

STk> (c1)

STk> (c1)

STk> (define c2 (make-counter))

STk> (c2)

STk> (c1)

There is a program called EnvDraw that draws environment diagrams. There is no reason you shouldn’t
check your work using it. To run it, type envdraw at your shell (% is the shell prompt):

% envdraw

This will launch STk. From STk call the envdraw procedure:

STk> (envdraw)
okay

Now, any expression you evaluate at the STk prompt will be shown in the environment. To keep EnvDraw
from drawing the entire diagram at once, turn on Stepping mode; when you want it to draw the next piece
of the diagram, choose Step from the menu.

But wait! We did say check your work using EnvDraw, not let EnvDraw do the whole thing and copy.
Environment diagrams are fundamental to what we do from now until the end of the semester. Putting in
the time to understand them this week will make subsequent topics easier.

Lastly, it is useful to think of local state variables as either class variables or instance variables. If we treat
c1 and c2 in the above expression as instances, which are the class and instance variables?

55

CS61A – Homework 5.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Mutation

Lectures: Monday July 21, Tuesday July 22

Reading: Abelson & Sussman, Section 3.3.1–3

This assignment gives you practice with mutation of pairs and circular structures made of pairs. Additionally,
several of problems require an understanding of last week’s material. Question 4, count-pairs, is a classic
problem in computer science. Make sure to spend enough time on it. This homework is due at 8 PM on
Sunday, July 24. Put your answers into a file hw5-1.scm and submit it electronically.

Question 1. This question isn’t so much about how tables work, but about using them. Memoization is
a technique for increasing the efficiency of a program by recording previously computed results in a local
table. The keys are the arguments to the memoized procedure. When the memoized procedure is asked
to compute a value, it first checks the table. If the value has already been computed, just pull it out of
the table. Otherwise, compute the value and store it in the table for future use. (Note that memoization
only benefits procedures that are strictly functional; it would not make sense to memoize random or other
procedures with side-effects.)

A. Here is the familiar procedure for computing Fibonacci numbers:
(define (fib n)

(cond ((= n 0) 1)
((= n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))))

Its order of growth is Θ(2n). Here is a memoized version:
(define memo-fib

(let ((history (make-table)))
(lambda (n)

(let ((previously-computed (lookup n history)))
(or previously-computed

(cond ((= n 0) 1)
((= n 1) 1)
(else

(let ((result (+ (memo-fib (- n 1)) (memo-fib (- n 2)))))
(insert! n result history)
result))))))))

Code for one-dimentional tables is in ~cs61a/lib/tables.scm. To get a rough idea of how much work is
saved, trace both versions and compute the 11th Fibonacci number. Explain why memo-fib computes
the nth Fibonacci number in a number of steps proportional to n. That is, show that memo-fib has
roughly a linear order of growth. Treat lookup and insert! as constant-time operations.

B. Memoize the count-change procedure defined on Page 40 of SICP. Actually, memoize its helper cc.
Model your memo-cc procedure on memo-fib. Notice that cc has a structure that is very similar to
fib: two base cases, one recursive case but with two recursive calls. The only difference is that cc
takes two arguments, amount and kinds-of-coins. While you can use a two-dimentional table to deal
with this, it is probably easier to use a one-dimentional table and list both arguments for the key.
Test your memo-cc against the original cc procedure to make sure it returns the same answer—but
faster! You’ll find the original count-change procedure in ~cs61a/lib/change.scm.

The adventure continues on the next page.

56

Question 2. In this question we look at destructive removal of elements from a proper list.

A. Write the procedure remove-nth! that takes a list and a number n. It should destructively remove
the nth element of the list (counting from zero). The return value of remove-nth! is up to you; it’s
the side-effect we’re after. You may assume that n will be within the length of the list. Additionally,
you may assume that n will never be zero; that is, we’ll never ask remove-nth! to get rid of the very
first list element. The desired behavior is this:

STk> (define red-pill (list ’how ’deep ’the ’rabbit ’hole ’is))
red-pill
STk> (remove-nth! red-pill 1)
ok ;; return value is garbage
STk> red-pill
(how the rabbit hole is)
STk> (remove-nth! red-pill 3)
ok
STk> red-pill
(how the rabbit is)

B. Now the interesting part: why can’t n be zero? Specifically, why is it impossible to write a remove-
nth! function that can remove all the elements of a given list? For example:

STk> (define a (list ’hello))
a
STk> (remove-nth! a 0)
ok
STk> a
()

Assuming you have a working remove-nth! from Part A, why does the following definition of
remove-nth-with-zero!, which attempts to handle the case when n is zero, fail?

(define (remove-nth-with-zero! lst n)
(if (= n 0)

(set! lst (cdr lst))
(remove-nth! lst n))) ;; call remove-nth! if n is nonzero

You may find it useful to draw an environment diagram (or have EnvDraw draw it for you).

Question 3. Write a function interleave! that takes two lists, the first of which is non-empty, and
interleaves their elements using mutation. That is, interleave! should insert an element of the second list
between every two elements of the first list. The return value of interleave! is up to you. Here is a sample
call (with some return values omitted for clarity):

STk> (define numbers (list 1 2 3 4 5))
STk> (define letters (list ’a ’b))
STk> (interleave! numbers letters)
STk> numbers
(1 a 2 b 3 4 5)
STk> letters
(a 2 b 3 4 5)

Test interleave! thoroughly and include your test cases in your submission (but comment them out). Do
not allocate any new pairs! The point of this problem is to reuse existing pairs, not make new ones.
Hence, cons and friends are illegal.

The homework continues on the next page.

57

Question 4. We’d like to write a procedure count-pairs that returns the number of pairs in an arbitrary
structure. The following is a version that would work for any structure of pairs that can be constructed
without mutation:

(define (count-pairs x)
(if (not (pair? x))

0
(+ (count-pairs (car x))

(count-pairs (cdr x))
1)))

Let’s take it out for a spin:

STk> (count-pairs (list ’a ’b ’c))
3
STk> (count-pairs (cons ’a (cons ’b ’c)))
2
STk> (count-pairs (list (list (list (list ’a)) ’b) ’c))
6

Mutation, however, allows us to fool count-pairs into thinking a structure has more pairs than it really
does:

STk> (define test (list ’a ’b ’c)) ;; 3 pairs
test
STk> (set-car! test (cdr test)) ;; still 3 pairs
okay
STk> (count-pairs test)
5

Worse still, count-pairs will go into an infinite loop on circular structures:

STk> (define test (list ’a ’b ’c))
test
STk> (set-car! test test)
okay
STk> (count-pairs test)
doesn’t return

Fix count-pairs so it correctly returns the number of pairs in any structure, circular or not. Do this by
having count-pairs keep track of pairs it has already visited in a local list. (Yes, this means you’ll need to
maintain local state somewhere.) When facing a new pair, check if it is already in the list with memq, which
is is like member but uses eq? to perform comparisons. You will need a helper.

Test the new count-pairs on the nastiest circular structures you can come up with.

58

CS61A – Homework 5.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Streams

Lectures: Wednesday July 23, Thursday July 24

Reading: Abelson & Sussman, Section 3.5.1–3, 3.5.5

This assignment explores infinite streams. Use show-stream (abbreviated as ss) to print a stream; it takes
an optional second argument specifying the number of elements to print. This homework is due at 8PM on
Sunday, July 24. Please put your solutions into a file called hw6-1.scm and submit it electronically with
submit hw6-1. As always, include test cases in your file but be sure to comment them out so the file loads
smoothly.

Question 1. Write a procedure list->stream that takes a list as its argument and returns an infinite
stream of the elements of the list, re-starting at the begging once the end of the list is reached:

STk> (ss (list->stream ’(there is no spoon)))
(there is no spoon there is no spoon there is ...)

Question 2. In this question, you’ll write a more general stream-map procedure and use it to define a
stream implicitly.

A. We’d like to generalize the two-argument stream-map function defined on Page 320 so that it behaves
as follows (Assume ones and integers are both infinite streams.):

STk> (ss (stream-map list ones integers) 5)
((1 1) (1 2) (1 3) (1 4) (1 5) ...)

As you can see, the new stream-map takes n streams and a procedure that can take n arguments. The
procedure is applied to the corresponding elements of each stream. You may assume that the streams
given to stream-map will be infinite. Hence, a base case is not needed. Complete this definition of
stream-map:

(define (stream-map proc . streams)
(??

(apply proc (map ?? streams))
(apply stream-map (map ?? streams))))

B. We’d now like to create an infinite stream of factorials:

STk> (ss factorials)
(1 2 6 24 120 720 5040 40320 362880 3628800 ...)

The nth element of this stream is n + 1 factorial. Complete the following implicit definition of this
stream:

(define factorials (cons-stream 1 (stream-map * ?? ??)))

Notice that unlike list->stream from Question 1, you’re not writing a function that returns a stream;
instead, you’re defining the variable factorials to be the stream itself. Yet, because of the delayed
evaluation afforded by streams, you may refer to the stream you’re defining as you’re defining it! See
Page 328 for a more complete discussion of implicit stream definitions. Do not define any helper
functions for this problem. You may, however, use the integers stream.

The adventure continues on the next page.

59

Question 3. Create an infinite stream called runs that looks like this:

STk> (ss runs 15)
(1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 ...)

You’ll probably want to use the generator approach to creating streams by defining an auxiliary function,
say, runs-generator and calling it with some initial values. Then use it to define runs:

STk> (define runs (runs-generator parameters))

Question 4. Write a procedure chocolate that takes the name of someone who likes chocolate a lot and
creates an infinite stream that says so:

STk> (ss (chocolate ’greg) 25) (greg likes chocolate greg really
likes chocolate greg really really likes chocolate greg really
really really likes chocolate greg really really really really
likes chocolate ...)

If you have trouble with this problem, try to first define a version of chocolate for lists that takes an
additional argument: the maximum number of “really”s. Then gradually change list operations like cons
and append to stream operations like cons-stream and stream-append. You’ll need a helper function.

Question 5. The pairs procedure defined on Page 341 seems more complicated than needed. In the
book’s version, the first pair, represented by (S0, T0) on the diagram on Page 339, is formed explicitly.
The stream-map handles the subsequent pairings of S0. Why is the first pair a special case? Why can’t
stream-map take care of the entire row? Here is a simpler version of pairs:

(define (pairs s t)
(interleave (stream-map (lambda (x) (list (stream-car s) x)) t)

(pairs (stream-cdr s) (stream-cdr t))))

Does this work? Explain what happens when we attempt to evaluate the following with the new definition:

STk> (pairs integers ones)

60

CS61A – Homework 6.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Metacircular evaluator

Lectures: Monday July 28, Tuesday July 29

Reading: Abelson & Sussman, Section 4.1.1–6 (Pages 359–393)

This is the first of two homeworks on the metacircular evaluator. This assignment focuses on adding simple
special forms as derived expressions and modifying the behavior of existing special forms. A version of the
metacircular evaluator is available in ~cs61a/lib/mceval.scm. Please copy it to your homework directory
and rename is hw6-1.scm. Answer all questions by adding to or modifying the code in this file. Clearly mark
the parts you changed. You may include test cases in this file (just be sure to comment them out) or in a
separate file called tests. When you are done, you will have a Scheme interpreter that supports let, let*
and an extended version of define, as well as have a built-in map higher-order procedure. This assignment
is due at 8 PM on Sunday, July 31.

To keep your sanity test any new code in isolation before testing it through the interpreter. Get in the
habit of testing incrementally: test the smallest nontrivial piece of code first, and work your way up. This
way, any errors you encounter will be closer to the code that produced them.

Lastly, remember to use mce to start the interpreter for the first time, since mce initializes the global
environment. When you wish to get back to the REPL and preserve the state of the environment, use
driver-loop.

Question 1. This question concerns adding derived expressions to the metacircular evaluator.

A. Add let as a special form to the metacircular evaluator by implementing a syntactic translation
let->lambda that transforms a let expression into the equivalent procedure call:

STk> (let->lambda ’(let ((a 1) (b (+ 2 3))) (* a b))))
((lambda (a b) (* a b)) 1 (+ 2 3)) ;; returns a list!

Remember, let->lambda takes a list that represents a let expression and returns another list that
represents the equivalent procedure call. Do not be intimidated by this problem simply because it
appears in the context of the MCE. This is a simple list-manipulation problem; the only thing that is
new is that the list happens to look like Scheme code. Make sure your let->lambda function works
correctly before proceeding; test it in isolation, at the STk (not MCE!) prompt. After you have written
let->lambda, install let into the interpreter by adding the following clause to mc-eval:

((let? exp) (mc-eval (let->lambda exp) env))

Don’t forget to define the predicate let? in the obvious way. You should now be able to use the let
form in your metacircular interpreter, like this:

;;; M-Eval input:
(let ((cadr (lambda (x) (car (cdr x)))))

(cadr ’(one two three)))

;;; M-Eval value:
two

The question continues on the next page.

61

B. The let* special form is similar to let except that the bindings are preformed sequentially (from left
to right), allowing you to refer to previous let variables in defining later ones:

STk> (let* ((a 10) (b (* a a)) (c (+ a b)))
(list a b c))

(10 100 110)

One way to implement let* is by transforming it into nested let expressions. That is, the expression

(let* ((a 10) (b (* a a)) (c (+ a b)))
(list a b c))

is just syntactic sugar for

(let ((a 10))
(let ((b (* a a)))

(let ((c (+ a b)))
(list a b c))))

Add let* to the MCE by implementing this syntactic transformation. Write the function let*->lets
which takes a list that looks like a let* expression and returns nested lets. Before going further, test
your function in isolation:

STk> (let*->lets ’(let* ((a 10) (b (* a a)) (c (+ a b)))
(list a b c)))

(let ((a 10)) (let ((b (* a a))) (let ((c (+ a b))) (list a b c))))

Then do everything else necessary to allow let* to be used in metacircular Scheme.

Question 2. In lab (Exercise 4.4) you added and and or to the MCE. An important detail of these two
special forms is that and returns #f or the last true value. For example:

STk> (and 1 2 3 4)
4

Similarly, or returns #f or the first true value:

STk> (or 1 2 3 4)
1

Here is a näıve implementation of or that is intended to behave as above:

(define (eval-or exp env)
(if (null? exp)

#f
(if (true? (mc-eval (car exp) env))

(mc-eval (car exp) env)
(eval-or (cdr exp) env))))

Please define or? in the standard way and add the following clause to mc-eval:

((or? exp) (eval-or (cdr exp) env)) ;; cdr to strip off the "and" tag

Show a sample interaction with the MCE that reveals a bug in this eval-or. You can use STk to see what
the “right answer” is for any given or expression. How would you fix this bug? (You don’t actually need to
fix it if you don’t want to.)

The action continues on the next page.

62

Question 3. Sometimes it’s convenient to initialize a whole slew of variables with a single define. Modify
the eval-definition function to cope with the definition of any number of variables. For example:

;;; M-Eval input:
(define a (+ 2 3)

b (* 2 5)
c (+ a b))

;;; M-Eval value:
ok

;;; M-Eval input:
(list a b c)

;;; M-Eval value:
(5 10 15)

Like let* in the previous problem, the bindings should be performed sequentially in a left-to-right order,
allowing later bindings to refer to earlier ones. Do not implement this feature as a derived expression by,
say, turning

(define a (+ 2 3) b (* 2 5) c (+ a b))
into

(begin (define a (+ 2 3)) (define b (* 2 5)) (define c (+ a b)))

Change eval-definition instead. Remember to always test in isolation first:

STk> (eval-definition ’(define a (+ 2 3) b (* 2 5) c (+ a b))
the-global-environment)

ok
STk> (lookup-variable-value ’c the-global-environment)
15

Hint: You may find it convenient to change the definition? clause in mc-eval to strip off the “define”
tag, like this:

((definition? exp) (eval-definition (cdr exp) env))

The learning continues on the next page.

63

Question 4. The MCE is missing quite a few primitive procedures. Evaluate primitive-procedures in
STk to see which ones are available. The goal of this question is to make the higher-order function map
available on startup in the metacircular evaluator:

STk> (mce) ;; initializes interpreter

;;; M-Eval input:
(map (lambda (x) (* x x)) ’(1 2 3))

;;; M-Eval value:
(1 4 9)

Depending on how you do this, map may end up a primitive procedure:

;;; M-Eval input:
map

;;; M-Eval value:
(primitive #[closure arglist=(func lst) 9d3c10])

or a compound procedure that is pre-defined in the MCE:

;;; M-Eval input:
map

;;; M-Eval value:
(compound-procedure (func lst) (...) <procedure-env>)

A. Why can’t we just import STk’s map into the MCE by adding it to the list of known primitives:

(define primitive-procedures
(list (list ’car car)

(list ’cdr cdr)
(list ’map map) ;; new!

...

Explore what happens when you attempt to use map in metacircular Scheme. Hint: STk’s map is
designed to be used with STk procedures, which look like #[closure arglist=(x) d3afbc]. What
do MCE procedures look like?

B. Find a way to add map to the MCE. You may add it as a primitive or compound procedure, but not
as a special form. There is no reason to make map a special form because map obeys the normal rules
of evaluation.

You know you’ve done this right when you can use map immediately after initializing the interpreter
(as in the example above). You may modify any functions or definitions you need to.

64

CS61A – Homework 6.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Metacircular evaluator, Lazy evaluator

Lectures: Wednesday July 30, Thursday July 31

Reading: Abelson & Sussman, Sections 4.2.2–3 (Pages 401–411)

This assignment gives you practice making substantial modifications to the metacircular evaluator, as well
as introduces you to the lazy evaluator. It is long! As before, make a copy of ~cs61a/lib/mceval.scm
and rename it hw6-2.scm. Alternatively, you may use your modified metacircular evaluator from the last
homework. Include test cases in this file or a separate file called tests. Please do Question 4 in a file called
question4.scm. Submit all files electronically. The homework is due at 8 PM on Sunday, July 31.

Question 1. We can create new bindings with define in Scheme, but there is no way to get rid of old ones.
Add the undefine special form to the metacircular evaluator which should remove the most local binding of
a given symbol (the same binding that would be retrieved if the symbol was to be looked up):

;;; M-Eval input:
(define color ’yellow)

;;; M-Eval value:
ok

;;; M-Eval input:
((lambda (color) (undefine color) color) ’green) ;; removes local "color"

;;; M-Eval value:
yellow

;;; M-Eval input:
(undefine color) ;; now global "color" is gone too

;;; M-Eval value:
ok ;; return value up to you

;;; M-Eval input:
color

*** Error: Unbound variable color

This problem requires you to understand the representation of environments in the interpreter. Since envi-
ronments are made of pairs (surprise, surprise) you’ll need set-car! and set-cdr! to change them. Make
sure to test your code outside the interpreter first. This will help you isolate bugs. Assuming the underlying
Scheme procedure that implements undefine is called eval-undefine, here is how you might test it:

STk> (define my-environment ;; make simple environment
(extend-environment ;; with one frame that

’(a b) ’(1 2) ;; contains two bindings
the-empty-environment)) ;; a=1 and b=2

STk> my-environment
(((a b) 1 2)) ;; peek at its representation as a list
STk> (eval-undefine ’b my-environment)
ok
STk> my-environment
(((a) 1)) ;; no more b

Lastly, briefly explain why undefine must be a special form.

The homework continues on the next page.

65

Question 2. We’re going to borrow a neat looping construct from Emacs Lisp called do-list. It has this
syntax:

(do-list (<variable> <list> <return value>)
<body>)

The evaluation rules are: for every element of <list>, bind <variable> to the element and evaluate <body>.
It’s important that <variable> be made local to the evaluation of <body>. It should not exist after do-list
is done. When the list is empty, evaluate and return <return value>. Below are some examples (you will
need to add display and newline to the list of primitives):

;;; M-Eval input:
(do-list (num (list 1 2 3) ’foo)

(display num)
(newline))

1
2
3

;;; M-Eval value:
foo

;;; M-Eval input:
(define (reverse seq)

(let ((result ’()))
(do-list (e seq result)

(set! result (cons e result)))))

;;; M-Eval input:
(reverse (list ’a ’b ’c))

;;; M-Eval value:
(c b a)

Add do-list to the MCE, but not as a derived expression! That’s less interesting. Write an evaluation
function for it instead.

As you work on this problem, you may notice a slight ambiguity in the specs. Should <return value> be
evaluated in the original environment, or in the environment where <variable> is bound? It’s up to you.

The fun continues on the next page.

66

Question 3. Add trace and untrace to the metacircular evaluator. Both primitive and compound proce-
dures should be traceable, just like in STk. Don’t worry about proper indentation of trace output; we just
want the basic printing of arguments and return value of a traced procedure, like this:

;;; M-Eval input:
(trace *) ;; return value omitted

;;; M-Eval input:
(* (* 2 3) (+ 4 1))

* with args (2 3)
returns 6
* with args (6 5)
returns 30

;;; M-Eval value:
30

;;; M-Eval input:
(untrace *) ;; * is no longer traced

;;; M-Eval input:
(define (factorial n)

(if (= n 0)
1
(* n (factorial (- n 1)))))

;;; M-Eval input:
(trace factorial)

;;; M-Eval input:
(factorial 5)
factorial with args (5)
factorial with args (4)
factorial with args (3)
factorial with args (2)
factorial with args (1)
factorial with args (0)
returns 1
returns 1
returns 2
returns 6
returns 24
returns 120

;;; M-Eval value:
120

The return values of trace and untrace are up to you. There are several ways to do this problem, but the
easiest is to stick a boolean inside the list that represents a procedure that will be true if the procedure is
being traced and false otherwise. All that’s left then is to figure out where procedures are called and do
some printing. Depending on your implementation, trace and untrace may or may not need to be special
forms. Did you make them special forms? Briefly explain.

The excitement continues on the next page.

67

Question 4. This question explores the difference between normal-order evaluation (as implemented by
the lazy interpreter) and applicative-order evaluation (as done by STk or our own metacircular evaluator).
Please put your answers to this question into a file question4.scm.

A. The “Hanoi stream” is an infinite stream of the form:

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 ...

As you can see, every other element in the stream is a one:

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 ...

If we take out all the ones, we get a stream where every other element is a two:

2 3 2 4 2 3 2 5 2 3 2 4 2 3 2 6 2 ...

And so on. This leads to the following rather intuitive generator procedure:

(define (make-hanoi-stream n)
(interleave (stream-of n)

(make-hanoi-stream (+ n 1))))

(define (stream-of x) (cons-stream x (stream-of x)))

The Hanoi stream can then be made by evaluating:

(define hanoi (make-hanoi-stream 1))

Try this in STk and explain the results. Hint: You have seen this question before.

B. Now let’s try a similar approach in the lazy evaluator. Although the lazy evaluator does not have
streams, it has something better: non-strict compound procedures, which allow us to implement lazy
lists. To quote SICP (Page 409), “With lazy evaluation, streams and lists can be identical, so there is
no need for special forms or for separate list and stream operations.” As shown on Page 409, implement
pairs as procedures in the lazy evaluator, thereby eliminating the need to have cons, car and cdr as
primitives. Adapt make-hanoi-stream and stream-of to create lazy lists instead of streams. You
may use this definition of interleave:

(define (interleave list1 list2)
(cons (car list1) (interleave list2 (cdr list1))))

Use the following procedure to print the first n elements of a lazy list (you will need to add display
and newline as primitives):

(define (show-lazy lst n)
(if (= n 0)

(begin (display "...") (newline))
(begin (display (car lst))

(display " ")
(show-lazy (cdr lst) (- n 1))))

’ok)

Include a short session with the lazy evaluator demonstrating that the generator function works.

68

CS61A – Homework 7.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Lazy evaluator, Analyzing evaluator, Nondeterministic evaluator

Lectures: Monday August 4, Tuesday August 5

Reading: Abelson & Sussman, Section 4.1.7–4.3.2 (Pages 393–426) skim the parsing stuff

This assignment is an evaluator potpourri, giving you practice with the lazy and nondeterministic evaluators
mostly “above the line.”

• ~cs61a/lib/lazy.scm – Lazy evaluator

• ~cs61a/lib/vambeval.scm – Nondeterministic evaluator

Please put your solutions into a file called hw7-1.scm and submit it online as usual. Include only the code
you wrote and test cases. The assignment is due at 8 PM on Sunday, August 7.

Question 1. In the lazy evaluator actual-value is called in four places: to evaluate the arguments to a
primitive procedure, to evaluate the operator in a procedure application, to print the results in the REPL
and to evaluate the predicate in a conditional. This question investigates what happens when we replace
actual-value with mc-eval in two of these. For each of the following two scenarios, describe what goes
wrong and include a brief session with the lazy evaluator that demonstrates the problem.

A. Suppose we change the application clause to use mc-eval, like this:

((application? exp)
(mc-apply (mc-eval (operator exp) env) ;; was actual-value

(operands exp)
env))

B. Suppose we change eval-if to use mc-eval, like this:

(define (eval-if exp env)
(if (true? (mc-eval (if-predicate exp) env)) ;; was actual-value

(mc-eval (if-consequent exp) env)
(mc-eval (if-alternative exp) env)))

The adventure continues on the next page.

69

Question 2. We’d like to write a nondeterministic program to crack a combination lock. Since there is
only a finite number of combinations, all it takes is time! We will represent locks as message-passing objects
created with the following procedure:

(define (make-lock combination)
(lambda (message combo)

(cond ((eq? message ’try) (if (equal? combo combination) ’open ’nice-try))
(else (error "I don’t understand " message)))))

As you can see, it’s not a very sophisticated lock; it only knows the message try, which comes with one
argument taken to be a test combination. If the test combination matches the real combination, the lock
says open; otherwise it says nice-try.

A. Your task is to write a nondeterministic program code-breaker that takes a lock and returns the
combination that opens it. Assume that a combination is a list of three elements

((left n) (right n) (left n))

where n is between 0 and 20, inclusive, and the directions are exactly as shown: left, right, left. Here
is the desired behavior:

;;; Amb-Eval input:
(define lock1 (make-lock ’((left 10) (right 14) (left 3))))

;;; Starting a new problem
;;; Amb-Eval value:
ok

;;; Amb-Eval input:
(code-breaker lock1)

;;; Starting a new problem
;;; Amb-Eval value:
((left 10) (right 14) (left 3))

B. Now let’s remove the left-right-left requirement. Combinations are still three-element lists, but the
directions can be in any order. Each of the following are valid combinations:

((left 3) (left 4) (left 5))
((right 17) (left 4) (left 15))
((right 20) (right 20) (right 20))

Modify your program from Part A to crack these locks.

70

CS61A – Homework 7.2 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Nondeterministic evaluator

Lectures: Wednesday August 6, Thursday August 7

Reading: Abelson & Sussman, Section 4.3 (Pages 412–437)

In this homework you will gain experience modifying the nondeterministic evaluator. Most of this assignment
is very much “below the line.” Two versions of the amb evaluator are available:

• ~cs61a/lib/ambeval.scm — This is the nondeterministic interpreter from the book, based on the
analyzing evaluator (which we have not covered).

• ~cs61a/lib/vambeval.scm — This is a version of the nondeterministic interpreter based on the
metacircular evaluator. This is also the version described in lecture. Most students find this one
easier to understand. (The “v” is for vanilla.)

Copy whichever version you wish to use to do the homework into a file hw7-2.scm and make all modifications
in this file. Clearly indicate what you changed. When you are done, you will have a nondeterministic
interpreter that supports quit, permanent-set!, or and if-fail. You should include test cases either in
this file (commented out), or a separate file called tests. Please put your answer to Question 1 into a file
question1.scm. Submit all files electronically. The assignment is due at 8 PM on Sunday, August 7.

All problems that ask you to add something to the nondeterministic evaluator have very short solutions.
You should not be writing a lot of code at all! Wrapping your brain around continuations is the tricky part.

Question 1. Read and complete Exercise 4.42 in SICP. This is the only “above the line” problem on the
homework.

Question 2. We’d like to be able to quit the amb evaluator at any point in the execution of a program.
Add a quit feature to the nondeterministic evaluator that immediately returns control to STk. It must be
a clean exit—don’t cause an error! The return value of quit is up to you; ours returns the string “Have
a nice day.” The following are some examples of how quit should behave; quit must exit the amb evaluator
not just from the toplevel, but from any depth in the evaluation (the bars separate different sessions with
the evaluator):

;;; Amb-Eval input:
(quit) ;; exit from toplevel

;;; Starting a new problem
"Have a nice day"

STk>

;;; Amb-Eval input:
(list 1 2 (quit) 3) ;; exit from subexpression evaluation

;;; Starting a new problem
"Have a nice day"

STk>

The question continues on the next page.

71

;;; Amb-Eval input:
(define (factorial n)

(if (= n 0)
(begin (newline) (quit)) ;; exit from arbitrarily deep recursion
(begin (display n)

(display " ")
(* n (factorial (- n 1))))))

;;; Amb-Eval input:
(factorial 14)

;;; Starting a new problem 14 13 12 11 10 9 8 7 6 5 4 3 2 1
"Have a nice day"

STk>

Hint: Remember that control flow is done via continuations in the nondeterministic evaluator. To continue
the computation you must invoke the success continuation; to backtrack you invoke the fail continuation.
What if you call neither?

Question 3. One of the really neat things about the nondeterministic evaluator is that variable assignments
are “undone” when backtracking occurs. Backtracking occurs automatically when (amb) is encountered;
it also can be forced when the user types try-again. Therefore, assignments can be undone by saying
try-again. Watch:

;;; Amb-Eval input:
(define neo 2) ;; return value omitted

;;; Amb-Eval input:
(define trinity 4)

;;; Amb-Eval input:
(define cypher 6)

;;; Amb-Eval input:
(begin (set! neo (* neo neo))

(set! trinity (* trinity trinity))
(set! cypher ’bloody-rat)
(list neo trinity cypher))

;;; Starting a new problem
;;; Amb-Eval value:
(4 16 bloody-rat) ;; clearly the assignment takes effect

;;; Amb-Eval input:
try-again ;; but it is not permanent

;;; There are no more values of ...

;;; Amb-Eval input:
(list neo trinity cypher)

;;; Starting a new problem
;;; Amb-Eval value:
(2 4 6) ;; back to their old values

Sometimes, however, we want assignments to be permanent. Add a special form permanent-set! that is
just like set! but does not get rolled back when backtracking occurs.

The question continues on the next page.

72

You can use permanent-set! to count the number of times the nondeterministic evaluator backtracks:
;;; Amb-Eval input:
(define count 0) ;; return value omitted

;;; Amb-Eval input:
(let ((x (an-element-of ’(a b c)))

(y (an-element-of ’(a b a))))
(permanent-set! count (+ 1 count))
(require (not (eq? x y)))
(list x y count))

;;; Starting a new problem
;;; Amb-Eval value:
(a b 2)

;;; Amb-Eval input
try-again

;;; Amb-Eval value:
(b a 4)

Hint: This question does not ask you to add new functionality, but to subtract from what’s already there.
Find the line(s) in eval-assignment that implement this undo effect and get rid of them. The failure
continuation is a good place to look.

Question 4. Add the or special form to the nondeterministic evaluator by writing an evaluation procedure
eval-or that handles it. Do not add or as a derived expression. As in regular Scheme, or should take
any number of arguments and return the value of the first one that is true, or #f if none are.

You should model eval-or very heavily on get-args (code from vambeval.scm):
(define (get-args exps env succeed fail)

(if (null? exps)
(succeed ’() fail)
(ambeval (car exps)

env
(lambda (arg fail2) ;; first success continuation

(get-args (cdr exps)
env
(lambda (args fail3) ;; second success continuation

(succeed (cons arg args) fail3))
fail2))

fail)))

Like list-of-values in the MCE, the job of get-args is to evaluate a sequence of Scheme expressions,
exps, and return a list of their values:
STk> (get-args ’((+ 2 3) (first ’neo) (bf ’trinity))

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

(5 n rinity)

There are two success continuations. The first one is invoked if evaluating the very first expression in the
sequence does not cause a failure; in this case, arg refers to the value of that first expression. The second one
is invoked if the remaining expressions in the sequence were evaluated without failure; in this case, args is
a list of their values. Notice how the list of values is built up in this second success continuation by consing
arg into args.

The question continues on the next page.

73

A good place to start is by adding this clause to ambeval

((or? exp) (eval-or (cdr exp) env succeed fail)) ;; cdr to strip off "or" tag

and defining eval-or to do exactly what get-args does. Of course this means that or will evaluate all of
its arguments and return a list of their results, which is not quite what we want, but it’s a start! Try it out.
Then tinker with this eval-or to make it behave as specified above. Here are some sample calls:

STk> (eval-or ’((= 2 3) (list 1 2) this-should-not-be-evaluated)
the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

(1 2)
STk> (eval-or ’((= 2 3) (amb) this-should-not-be-evaluated)

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

failed
STk> (eval-or ’()

the-global-environment
(lambda (result fail-cont) result)
(lambda () ’failed))

#f

And here is how or can be used in the interpreter:

;;; Amb-Eval input:
(or (amb 1 2 #f) ’hello)

;;; Starting a new problem
;;; Amb-Eval value:
1

;;; Amb-Eval input:
try-again

;;; Amb-Eval value:
2

;;; Amb-Eval input:
try-again

;;; Amb-Eval value:
hello

;;; Amb-Eval input:
try-again

;;; There are no more values of
(or (amb 1 2 #f) ’hello)

The assignment continues on the next page.

74

Question 5. Read and complete Exercise 4.52 in the book. This question is more difficult than the others
since you’ll need to come up with the if-fail special form from scratch. Assuming your function for
handling if-fail is called eval-if-fail and takes the entire expression as argument, here is how you
might test it in isolation:

STk> (eval-if-fail ’(if-fail (amb) ’hello)
the-global-environment
(lambda (result new-fail) result)
(lambda () ’failed))

hello
STk> (eval-if-fail ’(if-fail (amb) (amb))

the-global-environment
(lambda (result new-fail) result)
(lambda () ’failed))

failed

Hint: To make something happen on failure, you must put it into the fail continuation.

75

CS61A – Homework 8.1 Kurt Meinz
University of California, Berkeley Summer 2005

Topic: Logic programming

Lectures: Monday August 11, Tuesday August 12

Reading: Abelson & Sussman, Section 4.4.1–3

This assignment gives you practice writing logic programs. It’s very much “above the line” since we don’t
expect you to know how the query system works. This homework is due at midnight on Wednesday,
August 10. Please put your solutions into a file hw8-1.scm and submit electronically. Make sure to include
your test cases, too.

To add an assertion: (assert! <conclusion>)

To add a rule: (assert! (rule <conclusion> <body (optional)>))

Anything else is a query.

The query interpreter is in the file ~cs61a/lib/query.scm. To initialize the interpreter type (query); to
re-enter the main loop without reinitializing, type (query-driver-loop). Nothing—not even the rules for
the same and append-to-form relations—is there when the interpreter is initialized.

Question 1. Do Exercise 4.56 in SICP. To load the database, type the following after loading query.scm:

STk> (initialize-data-base microshaft-data-base)
STk> (query-driver-loop)

The pattern (?a . ?b) matches any pair, so you can use it to print everything that is in the database.

Question 2. This question explores the unary arithmetic system described in lecture where numbers are
represented as lists.

A. Note that summing two of these unary numbers merely involves joining the lists that represent them.
We can define a rule for adding query numbers using append-to-form (Page 451):

;;; Query input:
(assert! (rule (?a + ?b = ?c) (append-to-form ?a ?b ?c)))

Assertion added to data base.

;;; Query input:
((a a a a) + (a a a) = ?what)

;;; Query results:
((a a a a) + (a a a) = (a a a a a a a)) ;; 4 + 3 = 7

Devise rules to allow multiplication of query numbers:

;;; Query input:
((a a a a) * (a a a) = ?what)

;;; Query results:
((a a a a) * (a a a) = (a a a a a a a a a a a a)) ;; 4 * 3 = 12

The question continues on the next page.

76

B. Using your multiplication rule from above, implement a factorial relation for query numbers:

;;; Query input:
((a a a a) ! = ?what)

;;; Query output:
((a a a a) ! = (a a)) ;; 4! = 24

Question 3. We can interpret the query interpreter’s failure to return any results as saying, “Your query
was not consistent with any assertions I know or any rules I can apply on the basis of those assertions.” This
can be used to implement true/false queries where the interpreter echoes the query if it is true and displays
no results otherwise. For example:

;;; Query input:
(deep-member a ((a) b))

;;; Query output:
(deep-member a ((a) b)) ;; true

;;; Query input:
(deep-member c ((b ((a)))))

;;; Query output:
;; false

;;; Query input:
(deep-member c ((b ((a c)))))

;;; Query output:
(deep-member c ((b ((a c)))))
;;; Query input:
(deep-member ?anything ())

;;; Query output:
;; false

Write rules for the deep-member relation that behaves as above.

Question 4. Write query rules for the assoc relation. It should work like this:

;;; Query input:
(assoc carolen ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) ?what)

;;; Query results:
(assoc carolen ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) (carolen 10))

;;; Query input:
(assoc todd ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) ?what)

;;; Query results:
;; no results!

Notice that the first sublist beginning with carolen is brought forth. The query should run backward, too:

;;; Query input:
(assoc ?who ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) (?who 10))

;;; Query results:
(assoc greg ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) (greg 10))
(assoc carolen ((greg 10) (kurt 12) (carolen 10) (alex 13) (carolen 15)) (carolen 10))

77

CS 61A Lecture Notes First Half of Week 1

Topic: Functional programming

Reading: Abelson & Sussman, Section 1.1 (pages 1–31)

Course overview:

Computer science isn’t about computers (that’s electrical engineering) and it isn’t primarily a science (we
invent things more than we discover them). CS is partly a form of engineering (concerned with building
reliable, efficient mechanisms, but in software instead of metal) and partly an art form (using programming
as a medium for creative expression). Most of all, however, CS is applied logic. At its best, CS is like getting
logic and math to do interesting and useful things for you.

Programming is really easy, as long as you’re solving small problems. Any kid in junior high school can
write programs in BASIC, and not just exercises, either; kids do quite interesting and useful things with
computers. But BASIC doesn’t scale up; once the problem is so complicated that you can’t keep it all in
your head at once, you need help, in the form of more powerful ways of thinking about programming. (But in
this course we mostly use small examples, because we’d never get finished otherwise, so you have to imagine
how you think each technique would work out in a larger case.)

We deal with four big programming styles/approaches/paradigms:
• Functional programming (1 month)

• Object-oriented programming (1 weeks)

• Non-deterministic programming (1 week)

• Logic programming (1 week)

The big idea of the course is abstraction: inventing languages that let us talk more nearly in a problem’s own
terms and less in terms of the computer’s mechanisms or capabilities. There is a hierarchy of abstraction in
computing:

Application programs
High-level language (Scheme)
Low-level language (C)
Machine language Architecture (registers, memory, etc)
Circuit elements (gates)
Transistors
Solid-state physics quantum mechanics

In 61A, we’ll be dealing with only the very top levels of the pyramid; in 61C we look at lower levels. We
want to start at the highest level to get you thinking right and help you avoid getting lost in the details.

Style of work: Cooperative learning. No grading curve, so no need to compete. Homework is to learn
from; only tests are to test you. Don’t cheat; ask for help instead. (This is the first CS course; if you’re
tempted to cheat now, how are you planning to get through the harder ones?)

78

Introducing ... Scheme

In 61A we program in Scheme, which is an interactive language. That means that instead of writing a great
big program and then cranking it through all at once, you can type in a single expression and find out its
value. For example:
3 self-evaluating
(+ 2 3) function notation
(sqrt 16) names don’t have to be punctuation
(+ (* 3 4) 5) composition of functions

+ functions are things in themselves
’+ quoting
’hello can quote any word
’(+ 2 3) can quote any expression
’(good morning) even non-expression sentences

(first 274) functions don’t have to be arithmetic
(butfirst 274) (abbreviation bf)
(first ’hello) works for non-numbers
(first hello) reminder about quoting
(first (bf ’hello)) composition of non-numeric functions
(+ (first 23) (last 45)) combining numeric and non-numeric

(define pi 3.14159) special form
pi value of a symbol
’pi contrast with quoted symbol
(+ pi 7) symbols work in larger expressions
(* pi pi)

(define (square x)
(* x x)) defining a function

(square 5) invoking the function
(square (+ 2 3)) composition with defined functions

Terminology: the formal parameter is the name of the argument (x); the actual argument expression is the
expression used in the invocation ((+ 2 3)); the actual argument value is the value of the argument in the
invocation (5). The argument’s name comes from the function’s definition; the argument’s value comes from
the invocation.

79

Examples:

(define (plural wd)
(word wd ’s))

This simple plural works for lots of words (book, computer, elephant) but not for words that end in y (fly,
spy). So we improve it:

;;;;; In file cs61a/lectures/1.1/plural.scm
(define (plural wd)

(if (equal? (last wd) ’y)
(word (bl wd) ’ies)
(word wd ’s)))

If is a special form that only evaluates one of the alternatives.

Pig Latin: Move initial consonants to the end of the word and append “ay”; SCHEME becomes EMESCHAY.

;;;;; In file cs61a/lectures/1.1/pigl.scm
(define (pigl wd)

(if (pl-done? wd)
(word wd ’ay)
(pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)
(vowel? (first wd)))

(define (vowel? letter)
(member? letter ’(a e i o u)))

Pigl introduces recursion—a function that invokes itself. More about how this works later in the week.

Another example: Remember how to play Buzz? You go around the circle counting, but if your number is
divisible by 7 or has a digit 7 you have to say “buzz” instead:

;;;;; In file cs61a/lectures/1.1/buzz.scm
(define (buzz n)

(cond ((equal? (remainder n 7) 0) ’buzz)
((member? 7 n) ’buzz)
(else n)))

This introduces the cond special form for multi-way choices.

Cond is the big exception to the rule about the meaning of parentheses; the clauses aren’t invocations.

80

Functions.

• A function can have any number of arguments, including zero, but must have exactly one return value.
(Suppose you want two? You combine them into one, e.g., in a sentence.) It’s not a function unless you
always get the same answer for the same arguments.

• Why does that matter? If each little computation is independent of the past history of the overall
computation, then we can reorder the little computations. In particular, this helps cope with parallel
processors.

• The function definition provides a formal parameter (a name), and the function invocation provides an
actual argument (a value). These fit together like pieces of a jigsaw puzzle. Don’t write a “function” that
only works for one particular argument value!

• Instead of a sequence of events, we have composition of functions, like f(g(x)) in high school algebra. We
can represent this visually with function machines and plumbing diagrams.

Recursion:

;;;;; In file cs61a/lectures/1.1/argue.scm
> (argue ’(i like spinach))
(i hate spinach)
> (argue ’(broccoli is awful))
(broccoli is great)

(define (argue s)
(if (empty? s)

’()
(se (opposite (first s))

(argue (bf s)))))

(define (opposite w)
(cond ((equal? w ’like) ’hate)

((equal? w ’hate) ’like)
((equal? w ’wonderful) ’terrible)
((equal? w ’terrible) ’wonderful)
((equal? w ’great) ’awful)
((equal? w ’awful) ’great)
((equal? w ’terrific) ’yucky)
((equal? w ’yucky) ’terrific)
(else w)))

This computes a function (the opposite function) of each word in a sentence. It works by dividing the
problem for the whole sentence into two subproblems: an easy subproblem for the first word of the sentence,
and another subproblem for the rest of the sentence. This second subproblem is just like the original problem,
but for a smaller sentence.

We can take pigl from last lecture and use it to translate a whole sentence into Pig Latin:
(define (pigl-sent s)

(if (empty? s)
’()
(se (pigl (first s))

(pigl-sent (bf s)))))

The structure of pigl-sent is a lot like that of argue. This common pattern is called mapping a function

81

over a sentence.

Not all recursion follows this pattern. Each element of Pascal’s triangle is the sum of the two numbers above
it:

(define (pascal row col)
(cond ((= col 0) 1)

((= col row) 1)
(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col)))))

82

Normal vs. applicative order.

To illustrate this point we use a modified Scheme evaluator that lets us show the process of applicative or
normal order evaluation. We define functions using def instead of define. Then, we can evaluate expressions
using (applic (...)) for applicative order or (normal (...)) for normal order. (Never mind how this
modified evaluator itself works! Just take it on faith and concentrate on the results that it shows you.)

In the printed results, something like

(* 2 3) ==> 6

indicates the ultimate invocation of a primitive function. But

(f 5 9) ---->
(+ (g 5) 9)

indicates the substitution of actual arguments into the body of a function defined with def. (Of course,
whether actual argument values or actual argument expressions are substituted depends on whether you
used applic or normal, respectively.)

> (load "lectures/1.1/order.scm")
> (def (f a b) (+ (g a) b)) ; define a function
f
> (def (g x) (* 3 x)) ; another one
g
> (applic (f (+ 2 3) (- 15 6))) ; show applicative-order evaluation

(f (+ 2 3) (- 15 6))
(+ 2 3) ==> 5
(- 15 6) ==> 9

(f 5 9) ---->
(+ (g 5) 9)

(g 5) ---->
(* 3 5) ==> 15

(+ 15 9) ==> 24
24
> (normal (f (+ 2 3) (- 15 6))) ; show normal-order evaluation

(f (+ 2 3) (- 15 6)) ---->
(+ (g (+ 2 3)) (- 15 6))

(g (+ 2 3)) ---->
(* 3 (+ 2 3))

(+ 2 3) ==> 5
(* 3 5) ==> 15
(- 15 6) ==> 9

(+ 15 9) ==> 24 ; Same result, different process.
24

(continued on next page)

83

> (def (zero x) (- x x)) ; This function should always return 0.
zero
> (applic (zero (random 10)))

(zero (random 10))
(random 10) ==> 5

(zero 5) ---->
(- 5 5) ==> 0
0 ; Applicative order does return 0.

> (normal (zero (random 10)))

(zero (random 10)) ---->
(- (random 10) (random 10))

(random 10) ==> 4
(random 10) ==> 8

(- 4 8) ==> -4
-4 ; Normal order doesn’t.

The rule is that if you’re doing functional programming, you get the same answer regardless of order of
evaluation. Why doesn’t this hold for (zero (random 10))? Because it’s not a function! Why not?

Efficiency: Try computing

(square (square (+ 2 3)))

in normal and applicative order. Applicative order is more efficient because it only adds 2 to 3 once, not
four times. (But later in the semester we’ll see that sometimes normal order is more efficient.)

Note that the reading for the second half of the week is section 1.3, skipping 1.2 for the time
being.

84

CS 61A Lecture Notes Second Half of Week 1

Topic: Higher-order procedures

Reading: Abelson & Sussman, Section 1.3

Note that we are skipping 1.2; we’ll get to it later. Because of this, never mind for now the stuff about
iterative versus recursive processes in 1.3 and in the exercises from that section.

We’re all done teaching you the syntax of Scheme; from now on it’s all big ideas!

This lecture’s big idea is function as object (that is, being able to manipulate functions as data) as opposed
to the more familiar view of function as process, in which there is a sharp distinction between program and
data.

The usual metaphor for function as process is a recipe. In that metaphor, the recipe tells you what to do,
but you can’t eat the recipe; the food ingredients are the “real things” on which the recipe operates. But
this week we take the position that a function is just as much a “real thing” as a number or text string is.

Compare the derivative in calculus: It’s a function whose domain and range are functions, not numbers.
The derivative function treats ordinary functions as things, not as processes. If an ordinary function is a
meat grinder (put numbers in the top and turn the handle) then the derivative is a “metal grinder” (put
meat-grinders in the top...).

• Using functions as arguments.

Arguments are used to generalize a pattern. For example, here is a pattern:

;;;;; In file cs61a/lectures/1.3/general.scm
(define pi 3.141592654)

(define (square-area r) (* r r))

(define (circle-area r) (* pi r r))

(define (sphere-area r) (* 4 pi r r))

(define (hexagon-area r) (* (sqrt 3) 1.5 r r))

In each of these procedures, we are taking the area of some geometric figure by multiplying some constant
times the square of a linear dimension (radius or side). Each is a function of one argument, the linear
dimension. We can generalize these four functions into a single function by adding an argument for the
shape:

;;;;; In file cs61a/lectures/1.3/general.scm
(define (area shape r) (* shape r r))

(define square 1)
(define circle pi)
(define sphere (* 4 pi))
(define hexagon (* (sqrt 3) 1.5))

We define names for shapes; each name represents a constant number that is multiplied by the square of the
radius.

85

In the example about areas, we are generalizing a pattern by using a variable number instead of a constant
number. But we can also generalize a pattern in which it’s a function that we want to be able to vary:
;;;;; In file cs61a/lectures/1.3/general.scm
(define (sumsquare a b)

(if (> a b)
0
(+ (* a a) (sumsquare (+ a 1) b))))

(define (sumcube a b)
(if (> a b)

0
(+ (* a a a) (sumcube (+ a 1) b))))

Each of these functions computes the sum of a series. For example, (sumsquare 5 8) computes 52 + 62 +
72 + 82. The process of computing each individual term, and of adding the terms together, and of knowing
where to stop, are the same whether we are adding squares of numbers or cubes of numbers. The only
difference is in deciding which function of a to compute for each term. We can generalize this pattern by
making the function be an additional argument, just as the shape number was an additional argument to
the area function:
(define (sum fn a b)

(if (> a b)
0
(+ (fn a) (sum fn (+ a 1) b))))

Here is one more example of generalizing a pattern involving functions:
;;;;; In file cs61a/lectures/1.3/filter.scm
(define (evens nums)

(cond ((empty? nums) ’())
((= (remainder (first nums) 2) 0)
(se (first nums) (evens (bf nums))))

(else (evens (bf nums)))))

(define (ewords sent)
(cond ((empty? sent) ’())

((member? ’e (first sent))
(se (first sent) (ewords (bf sent))))

(else (ewords (bf sent)))))

(define (pronouns sent)
(cond ((empty? sent) ’())

((member? (first sent) ’(I me you he she it him her we us they them))
(se (first sent) (pronouns (bf sent))))

(else (pronouns (bf sent)))))

Each of these functions takes a sentence as its argument and filters the sentence to return a smaller sentence
containing only some of the words in the original, according to a certain criterion: even numbers, words that
contain the letter e, or pronouns. We can generalize by writing a filter function that takes a predicate
function as an additional argument.
(define (filter pred sent)

(cond ((empty? sent) ’())
((pred (first sent)) (se (first sent) (filter pred (bf sent))))
(else (filter pred (bf sent)))))

86

• Unnamed functions.

Suppose we want to compute
sin2 5 + sin2 6 + sin2 7 + sin2 8

We can use the generalized sum function this way:

> (define (sinsq x) (* (sin x) (sin x)))
> (sum sinsq 5 8)
2.408069916229755

But it seems a shame to have to define a named function sinsq that (let’s say) we’re only going to use this
once. We’d like to be able to represent the function itself as the argument to sum, rather than the function’s
name. We can do this using lambda:

> (sum (lambda (x) (* (sin x) (sin x))) 5 8)
2.408069916229755

Lambda is a special form; the formal parameter list obviously isn’t evaluated, but the body isn’t evaluated
when we see the lambda, either—only when we invoke the function can we evaluate its body.

• First-class data types.

A data type is considered first-class in a language if it can be
• the value of a variable (i.e., named)

• an argument to a function

• the return value from a function

• a member of an aggregate

In most languages, numbers are first-class; perhaps text strings (or individual text characters) are first-class;
but usually functions are not first-class. In Scheme they are. So far we’ve seen the first two properties; we’re
about to look at the third. (We haven’t really talked about aggregates yet, except for the special case of
sentences, but we’ll see in chapter 2 that functions can be elements of aggregates.) It’s one of the design
principles of Scheme that everything in the language should be first-class. Later, when we write a Scheme
interpreter in Scheme, we’ll see how convenient it is to be able to treat Scheme programs as data.

• Functions as return values.

(define (compose f g) (lambda (x) (f (g x))))
(define (twice f) (compose f f))
(define (make-adder n) (lambda (x) (+ x n)))

The derivative is a function whose domain and range are functions.

People who’ve programmed in Pascal might note that Pascal allows functions as arguments, but not functions
as return values. That’s because it makes the language harder to implement; you’ll learn more about this in
164.

87

• Let.

We write a function that returns a sentence containing the two roots of the quadratic equation ax2+bx+c = 0
using the formula

x =
−b±√b2 − 4ac

2a

(We assume, to simplify this presentation, that the equation has two real roots; a more serious program
would check this.)

;;;;; In file cs61a/lectures/1.3/roots.scm
(define (roots a b c)

(se (/ (+ (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a))
(/ (- (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a))))

This works fine, but it’s inefficient that we have to compute the square root twice. We’d like to avoid that
by computing it once, giving it a name, and using that name twice in figuring out the two solutions. We
know how to give something a name by using it as an argument to a function:

;;;;; In file cs61a/lectures/1.3/roots.scm
(define (roots a b c)

(define (roots1 d)
(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a))))
(roots1 (sqrt (- (* b b) (* 4 a c)))))

Roots1 is an internal helper function that takes the value of the square root in the formula as its argument
d. Roots calls roots1, which constructs the sentence of two numbers.

This does the job, but it’s awkward having to make up a name roots1 for this function that we’ll only use
once. As in the sum example earlier, we can use lambda to make an unnamed function:

;;;;; In file cs61a/lectures/1.3/roots.scm
(define (roots a b c)

((lambda (d)
(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a))))
(sqrt (- (* b b) (* 4 a c)))))

This does exactly what we want. The trouble is, although it works fine for the computer, it’s a little hard for
human beings to read. The connection between the name d and the sqrt expression that provides its value
isn’t obvious from their positions here, and the order in which things are computed isn’t the top-to-bottom
order of the expression. Since this is something we often want to do, Scheme provides a more convenient
notation for it:

;;;;; In file cs61a/lectures/1.3/roots.scm
(define (roots a b c)

(let ((d (sqrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) d) (* 2 a))

(/ (- (- b) d) (* 2 a)))))

Now we have the name next to the value, and we have the value of d being computed above the place
where it’s used. But you should remember that let does not provide any new capabilities; it’s merely an
abbreviation for a lambda and an invocation of the unnamed function.

88

The unnamed function implied by the let can have more than one argument:

;;;;; In file cs61a/lectures/1.3/roots.scm
(define (roots a b c)

(let ((d (sqrt (- (* b b) (* 4 a c))))
(-b (- b))
(2a (* 2 a)))

(se (/ (+ -b d) 2a)
(/ (- -b d) 2a))))

Two cautions: (1) These are not long-term “assignment statements” such as you may remember from other
languages. The association between names and values only holds while we compute the body of the let.
(2) If you have more than one name-value pair, as in this last example, they are not computed in sequence!
Later ones can’t depend on earlier ones. They are all arguments to the same function; if you translate back
to the underlying lambda-and-application form you’ll understand this.

Another point of interest: Please note how, by using a language with first-class functions, we can construct
local variables. We say, in this case, that the expressive power of first-class functions includes the ability
to construct local variables. Indeed, the notion that first-class unnamed procedures give us other types of
functionality ”for free” will be a recurring theme of this course.

89

CS 61A Lecture Notes First Half of Week 2

Topic: Recursion and iteration

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (pages 31–72)

The next two lectures are about efficiency. Mostly in 61A we don’t care about that; it becomes a focus of
attention in 61B. In 61A we’re happy if you can get a program working at all, except for the next 2 lectures,
when we introduce ideas that will be more important to you later.

We want to know about the efficiency of algorithms, not of computer hardware. So instead of measuring
runtime in microseconds or whatever, we ask about the number of times some primitive (fixed-time) operation
is performed. Example:

;;;;; In file cs61a/lectures/1.2/growth.scm
(define (square x) (* x x))

(define (squares sent)
(if (empty? sent)

’()
(se (square (first sent))

(squares (bf sent)))))

To estimate the efficiency of this algorithm, we can ask, “if the sentence has N numbers in it, how many
multiplications do we perform?” The answer is that we do one multiplication for each number in the
argument, so we do N altogether. The amount of time needed should roughly double if the number of
numbers doubles.

Another example:

;;;;; In file cs61a/lectures/1.2/growth.scm
(define (sort sent)

(if (empty? sent)
’()
(insert (first sent)

(sort (bf sent)))))

(define (insert num sent)
(cond ((empty? sent) (se num sent))

((< num (first sent)) (se num sent))
(else (se (first sent) (insert num (bf sent))))))

Here we are sorting a bunch of numbers by comparing them against each other. If there are N numbers,
how many comparisons do we do?

Well, if there are K numbers in the argument to insert, how many comparisons does it do? K of them.
How many times do we call insert? N times. But it’s a little tricky because each call to insert has a
different length sentence. The range is from 0 to N − 1. So the total number of comparisons is actually

0 + 1 + 2 + · · ·+ (N − 2) + (N − 1)

which turns out to be 1
2N(N − 1). For large N , this is roughly equal to 1

2N2. If the number of numbers
doubles, the time required should quadruple.

That constant factor of 1
2 isn’t really very important, since we don’t really know what we’re halving—that

is, we don’t know exactly how long it takes to do one comparison. If we want a very precise measure of
how many microseconds something will take, then we have to worry about the constant factors, but for an

90

overall sense of the nature of the algorithm, what counts is the N2 part. If we double the size of the input
to a program, how does that affect the running time?

We use “Big O” notation to express this sort of approximation. We say that the running time of the sort
function is O(N2) while the running time of the squares function is O(N). The formal definition is

f(x) = O(g(x)) ⇔ ∃k, N | ∀x > N, |f(x)| ≤ k · |g(x)|

What does all this mean? Basically that one function is always less than another function (e.g., the time
for your program to run is less than x2) except that we don’t care about constant factors (that’s what the
k means) and we don’t care about small values of x (that’s what the N means).

Why don’t we care about small values of x? Because for small inputs, your program will be fast enough
anyway. Let’s say one program is 1000 times faster than another, but one takes a millisecond and the other
takes a second. Big deal.

Why don’t we care about constant factors? Because for large inputs, the constant factor will be drowned
out by the order of growth—the exponent in the O(xi) notation. Here is an example taken from the book
Programming Pearls by Jon Bentley (Addison-Wesley, 1986). He ran two different programs to solve the
same problem. One was a fine-tuned program running on a Cray supercomputer, but using an O(N3)
algorithm. The other algorithm was run on a Radio Shack microcomputer, so its constant factor was several
million times bigger, but the algorithm was O(N). For small N the Cray was much faster, but for small N
both computers solved the problem in less than a minute. When N was large enough for the problem to
take a few minutes or longer, the Radio Shack computer’s algorithm was faster.

;;;;; In file cs61a/lectures/1.2/bentley

t1(N) = 3.0 N3 t2(N) = 19,500,000 N

N CRAY-1 Fortran TRS-80 Basic

10 3.0 microsec 200 millisec
100 3.0 millisec 2.0 sec

1000 3.0 sec 20 sec
10000 49 min 3.2 min
100000 35 days 32 min

1000000 95 yrs 5.4 hrs

Typically, the algorithms you run across can be grouped into four categories according to their order of
growth in time required. The first category is searching for a particular value out of a collection of values,
e.g., finding someone’s telephone number. The most obvious algorithm (just look through all the values until
you find the one you want) is O(N) time, but there are smarter algorithms that can work in O(log N) time
or even in O(1) (that is, constant) time. The second category is sorting a bunch of values into some standard
order. (Many other problems that are not explicitly about sorting turn out to require similar approaches.)
The obvious sorting algorithms are O(N2) and the clever ones are O(N log N). A third category includes
relatively obscure problems such as matrix multiplication, requiring O(N3) time. Then there is an enormous
jump to the really hard problems that require O(2N) or even O(N !) time; these problems are effectively not
solvable for values of N greater than one or two dozen. (Inventing faster computers won’t help; if the speed
of your computer doubles, that just adds 1 to the largest problem size you can handle!) Trying to find faster
algorithms for these intractable problems is a current hot research topic in computer science.

91

• Iterative processes
So far we’ve been talking about time efficiency, but there is also memory (space) efficiency. This has gotten
less important as memory has gotten cheaper, but it’s still somewhat relevant because using a lot of memory
increases swapping (not everything fits at once) and so indirectly takes time.
The immediate issue for today is the difference between a linear recursive process and an iterative process.

;;;;; In file cs61a/lectures/1.2/count.scm
(define (count sent)

(if (empty? sent)
0
(+ 1 (count (bf sent)))))

This function counts the number of words in a sentence. It takes O(N) time. It also requires O(N) space,
not counting the space for the sentence itself, because Scheme has to keep track of N pending computations
during the processing:

(count ’(i want to hold your hand))
(+ 1 (count ’(want to hold your hand)))
(+ 1 (+ 1 (count ’(to hold your hand))))
(+ 1 (+ 1 (+ 1 (count ’(hold your hand)))))
(+ 1 (+ 1 (+ 1 (+ 1 (count ’(your hand))))))
(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (count ’(hand)))))))
(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (count ’())))))))
(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 0))))))
(+ 1 (+ 1 (+ 1 (+ 1 (+ 1 1)))))
(+ 1 (+ 1 (+ 1 (+ 1 2))))
(+ 1 (+ 1 (+ 1 3)))
(+ 1 (+ 1 4))
(+ 1 5)
6

When we get halfway through this chart and compute (count ’()), we aren’t finished with the entire
problem. We have to remember to add 1 to the result six times. Each of those remembered tasks requires
some space in memory until it’s finished.
Here is a more complicated program that does the same thing differently:

;;;;; In file cs61a/lectures/1.2/count.scm
(define (count sent)

(define (iter wds result)
(if (empty? wds)

result
(iter (bf wds) (+ result 1))))

(iter sent 0))

This time, we don’t have to remember uncompleted tasks; when we reach the base case of the recursion, we
have the answer to the entire problem:

(count ’(i want to hold your hand))
(iter ’(i want to hold your hand) 0)
(iter ’(want to hold your hand) 1)
(iter ’(to hold your hand) 2)
(iter ’(hold your hand) 3)
(iter ’(your hand) 4)
(iter ’(hand) 5)
(iter ’() 6)
6

92

When a process has this structure, Scheme does not need extra memory to remember all the unfinished tasks
during the computation.

This is really not a big deal. For the purposes of this course, you should generally use the simpler linear-
recursive structure and not try for the more complicated iterative structure; the efficiency savings is not
worth the increased complexity. The reason Abelson and Sussman make a fuss about it is that in other
programming languages any program that is recursive in form (i.e., in which a function invokes itself) will
take (at least) linear space even if it could theoretically be done iteratively. These other languages have
special iterative syntax (for, while, and so on) to avoid recursion. In Scheme you can use the function-
calling mechanism and still achieve an iterative process.

• More is less: non-obvious efficiency improvements.

The nth row of Pascal’s triangle contains the constant coefficients of the terms of (a + b)n. Each number
in Pascal’s triangle is the sum of the two numbers above it. So we can write a function to compute these
numbers:

;;;;; In file cs61a/lectures/1.2/pascal.scm
(define (pascal row col)

(cond ((= col 0) 1)
((= col row) 1)
(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col)))))

This program is very simple, but it takes O(2n) time! [Try some examples. Row 18 is already getting slow.]

Instead we can write a more complicated program that, on the surface, does a lot more work because it
computes an entire row at a time instead of just the number we need:

;;;;; In file cs61a/lectures/1.2/pascal.scm
(define (new-pascal row col)

(nth col (pascal-row row)))

(define (pascal-row row-num)
(define (iter in out)

(if (empty? (bf in))
out
(iter (bf in) (se (+ (first in) (first (bf in))) out))))

(define (next-row old-row num)
(if (= num 0)

old-row
(next-row (se 1 (iter old-row ’(1))) (- num 1))))

(next-row ’(1) row-num))

This was harder to write, and seems to work harder, but it’s incredibly faster because it’s O(N2).

The reason is that the original version computed lots of entries repeatedly. The new version computes a few
unnecessary ones, but it only computes each entry once.

Moral: When it really matters, think hard about your algorithm instead of trying to fine-tune a few mi-
croseconds off the obvious algorithm.

93

CS 61A Lecture Notes Second Half of Week 2

Topic: Data abstraction

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (pages 79–106)

• Big ideas: data abstraction, abstraction barrier.

If we are dealing with some particular type of data, we want to talk about it in terms of its meaning, not in
terms of how it happens to be represented in the computer.

Example: Here is a function that computes the total point score of a hand of playing cards. (This simplified
function ignores the problem of cards whose rank-name isn’t a number.)

;;;;; In file cs61a/lectures/2.1/total.scm
(define (total hand)

(if (empty? hand)
0
(+ (butlast (last hand))

(total (butlast hand)))))

> (total ’(3h 10c 4d))
17

This function calls butlast in two places. What do those two invocations mean? Compare it with a modified
version:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (total hand)

(if (empty? hand)
0
(+ (rank (one-card hand))

(total (remaining-cards hand)))))

(define rank butlast)
(define suit last)

(define one-card last)
(define remaining-cards butlast)

This is more work to type in, but the result is much more readable. If for some reason we wanted to modify
the program to add up the cards left to right instead of right to left, we’d have trouble editing the original
version because we wouldn’t know which butlast to change. In the new version it’s easy to keep track of
which function does what.

The auxiliary functions like rank are called selectors because they select one component of a multi-part
datum.

94

Actually we’re violating the data abstraction when we type in a hand of cards as ’(3h 10c 4d) because
that assumes we know how the cards are represented—namely, as words combining the rank number with
a one-letter suit. If we want to be thorough about hiding the representation, we need constructor functions
as well as the selectors:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (make-card rank suit)

(word rank (first suit)))

(define make-hand se)

> (total (make-hand (make-card 3 ’heart)
(make-card 10 ’club)
(make-card 4 ’diamond)))

17

Once we’re using data abstraction we can change the implementation of the data type without affecting the
programs that use that data type. This means we can change how we represent a card, for example, without
rewriting total:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (make-card rank suit)

(cond ((equal? suit ’heart) rank)
((equal? suit ’spade) (+ rank 13))
((equal? suit ’diamond) (+ rank 26))
((equal? suit ’club) (+ rank 39))
(else (error "say what?"))))

(define (rank card)
(remainder card 13))

(define (suit card)
(nth (quotient card 13) ’(heart spade diamond club)))

We have changed the internal representation so that a card is now just a number between 1 and 52 (why?
maybe we’re programming in FORTRAN) but we haven’t changed the behavior of the program at all. We
still call total the same way.

Data abstraction is a really good idea because it helps keep you from getting confused when you’re dealing
with lots of data types, but don’t get religious about it. For example, we have invented the sentence data type
for this course. We have provided symmetric selectors first and last, and symmetric selectors butfirst
and butlast. You can write programs using sentences without knowing how they’re implemented. But it
turns out that because of the way they are implemented, first and butfirst take O(1) time, while last
and butlast take O(N) time. If you know that, your programs will be faster.

• Pairs.

To represent data types that have component parts (like the rank and suit of a card), you have to have
some way to aggregate information. Many languages have the idea of an array that groups some number of
elements. In Lisp the most basic aggregation unit is the pair—two things combined to form a bigger thing.
If you want more than two parts you can hook a bunch of pairs together; we’ll discuss this more next week.

The constructor for pairs is CONS; the selectors are CAR and CDR.

95

The book uses pairs to represent many different abstract data types: rational numbers (numerator and
denominator), complex numbers (real and imaginary parts), points (x and y coordinates), intervals (low and
high bounds), and line segments (two endpoints). Notice that in the case of line segments we think of the
representation as one pair containing two points, not as three pairs containing four numbers. (That’s what
it means to respect a data abstraction.)

Note: What’s the difference between these two:

(define (make-rat num den) (cons num den))
(define make-rat cons)

They are both equally good ways to implement a constructor for an abstract data type. The second way
has a slight speed advantage (one fewer function call) but the first way has a debugging advantage because
you can trace make-rat without tracing all invocations of cons.

• Data aggregation doesn’t have to be primitive.

In most languages the data aggregation mechanism (the array or whatever) seems to be a necessary part of
the core language, not something you could implement as a user of the language. But if we have first-class
functions we can use a function to represent a pair:

;;;;; In file cs61a/lectures/2.1/cons.scm
(define (cons x y)

(lambda (which)
(cond ((equal? which ’car) x)

((equal? which ’cdr) y)
(else (error "Bad message to CONS" message)))))

(define (car pair)
(pair ’car))

(define (cdr pair)
(pair ’cdr))

This is like the version in the book except that they use 0 and 1 as the messages because they haven’t
introduced quoted words yet. This version makes it a little clearer what the argument named which means.

The point is that we can satisfy ourselves that this version of cons, car, and cdr works in the sense that if
we construct a pair with this cons we can extract its two components with this car and cdr. If that’s true,
we don’t need to have pairs built into the language! All we need is lambda and we can implement the rest
ourselves. (It isn’t really done this way, in real life, for efficiency reasons, but it’s neat that it could be.)

96

• Big idea: abstract data type sequence (or list).

We want to represent an ordered sequence of things. (They can be any kind of things.) We implement
sequences using pairs, with each car pointing to an element and each cdr pointing to the next pair.

What should the constructors and selectors be? The most obvious thing is to have a constructor list that
takes any number of arguments and returns a list of those arguments, and a selector nth that takes a number
and a list as arguments, returning the nth element of the list.

Scheme does provide those, but it often turns out to be more useful to select from a list differently, with a
selector for the first element and a selector for all the rest of the elements (i.e., a smaller list). This helps us
write recursive functions such as the mapping and filtering ones we saw for sentences earlier.

Since we are implementing lists using pairs, we ought to have specially-named constructors and selectors for
lists, just like for rational numbers:

(define adjoin cons)
(define first car)
(define rest cdr)

Many Lisp systems do in fact provide first and rest as synonyms for car and cdr, but the fact is that this
particular data abstraction is commonly violated; we just use the names car, cdr, and cons to talk about
lists.

This abstract data type has a special status in the Scheme interpreter itself, because lists are read and printed
using a special notation. If Scheme knew only about pairs, and not about lists, then when we construct the
list (1 2 3) it would print as (1 . (2 .(3 . ()))) instead.

• Lists vs. sentences.

We started out the semester using an abstract data type called sentence that looks a lot like a list. What’s
the difference, and why did we do it that way?

Our goal was to allow you to create aggregates of words without having to think about the structure of their
internal representation (i.e., about pairs). We do this by deciding that the elements of a sentence must be
words (not sublists), and enforcing that by giving you the constructor sentence that creates only sentences.

Example: One of the homework problems for this problem set asks you to reverse a list. You’ll see that this
is a little tricky using cons, car, and cdr as the problem asks, but it’s easy for sentences:

(define (reverse sent)
(if (empty? sent)

’()
(se (reverse (bf sent)) (first sent))))

97

To give you a better idea about what a sentence is, here’s a version of the constructor function:

;;;;; In file cs61a/lectures/2.2/sentence.scm
(define (se a b)

(cond ((word? a) (se (list a) b))
((word? b) (se a (list b)))
(else (append a b))))

(define (word? x)
(or (symbol? x) (number? x)))

Se is a lot like append, except that the latter behaves oddly if given words as arguments. Se can accept
words or sentences as arguments.

• Box and pointer diagrams.

Here are a few details that people sometimes get wrong about them:

1. An arrow can’t point to half of a pair. If an arrowhead touches a pair, it’s pointing to the entire pair,
and it doesn’t matter exactly where the arrowhead touches the rectangle. If you see something like

(define x (car y))

where y is a pair, the arrow for x should point to the thing that the car of y points to, not to the left half
of the y rectangle.

2. The direction of arrows (up, down, left, right) is irrelevant. You can draw them however you want to
make the arrangement of pairs neat. That’s why it’s crucial not to forget the arrowheads!

3. There must be a top-level arrow to show where the structure you’re representing begins.

How do you draw a diagram for a complicated list? Take this example:

((a b) c (d (e f)))

You begin by asking yourself how many elements the list has. In this case it has three elements: first (a b),
then c, then the rest. Therefore you should draw a three-pair backbone: three pairs with the cdr of one
pointing to the next one. (The final cdr is null.)

Only after you’ve drawn the backbone should you worry about making the cars of your three pairs point to
the three elements of the top-level list.

98

CS 61A Lecture Notes First Half of Week 3

Topic: Hierarchical data

Reading: Abelson & Sussman, Section 2.2.2–2.2.3, 2.3.1, 2.3.3

• Trees.

Big idea: representing a hierarchy of information.

Definitions: node, datum, root, branch, leaf, parent, child.

The name “tree” comes from the branching structure of the pictures, like real trees in nature except that
they’re drawn with the root at the top and the leaves at the bottom.

A node is a point in the tree. In these pictures, each node includes a datum (the value shown at the node,
such as France or 26) but also includes the entire structure under that datum and connected to it, so the
France node includes all the French cities, such as Paris. Therefore, each node is itself a tree—the
terms “tree” and “node” mean the same thing! The reason we have two names for it is that we generally
use “tree” when we mean the entire structure that our program is manipulating, and “node” when we mean
just one piece of the overall structure. Therefore, another synonym for “node” is “subtree.”

The root node (or just the root) of a tree is the node at the top. Every tree has one root node. (A more
general structure in which nodes can be arranged more flexibly is called a graph; you’ll study graphs in 61B
and later courses.)

The children of a node are the nodes directly beneath it. For example, the children of the 26 node in the
picture are the 15 node and the 33 node. The parent of particular node is the node above it. Note that
exactly one node has no parent (namely, the root node).

A branch node is a node that has at least one child. A leaf node is a node that has no children. (The root
node is usually a branch node, except in the trivial case of a one-node tree.)

What are trees good for?

• Hierarchy: world, countries, states, cities.

• Ordering: binary search trees.

• Composition: arithmetic operations at branches, numbers at leaves.

• Below-the-line representation of trees.

Lisp has one built-in way to represent sequences, but there is no official way to represent trees. Why not?

• Branch nodes may or may not have data.

• Binary vs. n-way trees.

• Order of siblings may or may not matter.

• Can tree be empty?

We can think about a tree ADT in terms of a selector and constructors:

(make-tree datum children)
(datum node)
(children node)

The selector children should return a list (sequence) of the children of the node. These children are
themselves trees. A leaf node is one with no children:

99

(define (leaf? node)
(null? (children node)))

This definition of leaf? should work no matter how we represent the ADT.

If every node in your tree has a datum, then the straightforward implementation is

;;;;; Compare file cs61a/lectures/2.2/tree1.scm
(define make-tree cons)
(define datum car)
(define children cdr)

On the other hand, it’s also common to think of any list structure as a tree in which the leaves are words
and the branch nodes don’t have data. For example, a list like

(a (b c d) (e (f g) h))

can be thought of as a tree whose root node has three children: the leaf a and two branch nodes. For this
sort of tree it’s common not to use formal ADT selectors and constructors at all, but rather just to write
procedures that handle the car and the cdr as subtrees. To make this concrete, let’s look at mapping a
function over all the data in a tree.

First we review mapping over a sequence:

;;;;; In file cs61a/lectures/2.2/squares.scm
(define (SQUARES seq)

(if (null? seq)
’()
(cons (SQUARE (car seq))

(SQUARES (cdr seq)))))

The pattern here is that we apply some operation (square in this example) to the data, the elements of the
sequence, which are in the cars of the pairs, and we recur on the sublists, the cdrs.

Now let’s look at mapping over the kind of tree that has data at every node:

;;;;; In file cs61a/lectures/2.2/squares.scm
(define (SQUARES tree)

(make-tree (SQUARE (datum tree))
(map SQUARES (children tree))))

Again we apply the operation to every datum, but instead of a simple recursion for the rest of the list, we
have to recur for each child of the current node. We use map (mapping over a sequence) to provide several
recursive calls instead of just one.

If the data are only at the leaves, we just treat each pair in the structure as containing two subtrees:

;;;;; In file cs61a/lectures/2.2/squares.scm
(define (SQUARES tree)

(cond ((null? tree) ’())
((atom? tree) (SQUARE tree))
(else (cons (SQUARES (car tree))

(SQUARES (cdr tree))))))

The hallmark of tree recursion is to recurse for both the car and the cdr.

• Mapping over trees

One thing we might want to do with a tree is create another tree, with the same shape as the original, but

100

with each datum replaced by some function of the original. This is the tree equivalent of map for lists.

;;;;; In file cs61a/lectures/2.2/tree1.scm
(define (treemap fn tree)

(make-tree (fn (datum tree))
(map (lambda (t) (treemap fn t))

(children tree))))

This is a remarkably simple and elegant procedure, especially considering the versatility of the data structures
it can handle (trees of many different sizes and shapes). It’s one of the more beautiful things you’ll see in
the course, so spend some time appreciating it.

Every tree node consists of a datum and some children. In the new tree, the datum corresponding to this
node should be the result of applying fn to the datum of this node in the original tree. What about the
children of the new node? There should be the same number of children as there are in the original node,
and each new child should be the result of calling treemap on an original child. Since a forest is just a list,
we can use map (not treemap!) to generate the new children.

• Mutual recursion

Pay attention to the strange sort of recursion in this procedure. Treemap does not actually call itself!
Treemap calls map, giving it a function that in turn calls treemap. The result is that each call to treemap
may give rise to any number of recursive calls, via map: one call for every child of this node.

This pattern (procedure A invokes procedure B, which invokes procedure A) is called mutual recursion. We
can rewrite treemap without using map, to make the mutual recursion more visible:

;;;;; In file cs61a/lectures/2.2/tree11.scm
(define (treemap fn tree)

(make-tree (fn (datum tree))
(forest-map fn (children tree))))

(define (forest-map fn forest)
(if (null? forest)

’()
(cons (treemap fn (car forest))

(forest-map fn (cdr forest)))))

Forest-map is a helper function that takes a forest, not a tree, as argument. Treemap calls forest-map,
which calls treemap.

Mutual recursion is what makes it possible to explore the two-dimensional tree data structure fully. In
particular, note that reaching the base case in forest-map does not mean that the entire tree has been
visited! It means merely that one group of sibling nodes has been visited (a “horizontal” base case), or that
a node has no children (a “vertical” base case). The entire tree has been seen when every child of the root
node has been completed.

Note that we use cons, car, and cdr when manipulating a forest, but we use make-tree, datum, and
children when manipulating a tree. Some students make the mistake of thinking that data abstraction
means “always say datum instead of car”! But that defeats the purpose of using different selectors and
constructors for different data types.

• Deep lists

Trees are our first two-dimensional data structure. But there’s a sense in which any list that has lists as
elements is also two-dimensional, and can be viewed as a kind of tree. We’ll use the name deep lists for lists
that contain lists. For example, the list

101

[[john lennon] [paul mccartney] [george harrison] [ringo starr]]

is probably best understood as a sequence of sentences, but instead we can draw a picture of it as a sort of
tree:

Don’t be confused; this is not an example of the Tree abstract data type we’ve just developed. In this picture,
for example, only the “leaf nodes” contain data, namely words. We didn’t make this list with make-tree,
and it wouldn’t make sense to examine it with datum or children.

But we can still use the ideas of tree manipulation if we’d like to do something for every word in the list.
Compare the following procedure with the first version of treemap above:

;;;;; In file cs61a/lectures/2.2/tree22.scm
(define (deep-map fn lol)

(if (list? lol)
(map (lambda (element) (deep-map fn element))
lol)

(fn lol)))

The formal parameter lol stands for “list of lists.” This procedure includes the two main tasks of treemap:
applying the function fn to one datum, and using map to make a recursive call for each child.

But treemap applies to the Tree abstract data type, in which every node has both a datum and children, so
treemap carries out both tasks for each node. In a deep list, by contrast, the “branch nodes” have children
but no datum, whereas the “leaf nodes” have a datum but no children. That’s why deep-map chooses only
one of the two tasks, using if to distinguish branches from leaves.

Note: SICP does not define a Tree abstract data type; they use the term “tree” to describe what I’m calling
a deep list. So they use the name tree-map in Exercise 2.31, page 113, which asks you to write what I’ve
called deep-map. (Since I’ve done it here, you should do the exercise without using map.) SICP does define
an abstract data type for binary trees, in which each node can have a left-branch and/or a right-branch,
rather than having any number of children.

102

• Car/cdr recursion

Consider the deep list ((a b) (c d)). Ordinarily we would draw its box and pointer diagram with a
horizontal spine at the top and the sublists beneath the spine:

But imagine that we grab the first pair of this structure and “shake” it so that the pairs fall down as far as
they can. We’d end up with this diagram:

Note that these two diagrams represent the same list! They have the same pairs, with the same links from
one pair to another. It’s just the position of the pairs on the page that’s different. But in this new picture,
the structure looks a lot like a binary tree, in which the branch nodes are pairs and the leaf nodes are atoms
(non-pairs). The “left branch” of each pair is its car, and the “right branch” is its cdr. With this metaphor,
we can rewrite deep-map to look more like a binary tree program:

;;;;; In file cs61a/lectures/2.2/tree3.scm
(define (deep-map fn xmas)

(cond ((null? xmas) ’())
((pair? xmas)
(cons (deep-map fn (car xmas))

(deep-map fn (cdr xmas))))
(else (fn xmas))))

(The formal parameter xmas reflects the fact that the picture looks kind of like a Christmas tree.)

This procedure strongly violates data abstraction! Ordinarily when dealing with lists, we write programs
that treat the car and the cdr differently, reflecting the fact that the car of a pair is a list element, whereas
the cdr is a sublist. But here we treat the car and the cdr identically. One advantage of this approach is
that it works even for improper lists:

> (deep-map square ’((3 . 4) (5 6))
((9 . 16) (25 36))

103

• Tree recursion

Compare the car/cdr version of deep-map with ordinary map:

(define (map fn seq)
(if (null? seq)

’()
(cons (fn (car seq))

(map fn (cdr seq)))))

Each non-base-case invocation of map gives rise to one recursive call, to handle the cdr of the sequence. The
car, an element of the list, is not handled recursively.

By contrast, in deep-map there are two recursive calls, one for the car and one for the cdr. This is what
makes the difference between a sequential, one-dimensional process and the two-dimensional process used
for deep lists and for the Tree abstraction.

A procedure in which each invocation makes more than one recursive call is given the name tree recursion
because of the relationship between this pattern and tree structures. It’s tree recursion only if each call
(other than a base case) gives rise to two or more recursive calls; it’s not good enough to have two recursive
calls of which only one is chosen each time, as in the following non-tree-recursive procedure:

(define (filter pred seq)
(cond ((null? seq) ’())

((pred (car seq)) (cons (car seq) (filter pred (cdr seq))))
(else (filter pred (cdr seq)))))

There are two recursive calls to filter, but only one of them is actually carried out each time, so this is a
sequential recursion, not a tree recursion.

A program can be tree recursive even if there is no actual tree-like data structure used, as in the Fibonacci
number function:

(define (fib n)
(if (< n 2)

1
(+ (fib (- n 1)) (fib (- n 2)))))

This procedure just handles numbers, not trees, but each non-base-case call adds the results of two recursive
calls, so it’s a tree recursive program.

• Tree traversal

Many problems involve visiting each node of a tree to look for or otherwise process some information there.
Maybe we’re looking for a particular node, maybe we’re adding up all the values at all the nodes, etc. There
is one obvious order in which to traverse a sequence (left to right), but many ways in which we can traverse
a tree.

In the following examples, we “visit” each node by printing the datum at that node. If you apply these
procedures to actual trees, you can see the order in which the nodes are visited.

Depth-first traversal: Look at a given node’s children before its siblings.

;;;;; In file cs61a/lectures/2.2/search.scm
(define (depth-first-search tree)

(print (datum tree))
(for-each depth-first-search (children tree)))

This is the easiest way, because the program’s structure follows the data structure; each child is traversed

104

in its entirety (that is, including grandchildren, etc.) before looking at the next child.

Breadth-first traversal: Look at the siblings before the children.

What we want to do is take horizontal slices of the tree. First we look at the root node, then we look at the
children of the root, then the grandchildren, and so on. The program is a little more complicated because
the order in which we want to visit nodes isn’t the order in which they’re connected together.

To solve this, we use an extra data structure, called a queue, which is just an ordered list of tasks to be
carried out. Each “task” is a node to visit, and a node is a tree, so a list of nodes is just a forest. The
iterative helper procedure takes the first task in the queue (the car), visits that node, and adds its children
at the end of the queue (using append).

;;;;; In file cs61a/lectures/2.2/search.scm
(define (breadth-first-search tree)

(bfs-iter (list tree)))

(define (bfs-iter queue)
(if (null? queue)

’done
(let ((task (car queue)))

(print (datum task))
(bfs-iter (append (cdr queue) (children task))))))

Why would we use this more complicated technique? For example, in some situations the same value might
appear as a datum more than once in the tree, and we want to find the shortest path from the root node to
a node containing that datum. To do that, we have to look at nodes near the root before looking at nodes
far away from the root.

Another example is a game-strategy program that generates a tree of moves. The root node is the initial
board position; each child is the result of a legal move I can make; each child of a child is the result of a legal
move for my opponent, and so on. For a complicated game, such as chess, the move tree is much too large to
generate in its entirety. So we use a breadth-first technique to generate the move tree up to a certain depth
(say, ten moves), then we look for desirable board positions at that depth. (If we used a depth-first program,
we’d follow one path all the way to the end of the game before starting to consider a different possible first
move.)

For binary trees, within the general category of depth-first traversals, there are three possible variants:

Preorder: Look at a node before its children.

;;;;; In file cs61a/lectures/2.2/print.scm
(define (pre-order tree)

(cond ((null? tree) ’())
(else (print (entry tree))

(pre-order (left-branch tree))
(pre-order (right-branch tree)))))

Inorder: Look at the left child, then the node, then the right child.

;;;;; In file cs61a/lectures/2.2/print.scm
(define (in-order tree)

(cond ((null? tree) ’())
(else (in-order (left-branch tree))

(print (entry tree))
(in-order (right-branch tree)))))

105

Postorder: Look at the children before the node.

;;;;; In file cs61a/lectures/2.2/print.scm
(define (post-order tree)

(cond ((null? tree) ’())
(else (post-order (left-branch tree))

(post-order (right-branch tree))
(print (entry tree)))))

For a tree of arithmetic operations, preorder traversal looks like Lisp; inorder traversal looks like conventional
arithmetic notation; and postorder traversal is the HP calculator “reverse Polish notation.”

• Path finding

As an example of a somewhat more complicated tree program, suppose we want to look up a place (e.g., a
city) in the world tree, and find the path from the root node to that place:

> (find-place ’berkeley world-tree)
(world (united states) california berkeley)

If a place isn’t found, find-place will return the empty list.

To find a place within some tree, first we see if the place is the datum of the root node. If so, the answer
is a one-element list containing just the place. Otherwise, we look at each child of the root, and see if we
can find the place within that child. If so, the path within the complete tree is the path within the child,
but with the root datum added at the front of the path. For example, the path to Berkeley within the USA
subtree is

((united states) california berkeley)

so we put world in front of that.

Broadly speaking, this program has the same mutually recursive tree/forest structure as the other examples
we’ve seen, but one important difference is that once we’ve found the place we’re looking for, there’s no need
to visit other subtrees. Therefore, we don’t want to use map or anything equivalent to handle the children
of a node; we want to check the first child, see if we’ve found a path, and only if we haven’t found it should
we go on to the second child (if any). This is the reason for the let in find-forest.

;;;;; In file cs61a/lectures/2.2/world.scm
(define (find-place place tree)

(if (eq? place (datum tree))
(cons (datum tree) ’())
(let ((try (find-forest place (children tree))))

(if (not (null? try))
(cons (datum tree) try)
’()))))

(define (find-forest place forest)
(if (null? forest)

’()
(let ((try (find-place place (car forest))))

(if (not (null? try))
try
(find-forest place (cdr forest))))))

(Note: In 61B we come back to trees in more depth, including the study of balanced trees, i.e., using special
techniques to make sure a search tree has about as much stuff on the left as on the right.)

106

CS 61A Lecture Notes Second Half of Week 3

Topic: Representing abstract data

Reading: Abelson & Sussman, Sections 2.4 through 2.5.2 (pages 169–200)

The overall problem we’re addressing in the next two lectures is to control the complexity of large systems
with many small procedures that handle several types of data. We are building toward the idea of object-
oriented programming, which many people see as the ultimate solution to this problem, and which we discuss
for two weeks starting next week.

Big ideas:
• tagged data
• data-directed programming
• message passing

The first problem is keeping track of types of data. If we see a pair whose car is 3 and whose cdr is 4, does
that represent 3

4 or does it represent 3 + 4i?

The solution is tagged data: Each datum carries around its own type information. In effect we do (cons
’rational (cons 3 4)) for the rational number 3

4 , although of course we use an ADT.

Just to get away from the arithmetic examples in the text, we’ll use another example about geometric shapes.
Our data types will be squares and circles; our operations will be area and perimeter.

We want to be able to say, e.g., (area circle3) to get area of a particular (previously defined) circle. To
make this work, the function area has to be able to tell which type of shape it’s seeing. We accomplish this
by attaching a type tag to each shape:

;;;;; In file cs61a/lectures/2.4/geom.scm
(define pi 3.141592654)

(define (make-square side)
(attach-tag ’square side))

(define (make-circle radius)
(attach-tag ’circle radius))

(define (area shape)
(cond ((eq? (type-tag shape) ’square)

(* (contents shape) (contents shape)))
((eq? (type-tag shape) ’circle)
(* pi (contents shape) (contents shape)))

(else (error "Unknown shape -- AREA"))))

(define (perimeter shape)
(cond ((eq? (type-tag shape) ’square)

(* 4 (contents shape)))
((eq? (type-tag shape) ’circle)
(* 2 pi (contents shape)))

(else (error "Unknown shape -- PERIMETER"))))

;; some sample data

(define square5 (make-square 5))
(define circle3 (make-circle 3))

107

• Orthogonality of types and operators.

The next problem to deal with is the proliferation of functions because you want to be able to apply every
operation to every type. In our example, with two types and two operations we need four algorithms.

What happens when we invent a new type? If we write our program in the conventional (i.e., old-fashioned)
style as above, it’s not enough to add new functions; we have to modify all the operator functions like area
to know about the new type. We’ll look at two different approaches to organizing things better: data-directed
programming and message passing.

The idea in DDP is that instead of keeping the information about types versus operators inside functions,
as cond clauses, we record this information in a data structure. A&S provide tools put to set up the data
structure and get to examine it:

> (get ’foo ’baz)
#f
> (put ’foo ’baz ’hello)
> (get ’foo ’baz)
hello

Once you put something in the table, it stays there. (This is our first departure from functional programming.
But our intent is to set up the table at the beginning of the computation and then to treat it as constant
information, not as something that might be different the next time you call get, despite the example above.)
For now we take put and get as primitives; we’ll see how to build them in section 3.3 in two weeks

The code is mostly unchanged from the conventional version; the tagged data ADT and the two shape ADTs
are unchanged. What’s different is how we represent the four algorithms for applying some operator to some
type:

;;;;; In file cs61a/lectures/2.4/geom.scm

(put ’square ’area (lambda (s) (* s s)))
(put ’circle ’area (lambda (r) (* pi r r)))
(put ’square ’perimeter (lambda (s) (* 4 s)))
(put ’circle ’perimeter (lambda (r) (* 2 pi r)))

Notice that the entry in each cell of the table is a function, not a symbol. We can now redefine the six
generic operators (“generic” because they work for any of the types):

;;;;; In file cs61a/lectures/2.4/geom.scm

(define (area shape)
(operate ’area shape))

(define (perimeter shape)
(operate ’perimeter shape))

(define (operate op obj) ;; like APPLY-GENERIC but for one operand
(let ((proc (get (type-tag obj) op)))

(if proc
(proc (contents obj))
(error "Unknown operator for type"))))

Now if we want to invent a new type, all we have to do is a few put instructions and the generic operators
just automatically work with the new type.

Don’t get the idea that DDP just means a two-dimensional table of operator and type names! DDP is a

108

very general, great idea. It means putting the details of a system into data, rather than into programs, so
you can write general programs instead of very specific ones.

In the old days, every time a company got a computer they had to hire a bunch of programmers to write
things like payroll programs for them. They couldn’t just use someone else’s program because the details
would be different, e.g., how many digits in the employee number. These days you have general business
packages and each company can “tune” the program to their specific purpose with a data file.

Another example showing the generality of DDP is the compiler compiler. It used to be that if you wanted
to invent a new programming language you had to start from scratch in writing a compiler for it. But now
we have formal notations for expressing the syntax of the language. (See section 7.1, page 38, of the Scheme
Report at the back of the course reader.) A single program can read these formal descriptions and compile
any language. [The Scheme BNF is in cs61a/lectures/2.4/bnf.]

• Message-passing.

In conventional style, the operators are represented as functions that know about the different types; the
types themselves are just data. In DDP, the operators and types are all data, and there is one universal
operate function that does the work. We can also stand conventional style on its head, representing the
types as functions and the operations as mere data.

In fact, not only are the types functions, but so are the individual data themselves. That is, there is a
function (make-circle below) that represents the circle type, and when you invoke that function, it returns
a function that represents the particular circle you give it as its argument. Each circle is an object and
the function that represents it is a dispatch procedure that takes as its argument a message saying which
operation to perform.

;;;;; In file cs61a/lectures/2.4/geom.scm

(define (make-square side)
(lambda (message)

(cond ((eq? message ’area)
(* side side))

((eq? message ’perimeter)
(* 4 side))

(else (error "Unknown message")))))

(define (make-circle radius)
(lambda (message)

(cond ((eq? message ’area)
(* pi radius radius))

((eq? message ’perimeter)
(* 2 pi radius))

(else (error "Unknown message")))))

(define square5 (make-square 5))
(define circle3 (make-circle 3))

109

The defines that produce the individual shapes look no different from before, but the results are different:
Each shape is a function, not a list structure. So to get the area of the shape circle3 we invoke that
shape with the proper message: (circle3 ’area). That notation is a little awkward so we provide a little
“syntactic sugar” that allows us to say (area circle3) as in the past:

;;;;; In file cs61a/lectures/2.4/msg.scm
(define (operate op obj)

(obj op))

(define (area shape)
(operate ’area shape))

(define (perimeter shape)
(operate ’perimeter shape))

Message passing may seem like an overly complicated way to handle this problem of shapes, but we’ll see
next week that it’s one of the key ideas in creating object-oriented programming. Message passing becomes
much more powerful when combined with the idea of local state that we’ll learn next week.

We seem to have abandoned tagged data; every shape type is just some function, and it’s hard to tell which
type of shape a given function represents. We could combine message passing with tagged data, if desired,
by adding a type message that each object understands.

(define (make-square side)
(lambda (message)

(cond ((eq? message ’area)
(* side side))

((eq? message ’perimeter)
(* 4 side))

((EQ? MESSAGE ’TYPE) ’SQUARE)
(else (error "Unknown message")))))

• Dyadic operations.

Our shape example is easier than the arithmetic example in the book because our operations only require
one operand, not two. For arithmetic operations like +, it’s not good enough to connect the operation with
a type; the two operands might have two different types. What should you do if you have to add a rational
number to a complex number?

There is no perfect solution to this problem. For the particular case of arithmetic, we’re lucky in that the
different types form a sequence of larger and larger sets. Every integer is a rational number; every rational is
a real; every real is a complex. So we can deal with type mismatch by raising the less-complicated operand
to the type of the other one. To add a rational number to a complex number, raise the rational number to
complex and then you’re left with the problem of adding two complex numbers. So we only need N addition
algorithms, not N2 algorithms, where N is the number of types.

Do we need N2 raising algorithms? No, because we don’t have to know directly how to raise a rational
number to complex. We can raise the rational number to the next higher type (real), and then raise that
real number to complex. So if we want to add 1

3 and 2 + 5i the answer comes out 2.3333 + 5i.

As this example shows, nonchalant raising can lose information. It would be better, perhaps, if we could
get the answer 7

3 + 5i instead of the decimal approximation. Numbers are a rat’s nest full of traps for the
unwary. You will live longer if you only write programs about integers.

110

CS 61A Lecture Notes First Half of Week 4

Topic: Object-oriented programming

Reading: OOP Above-the-line notes in course reader

OOP is an abstraction. Above the line we have the metaphor of multiple independent intelligent agents;
instead of one computer carrying out one program we have hordes of objects each of which can carry out
computations. To make this work there are three key ideas within this metaphor:

• Message passing: An object can ask other objects to do things for it.

• Local state: An object can remember stuff about its own past history.

• Inheritance: One object type can be just like another except for a few
We have invented an OOP language as an extension to Scheme. Basically you are still writing Scheme
programs, but with the vocabulary extended to use some of the usual OOP buzzwords. For example, a class
is a type of object; an instance is a particular object. “Complex number” is a class; 3 + 4i is an instance.
Here’s how the message-passing complex numbers from last week would look in OOP notation:

;;;;; In file cs61a/lectures/3.0/demo.scm
(define-class (complex real-part imag-part)

(method (magnitude)
(sqrt (+ (* real-part real-part)

(* imag-part imag-part))))
(method (angle)

(atan (/ imag-part real-part))))

> (define c (instantiate complex 3 4))
> (ask c ’magnitude)
5
> (ask c ’real-part)
3

This shows how we define the class complex; then we create the instance c whose value is 3 + 4i; then we
send c a message (we ask it to do something) in order to find out that its magnitude is 5. We can also ask
c about its instantiation variables, which are the arguments used when the class is instantiated.

When we send a message to an object, it responds by carrying out a method, i.e., a procedure that the object
associates with the message.

So far, although the notation is new, we haven’t done anything different from what we did last week in
chapter 2. Now we take the big step of letting an object remember its past history, so that we are no
longer doing functional programming. The result of sending a message to an object depends not only on the
arguments used right now, but also on what messages we’ve sent the object before:

;;;;; In file cs61a/lectures/3.0/demo.scm
(define-class (counter)

(instance-vars (count 0))
(method (next)

(set! count (+ count 1))
count))

> (define c1 (instantiate counter))
> (ask c1 ’next)
1
> (ask c1 ’next)
2

111

> (define c2 (instantiate counter))
> (ask c2 ’next)
1
> (ask c1 ’next)
3

Each counter has its own instance variable to remember how many times it’s been sent the next message.

Don’t get confused about the terms instance variable versus instantiation variable. They are similar in that
each instance has its own version; the difference is that instantiation variables are given values when an
instance is created, using extra arguments to instantiate, whereas the initial values of instance variables
are specified in the class definition and are generally the same for every instance (although the values may
change as the computation goes on.)

Methods can have arguments. You supply the argument when you ask the corresponding message:

;;;;; In file cs61a/lectures/3.0/demo.scm
(define-class (doubler)

(method (say stuff) (se stuff stuff)))

> (define dd (instantiate doubler))
> (ask dd ’say ’hello)
(hello hello)
> (ask dd ’say ’(she said))
(she said she said)

Besides having a variable for each instance, it’s also possible to have variables that are shared by every
instance of the same class:

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (counter)

(instance-vars (count 0))
(class-vars (total 0))
(method (next)

(set! total (+ total 1))
(set! count (+ count 1))
(list count total)))

> (define c1 (instantiate counter))
> (ask c1 ’next)
(1 1)
> (ask c1 ’next)
(2 2)
> (define c2 (instantiate counter))
> (ask c2 ’next)
(1 3)
> (ask c1 ’next)
(3 4)

Now each next message tells us both the count for this particular counter and the overall count for all
counters combined.

To understand the idea of inheritance, we’ll first define a person class that knows about talking in various
ways, and then define a pigger class that’s just like a person except for talking in Pig Latin:

112

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (person name)

(method (say stuff) stuff)
(method (ask stuff) (ask self ’say (se ’(would you please) stuff)))
(method (greet) (ask self ’say (se ’(hello my name is) name))))

> (define marc (instantiate person ’marc))
> (ask marc ’say ’(good morning))
(good morning)
> (ask marc ’ask ’(open the door))
(would you please open the door)
> (ask marc ’greet)
(hello my name is marc)

Notice that an object can refer to itself by the name self; this is an automatically-created instance variable
in every object whose value is the object itself. (We’ll see when we look below the line that there are some
complications about making this work.)

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (pigger name)

(parent (person name))
(method (pigl wd)

(if (member? (first wd) ’(a e i o u))
(word wd ’ay)
(ask self ’pigl (word (bf wd) (first wd)))))

(method (say stuff)
(if (atom? stuff)

(ask self ’pigl stuff)
(map (lambda (w) (ask self ’pigl w)) stuff))))

> (define porky (instantiate pigger ’porky))
> (ask porky ’say ’(good morning))
(oodgay orningmay)
> (ask porky ’ask ’(open the door))
(ouldway ouyay easeplay openay ethay oorday)

The crucial point here is that the pigger class doesn’t have an ask method in its definition. When we ask
porky to ask something, it uses the ask method in its parent (person) class.

Also, when the parent’s ask method says (ask self ’say ...) it uses the say method from the pigger
class, not the one from the person class. So Porky speaks Pig Latin even when asking something.

What happens when you send an object a message for which there is no method defined in its class? If the
class has no parent, this is an error. If the class does have a parent, and the parent class understands the
message, it works as we’ve seen here. But you might want to create a class that follows some rule of your
own devising for unknown messages:

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (squarer)

(default-method (* message message))
(method (7) ’buzz))

> (define s (instantiate squarer))
> (ask s 6) > (ask s 7) > (ask s 8)
36 buzz 64

113

Within the default method, the name message refers to whatever message was sent. (The name args refers
to a list containing any additional arguments that were used.)

Let’s say we want to maintain a list of all the instances that have been created in a certain class. It’s
easy enough to establish the list as a class variable, but we also have to make sure that each new instance
automatically adds itself to the list. We do this with an initialize clause:

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (counter)

(instance-vars (count 0))
(class-vars (total 0) (counters ’()))
(initialize (set! counters (cons self counters)))
(method (next)

(set! total (+ total 1))
(set! count (+ count 1))
(list count total)))

> (define c1 (instantiate counter))
> (define c2 (instantiate counter))
> (ask counter ’counters)
(#<procedure> #<procedure>)

There was a bug in our pigger class definition; Scheme gets into an infinite loop if we ask Porky to greet,
because it tries to translate the word my into Pig Latin but there are no vowels aeiou in that word. To get
around this problem, we can redefine the pigger class so that its say method says every word in Pig Latin
except for the word my, which it’ll say using the usual method that persons who aren’t piggers use:

;;;;; In file cs61a/lectures/3.0/demo2.scm
(define-class (pigger name)

(parent (person name))
(method (pigl wd)

(if (member? (first wd) ’(a e i o u))
(word wd ’ay)
(ask self ’pigl (word (bf wd) (first wd)))))

(method (say stuff)
(if (atom? stuff)

(if (equal? stuff ’my) (usual ’say stuff) (ask self ’pigl stuff))
(map (lambda (w) (ask self ’say w)) stuff))))

> (define porky (instantiate pigger ’porky))
> (ask porky ’greet)
(ellohay my amenay isay orkypay)

(Notice that we had to create a new instance of the new class. Just doing a new define-class doesn’t change
any instances that have already been created in the old class. Watch out for this while you’re debugging the
OOP programming project.)

We invoke usual in the say method to mean “say this stuff in the usual way, the way that my parent class
would use.”

The OOP above-the-line section in the course reader talks about even more capabilities of the system, e.g.,
multiple inheritance with more than one parent class for a single child class.

114

CS 61A Lecture Notes Second Half of Week 4

Topic: Local state variables, environments

Reading: Abelson & Sussman, Section 3.1, 3.2; OOP below the line

We said the three big ideas in the OOP interface are message passing, local state, and inheritance. You
know from section 2.4 how message passing is implemented below the line in Scheme, i.e., with a dispatch
function that takes a message as argument and returns a method. For about a week, we’re talking about
how local state works.

A local variable is one that’s only available within a particular part of the program; in Scheme this generally
means within a particular procedure. We’ve used local variables before; let makes them. A state variable
is one that remembers its value from one invocation to the next; that’s the new part.

First of all let’s look at global state—that is, let’s try to remember some information about a computation
but not worry about having separate versions for each object.

;;;;; In file cs61a/lectures/3.1/count1.scm
(define counter 0)

(define (count)
(set! counter (+ counter 1))
counter)

> (count)
1
> (count)
2

What’s new here is the special form set! that allows us to change the value of a variable. This is not like
let, which creates a temporary, local binding; this makes a permanent change in some variable that must
have already existed. The syntax is just like define (but not the abbreviation for defining a function): it
takes an unevaluated name and an expression whose value provides the new value.

A crucial thing to note about set! is that the substitution model no longer works. We can’t substitute the
value of counter wherever we see the name counter, or we’ll end up with

(set! 0 (+ 0 1))
0

which doesn’t make any sense. From now on we use a model of variables that’s more like what you learned
in 7th grade, in which a variable is a shoebox in which you can store some value. The difference from the
7th grade version is that we can have several shoeboxes with the same name (the instance variables in the
different objects, for example) and we have to worry about how to keep track of that. Section 3.2 of A&S
explains the environment model that keeps track for us.

Another new thing is that a procedure body can include more than one expression. In functional program-
ming, the expressions don’t do anything except compute a value, and a function can only return one value,
so it doesn’t make sense to have more than one expression in it. But when we invoke set! there is an effect
that lasts beyond the computation of that expression, so now it makes sense to have that expression and then
another expression that does something else. When a body has more than one expression, the expressions
are evaluated from left to right (or top to bottom) and the value returned by the procedure is the value
computed by the last expression. All but the last are just for effect.

115

We’ve seen how to have a global state variable. We’d like to try for local state variables. Here’s an attempt
that doesn’t work:

;;;;; In file cs61a/lectures/3.1/count.lose
(define (count)

(let ((counter 0)) > (count)
(set! counter (+ counter 1)) 1
counter)) > (count)

1
> (count)
1

It was a good idea to use let, because that’s a way we know to create local variables. But let creates a new
local variable each time we invoke it. Each call to count creates a new counter variable whose value is 0.

The secret is to find a way to call let only once, when we create the count function, instead of calling let
every time we invoke count. Here’s how:

;;;;; In file cs61a/lectures/3.1/count2.scm
(define count

(let ((result 0))
(lambda ()
(set! result (+ result 1))
result)))

Notice that there are no parentheses around the word count on the first line! Instead of

(define count (lambda () (let ...)))

(which is what the earlier version means) we have essentially interchanged the lambda and the let so that
the former is inside the latter:

(define count (let ... (lambda () ...)))

We’ll have to examine the environment model in detail before you can really understand why this works. A
handwavy explanation is that the let creates a variable that’s available to things in the body of the let; the
lambda is in the body of the let; and so the variable is available to the function that the lambda creates.

The reason we wanted local state variables was so that we could have more than one of them. Let’s take
that step now. Instead of having a single procedure called count that has a single local state variable, we’ll
write a procedure make-count that, each time you call it, makes a new counter.

;;;;; In file cs61a/lectures/3.1/count3.scm

(define (make-count) > (define dracula (make-count))
(let ((result 0)) > (dracula)

(lambda () 1
(set! result (+ result 1)) > (dracula)
result))) 2

> (define monte-cristo (make-count))
> (monte-cristo)
1
> (dracula)
3

Each of dracula and monte-cristo is the result of evaluating the expression (lambda () ...) to produce
a procedure. Each of those procedures has access to its own local state variable called result. Result is

116

temporary with respect to make-count but permanent with respect to dracula or monte-cristo, because
the let is inside the lambda for the former but outside the lambda for the latter.

• Environment model of evaluation.

For now we’re just going to introduce the central issues about environments, leaving out a lot of details.
You’ll get those next time.

The question is, what happens when you invoke a procedure? For example, suppose we’ve said

(define (square x) (* x x))

and now we say (square 7); what happens? The substitution model says

1. Substitute the actual argument value(s) for the formal parameter(s) in the body of the function;

2. Evaluate the resulting expression.

In this example, the substitution of 7 for x in (* x x) gives (* 7 7). In step 2 we evaluate that expression
to get the result 49.

We now forget about the substitution model and replace it with the environment model:

1. Create a frame with the formal parameter(s) bound to the actual argument values;

2. Use this frame to extend the lexical environment;

3. Evaluate the body (without substitution!) in the resulting environment.

A frame is a collection of name-value associations or bindings. In our example, the frame has one binding,
from x to 7.

Skip step 2 for a moment and think about step 3. The idea is that we are going to evaluate the expression
(* x x) but we are refining our notion of what it means to evaluate an expression. Expressions are no longer
evaluated in a vacuum, but instead, every evaluation must be done with respect to some environment—that
is, some collection of bindings between names and values. When we are evaluating (* x x) and we see the
symbol x, we want to be able to look up x in our collection of bindings and find the value 7.

Looking up the value bound to a symbol is something we’ve done before with global variables. What’s
new is that instead of one central collection of bindings we now have the possibility of local environments.
The symbol x isn’t always 7, only during this one invocation of square. So, step 3 means to evaluate the
expression in the way that we’ve always understood, but looking up names in a particular place.

What’s step 2 about? The point is that we can’t evaluate (* x x) in an environment with nothing but the
x/7 binding, because we also have to look up a value for the symbol * (namely, the multiplication function).
So, we create a new frame in step 1, but that frame isn’t an environment by itself. Instead we use the new
frame to extend an environment that already existed. That’s what step 2 says.

Which old environment do we extend? In the square example there is only one candidate, the global
environment. But in more complicated situations there may be several environments available. For example:

(define (f x)
(define (g y)

(+ x y))
(g 3))

> (f 5)

117

When we invoke f, we create a frame (call it F1) in which x is bound to 5. We use that frame to extend
the global environment (call it G), creating a new environment E1. Now we evaluate the body of f, which
contains the internal definition for g and the expression (g 3). To invoke g, we create a frame in which y is
bound to 3. (Call this frame F2.) We are going to use F2 to extend some old environment, but which? G or
E1? The body of g is the expression (+ x y). To evaluate that, we need an envoironment in which we can
look up all of + (in G), x (in F1), and y (in F2). So we’d better make our new environment by extending
E1, not by extending G.

The example with f and g shows, in a very simple way, why the question of multiple environments comes
up. But it still doesn’t show us the full range of possible rules for choosing an environment. In the f and g
example, the environment where g is defined is the same as the environment from which it’s invoked. But
that doesn’t always have to be true:

(define (make-adder n)
(lambda (x) (+ x n)))

(define 3+ (make-adder 3))

(define n 7)

> (3+ n)

When we invoke make-adder, we create the environment E1 in which n is bound to 3. In the global
environment G, we bind n to 7. When we evaluate the expression (3+ n), what environment are we in?
What value does n have in this expression? Surely it should have the value 7, the global value. So we
evaluate expressions that you type in G. When we invoke 3+ we create the frame F2 in which x is bound to
7. (Remember, 3+ is the function that was created by the lambda inside make-adder.

We are going to use F2 to extend some environment, and in the resulting environment we’ll evaluate the body
of 3+, namely (+ x n). What value should n have in this expression? It had better have the value 3 or we’ve
defeated the purpose of make-adder. Therefore, the rule is that we do not extend the current environment
at the time the function is invoked, which would be G in this case. Rather, we extend the environment
in which the function was created, i.e., the environment in which we evaluated the lambda expression that
created it. In this case that’s E1, the environment that was created for the invocation of make-adder.

Scheme’s rule, in which the procedure’s defining environment is extended, is called lexical scope. The other
rule, in which the current environment is extended, is called dynamic scope. We’ll see in project 4 that a
language with dynamic scope is possible, but it would have different features from Scheme.

Remember why we needed the environment model: We want to understand local state variables. The
mechanism we used to create those variables was

(define some-procedure
(let ((state-var initial-value))

(lambda (...) ...)))

Roughly speaking, the let creates a frame with a binding for state-var. Within that environment, we
evaluate the lambda. This creates a procedure within the scope of that binding. Every time that procedure
is invoked, the environment where it was created—that is, the environment with state-var bound—is
extended to form the new environment in which the body is evaluated. These new environments come and
go, but the state variable isn’t part of the new frames; it’s part of the frame in which the procedure was
defined. That’s why it sticks around.

118

• Here are the complete rules for the environment model:

Every expression is either an atom or a list.

At any time there is a current frame, initially the global frame.

I. Atomic expressions.

A. Numbers, strings, #T, and #F are self-evaluating.

B. If the expression is a symbol, find the first available binding. (That is, look in the current frame;
if not found there, look in the frame ”behind” the current frame; and so on until the global frame
is reached.)

II. Compound expressions (lists).

If the car of the expression is a symbol that names a special form, then follow its rules (II.B below). Otherwise
the expression is a procedure invocation.

A. Procedure invocation.

Step 1: Evaluate all the subexpressions (using these same rules).

Step 2: Apply the procedure (the value of the first subexpression) to the arguments (the values of the
other subexpressions).

(a) If the procedure is compound (user-defined):

a1: Create a frame with the formal parameters of the procedure bound to the actual argument
values.

a2: Extend the procedure’s defining environment with this new frame.
a3: Evaluate the procedure body, using the new frame as the current frame.

*** ONLY COMPOUND PROCEDURE INVOCATION CREATES A FRAME ***

(b) If the procedure is primitive:

Apply it by magic.

B. Special forms.

1. Lambda creates a procedure. The left circle points to the text of the lambda expression; the right
circle points to the defining environment, i.e., to the current environment at the time the lambda
is seen.
*** ONLY LAMBDA CREATES A PROCEDURE ***

2. Define adds a new binding to the current frame.

3. Set! changes the first available binding (see I.B for the definition of ”first available”).

4. Let = lambda (II.B.1) + invocation (II.A)

5. (define (...) ...) = lambda (II.B.1) + define (II.B.2)

6. Other special forms follow their own rules (cond, if).

119

• Environments and OOP.

Class and instance variables are both local state variables, but in different environments:

;;;;; In file cs61a/lectures/3.2/count4.scm
(define make-count

(let ((glob 0))
(lambda ()
(let ((loc 0))

(lambda ()
(set! loc (+ loc 1))
(set! glob (+ glob 1))
(list loc glob))))))

The class variable glob is created in an environment that surrounds the creation of the outer lambda, which
represents the entire class. The instance variable loc is created in an environment that’s inside the class
lambda, but outside the second lambda that represents an instance of the class.

The example above shows how environments support state variables in OOP, but it’s simplified in that the
instance is not a message-passing dispatch procedure. Here’s a slightly more realistic version:

;;;;; In file cs61a/lectures/3.2/count5.scm
(define make-count

(let ((glob 0))
(lambda ()
(let ((loc 0))

(lambda (msg)
(cond ((eq? msg ’local)

(lambda ()
(set! loc (+ loc 1))
loc))

((eq? msg ’global)
(lambda ()

(set! glob (+ glob 1))
glob))

(else (error "No such method" msg))))))))

The structure of alternating lets and lambdas is the same, but the inner lambda now generates a dispatch
procedure. Here’s how we say the same thing in OOP notation:

;;;;; In file cs61a/lectures/3.2/count6.scm
(define-class (count)

(class-vars (glob 0))
(instance-vars (loc 0))
(method (local)

(set! loc (+ loc 1))
loc)

(method (global)
(set! glob (+ glob 1))
glob))

120

CS 61A Lecture Notes First Half of Week 5

Topic: Mutable data, queues, tables, vectors

Reading: Abelson & Sussman, Section 3.3.1–3

Play the animal game:

> (load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")
#f
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Is it a rabbit? nonono

I give up, what is it? gorillagorillagorilla

Please tell me a question whose answer is YES for a gorilla
and NO for a rabbit.
Enclose the question in quotation marks.
"Does it have long arms?""Does it have long arms?""Does it have long arms?"
"Thanks. Now I know better."
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Does it have long arms? nonono
Is it a rabbit? yesyesyes
"I win!"

The crucial point about this program is that its behavior changes each time it learns about a new animal.
Such learning programs have to modify a data base as they run. We represent the animal game data base
as a tree; we want to be able to splice a new branch into the tree (replacing what used to be a leaf node).

Changing what’s in a data structure is called mutation. Scheme provides primitives set-car! and set-cdr!
for this purpose.

They aren’t special forms! The pair that’s being mutated must be located by computing some expression.
For example, to modify the second element of a list:

(set-car! (cdr lst) ’new-value)

They’re different from set!, which changes the binding of a variable. We use them for different purposes, and
the syntax is different. Still, they are connected in two ways: (1) Both make your program non-functional,
by making a permanent change that can affect later procedure calls. (2) Each can be implemented in terms
of the other; the book shows how to use local state variables to simulate mutable pairs, and later we’ll see
how the Scheme interpreter uses mutable pairs to implement environments, including the use of set! to
change variable values.

The only purpose of mutation is efficiency. In principle we could write the animal game functionally by
recopying the entire data base tree each time, and using the new one as an argument to the next round of
the game. But the saving can be quite substantial.

Identity. Once we have mutation we need a subtler view of the idea of equality. Up to now, we could just
say that two things are equal if they look the same. Now we need two kinds of equality, that old kind plus
a new one: Two things are identical if they are the very same thing, so that mutating one also changes the
other. Example:

> (define a (list ’x ’y ’z))
> (define b (list ’x ’y ’z))

121

> (define c a)
> (equal? b a)
#T
> (eq? b a)
#F
> (equal? c a)
#T
> (eq? c a)
#T

The two lists a and b are equal, because they print the same, but they’re not identical. The lists a and c
are identical; mutating one will change the other:

> (set-car! (cdr a) ’foo)
> a
(X FOO Z)
> b
(X Y Z)
> c
(X FOO Z)

If we use mutation we have to know what shares storage with what. For example, (cdr a) shares storage
with a. (Append a b) shares storage with b but not with a. (Why not? Read the append procedure.)

The Scheme standard says you’re not allowed to mutate quoted constants. That’s why I said (list ’x ’y ’z)
above and not ’(x y z). The text sometimes cheats about this. The reason is that Scheme implementations
are allowed to share storage when the same quoted constant is used twice in your program.

Here’s the animal game:

;;;;; In file cs61a/lectures/3.3/animal.scm
(define (animal node)

(define (type l) (car l))
(define (question l) (cadr l))
(define (yespart l) (caddr l))
(define (nopart l) (cadddr l))
(define (answer l) (cadr l))
(define (leaf? l) (eq? (type l) ’leaf))
(define (branch? l) (eq? (type l) ’branch))
(define (set-yes! node x)

(set-car! (cddr node) x))
(define (set-no! node x)

(set-car! (cdddr node) x))

(define (yorn)
(let ((yn (read)))
(cond ((eq? yn ’yes) #t)

((eq? yn ’no) #f)
(else (display "Please type YES or NO")

(yorn)))))

122

(display (question node))
(display " ")
(let ((yn (yorn)) (correct #f) (newquest #f))

(let ((next (if yn (yespart node) (nopart node))))
(cond ((branch? next) (animal next))

(else (display "Is it a ")
(display (answer next))
(display "? ")
(cond ((yorn) "I win!")

(else (newline)
(display "I give up, what is it? ")
(set! correct (read))
(newline)
(display "Please tell me a question whose answer ")

(display "is YES for a ")
(display correct)
(newline)
(display "and NO for a ")
(display (answer next))
(display ".")
(newline)
(display "Enclose the question in quotation marks.")
(newline)
(set! newquest (read))
(if yn

(set-yes! node (make-branch newquest
(make-leaf correct)
next))

(set-no! node (make-branch newquest
(make-leaf correct)
next)))

"Thanks. Now I know better.")))))))

(define (make-branch q y n)
(list ’branch q y n))

(define (make-leaf a)
(list ’leaf a))

(define animal-list
(make-branch "Does it have wings?"

(make-leaf ’parrot)
(make-leaf ’rabbit)))

(define (animal-game) (animal animal-list))

Things to note: Even though the main structure of the program is sequential and BASIC-like, we haven’t
abandoned data abstraction. We have constructors, selectors, and mutators—a new idea—for the nodes of
the game tree.

123

• Tables. We’re now ready to understand how to implement the put and get procedures that A&S used
at the end of chapter 2. A table is a list of key-value pairs, with an extra element at the front just so that
adding the first entry to the table will be no diffferent from adding later entries. (That is, even in an “empty”
table we have a pair to set-cdr!)

;;;;; In file cs61a/lectures/3.3/table.scm
(define (get key)

(let ((record (assoc key (cdr the-table))))
(if (not record)

#f
(cdr record))))

(define (put key value)
(let ((record (assoc key (cdr the-table))))

(if (not record)
(set-cdr! the-table

(cons (cons key value)
(cdr the-table)))

(set-cdr! record value)))
’ok)

(define the-table (list ’*table*))

Assoc is in the book:

(define (assoc key records)
(cond ((null? records) #f)

((equal? key (caar records)) (car records))
(else (assoc key (cdr records)))))

In chapter 2, A&S provided a single, global table, but we can generalize this in the usual way by taking an
extra argument for which table to use. That’s how lookup and insert! work.

One little detail that always confuses people is why, in creating two-dimensional tables, we don’t need a
table header on each of the subtables. The point is that lookup and insert! don’t pay any attention
to the car of that header pair; all they need is to represent a table by some pair whose cdr points to the
actual list of key-value pairs. In a subtable, the key-value pair from the top-level table plays that role. That
is, the entire subtable is a value of some key-value pair in the main table. What it means to be “the value
of a key-value pair” is to be the cdr of that pair. So we can think of that pair as the header pair for the
subtable.

124

• Memoization. Exercise 3.27 is a pain in the neck because it asks for a very complicated environment
diagram, but it presents an extremely important idea. If we take the simple Fibonacci number program:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fib n)

(if (< n 2)
1
(+ (fib (- n 1))

(fib (- n 2)))))

we recall that it takes O(2n) time because it ends up doing a lot of subproblems redundantly. For example,
if we ask for (fib 5) we end up computing (fib 3) twice. We can fix this by remembering the values that
we’ve already computed. The book’s version does it by entering those values into a local table. It may be
simpler to understand this version, using the global get/put:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fast-fib n)

(if (< n 2)
n ; base case unchanged
(let ((old (get ’fib n)))

(if (number? old) ; do we already know the answer?
old
(begin ; if not, compute and learn it
(put ’fib n (+ (fast-fib (- n 1))

(fast-fib (- n 2))))
(get ’fib n))))))

Is this functional programming? That’s a more subtle question than it seems. Calling memo-fib makes a
permanent change in the environment, so that a second call to memo-fib with the same argument will carry
out a very different (and much faster) process. But the new process will get the same answer! If we look
inside the box, memo-fib works non-functionally. But if we look only at its input-output behavior, memo-fib
is a function because it always gives the same answer when called with the same argument.

What if we tried to memoize random? It would be a disaster; instead of getting a random number each time,
we’d get the same number repeatedly! Memoization only makes sense if the underlying function really is
functional.

This idea of using a non-functional implementation for something that has functional behavior will be very
useful later in the course when we look at streams.

125

• Vectors So far we have seen one primitive data aggregation mechanism: the pair. We use linked pairs to
represent sequences (an abstract type) in the form of lists.

The list suffers from one important weakness: Finding the nth element of a list takes time O(n) because you
have to call cdr n−1 times. Scheme, like most programming languages, also provides a primitive aggregation
mechanism without this weakness. In Scheme it’s called a vector ; in many other languages it’s called an
array, but it’s the same idea. Finding the nth element of a vector takes O(1) time.

• Vector primitives

Some of the procedures for vectors are exact analogs to procedures for lists:

(vector a b c d ...) (list a b c d ...)
(vector-ref vec n) (list-ref lst n)
(vector-length vec) (length lst)

Most notably, the selector for vectors, vector-ref, is just like the selector for lists (except that it’s faster).

What about constructors? There’s a vector procedure, just like the list procedure, that’s good for situa-
tions in which you know exactly how many elements the sequence will have, and all of the element values,
all at once. But there are no vector analogs to the list constructors cons and append, which are useful for
extending lists. In particular, cons is the workhorse of recursive list processing procedures; we’ll see that
vector processing is done quite differently.

The weakness of vectors is that they can’t be extended. You have to know the length of the vector when
you create it. So instead of cons and append we have

(make-vector len)

which creates a vector of length len, in which the element values are unspecified. (You then use mutation,
discussed below, to fill in the desired values.) Alternatively, if you want to create a vector in which every
element has the same initial value, you can say

(make-vector len value)

Because vectors are created all at once, rather than one element at a time, mutation is crucial to any useful
vector program. The primitive mutator for vectors is

(vector-set! vec n value)

This procedure is comparable to set-car! and set-cdr! for pairs. (It’s interesting to note that Scheme
doesn’t provide a mutator for the nth element of a list; this is because most list processing is done using
functional programming style, and pair mutation is mainly for special cases such as tables.)

The printed format of a vector is

#(a b c d)

You can quote this to include a constant vector in a program. (Note: In STk, vectors are self-evaluating, so
you can omit the quotation mark, but this is a nonstandard extension to Scheme.)

Scheme also provides functions list->vector and vector->list that let you convert between the two
sequence implementations.

126

• Vector programming style

Let’s write a mapping function for vectors; it will take a function and a vector as arguments, and return a
vector.

For reference, here’s the map function for lists:

(define (map fn lst)
(if (null? lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

To do the same task for vectors, we must first create a new vector of the same length as the argument vector,
then fill in the values using mutation:

;;;;; In file cs61a/lectures/vector.scm
(define (vector-map fn vec)

(define (loop newvec n)
(if (< n 0)
newvec
(begin (vector-set! newvec n (fn (vector-ref vec n)))

(loop newvec (- n 1)))))
(loop (make-vector (vector-length vec)) (- (vector-length vec) 1)))

This is a lot more complicated! It requires a helper procedure, and an extra index variable, n, to keep track
of the element number within the vector. By contrast, the list version of map never actually knows how long
its argument list is.

• Strengths and weaknesses

Of course, if we wanted, we could write our own equivalent to cons for vectors:

;;;;; In file cs61a/lectures/vector.scm
(define (vector-cons value vec)

(define (loop newvec n)
(if (= n 0)
(begin (vector-set! newvec n value)

newvec)
(begin (vector-set! newvec n (vector-ref vec (- n 1)))

(loop newvec (- n 1)))))
(loop (make-vector (+ (vector-length vec) 1)) (vector-length vec)))

If we wrote similar procedures vector-car and vector-cdr, we could then write vector-map in a style
exactly like map. But this would be a bad idea, because our vector-cons requires O(n) time to copy the
elements from the old vector to the new one.

operation lists vectors

nth element list-ref, O(n) vector-ref, O(1)
add new element cons, O(1) vector-cons, O(n)

This is why there isn’t one best way to represent sequences. Lists are faster (and allow for cleaner code) at
adding elements, but vectors are faster at selecting arbitrary elements.

(Note, though, that if you want to select all the elements of a sequence, one after another, then lists are just
as fast as arrays. It’s only when you want to jump around within the sequence that arrays are faster.)

127

• Example: Shuffling

Suppose we want to shuffle a deck of cards — we want to reorder the cards randomly. We’ll look at three
solutions to this problem.

First, here’s a solution using functional programming with lists. Because we aren’t allowing mutation of
pairs, this version does a lot of recopying:

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle1 lst)

(define (loop in out n)
(if (= n 0)
(cons (car in) (shuffle1 (append (cdr in) out)))
(loop (cdr in) (cons (car in) out) (- n 1))))

(if (null? lst)
’()
(loop lst ’() (random (length lst)))))

This is a case in which functional programming has few virtues. The code is hard to read, and it takes O(n2)
time to shuffle a list of length n. (There are n recursive calls to shuffle1, each of which calls the O(n)
primitives append and length as well as O(n) calls to the helper function loop.)

We can improve things using list mutation. Any list-based solution will still be O(n2), because it takes O(n)
time to find one element at a randomly chosen position, and we have to do that n times. But we can improve
the constant factor by avoiding the copying of pairs that append does in the first version:

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle2! lst)

(if (null? lst)
’()
(let ((index (random (length lst))))

(let ((pair ((repeated cdr index) lst))
(temp (car lst)))

(set-car! lst (car pair))
(set-car! pair temp)
(shuffle2! (cdr lst))
lst))))

(Note: This could be improved still further by calling length only once, and using a helper procedure to
subtract one from the length in each recursive call. But that would make the code more complicated, so I’m
not bothering. You can take it as an exercise if you’re interested.)

Vectors allow a more dramatic speedup, because finding each element takes O(1) instead of O(n):

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle3! vec)

(define (loop n)
(if (= n 0)
vec
(let ((index (random n))

(temp (vector-ref vec (- n 1))))
(vector-set! vec (- n 1) (vector-ref vec index))
(vector-set! vec index temp)
(loop (- n 1)))))

(loop (vector-length vec)))

128

The total time for this version is O(n), because it makes n recursive calls, each of which takes constant time.

• How it works

One handwavy paragraph on why vectors have the performance they do:

A pair is two pointers attached to each other in a single block of memory. A vector is similar, but it’s a block
of n pointers for an arbitrary (but fixed) number n. Since a vector is one contiguous block of memory, if you
know the address of the beginning of the block, you can just add k to find the address of the kth element.
The downside is that in order to get all the elements in a single block of memory, you have to allocate the
block all at once.

If you don’t understand that, don’t worry about it until 61B.

129

CS 61A Lecture Notes Second Half of Week 5

Topic: Streams

Reading: Abelson & Sussman, Section 3.5.1-3, 3.5.5

Streams are an abstract data type, not so different from rational numbers, in that we have constructors and
selectors for them. But we use a clever trick to achieve tremendously magical results. As we talk about the
mechanics of streams, there are three big ideas to keep in mind:

• Efficiency: Decouple order of evaluation from the form of the program.

• Infinite data sets.

• Functional representation of time-varying information (versus OOP).

You’ll understand what these all mean after we look at some examples.

How do we tell if a number n is prime? Never mind computers, how would you express this idea as a
mathematician? Something like this: “N is prime if it has no factors in the range 2 ≤ f < n.”

So, to implement this on a computer, we should

• Get all the numbers in the range [2, n− 1].

• See which of those are factors of n.

• See if the result is empty.

;;;;; In file cs61a/lectures/3.5/prime1.scm
(define (prime? n)

(null? (filter (lambda (x) (= (remainder n x) 0))
(enumerate-interval 2 (- n 1)))))

But we don’t usually program it that way. Instead, we write a loop:

;;;;; In file cs61a/lectures/3.5/prime0.scm
(define (prime? n)

(define (iter factor)
(cond ((= factor n) #t)

((= (remainder n factor) 0) #f)
(else (iter (+ factor 1)))))

(iter 2))

(Never mind that we can make small optimizations like only checking for factors up to
√

n. Let’s keep it
simple.)

Why don’t we write it the way we expressed the problem in words? The problem is one of efficiency. Let’s
say we want to know if 1000 is prime. We end up constructing a list of 998 numbers and testing all of them
as possible factors of 1000, when testing the first possible factor would have given us a false result quickly.

130

The idea of streams is to let us have our cake and eat it too. We’ll write a program that looks like the first
version, but runs like the second one. All we do is change the second version to use the stream ADT instead
of the list ADT:

;;;;; In file cs61a/lectures/3.5/prime2.scm
(define (prime? n)

(stream-null? (stream-filter (lambda (x) (= (remainder n x) 0))
(stream-enumerate-interval 2 (- n 1)))))

The only changes are stream-enumerate-interval instead of enumerate-interval, stream-null? instead
of null?, and stream-filter instead of filter.

How does it work? A list is implemented as a pair whose car is the first element and whose cdr is the rest
of the elements. A stream is almost the same: It’s a pair whose car is the first element and whose cdr is a
promise to compute the rest of the elements later.

For example, when we ask for the range of numbers [2, 999] what we get is a single pair whose car is 2 and
whose cdr is a promise to compute the range [3, 999]. The function stream-enumerate-interval returns
that single pair. What does stream-filter do with it? Since the first number, 2, does satisfy the predicate,
stream-filter returns a single pair whose car is 2 and whose cdr is a promise to filter the range [3, 999].
Stream-filter returns that pair. So far no promises have been “cashed in.” What does stream-null?
do? It sees that its argument stream contains the number 2, and maybe contains some more stuff, although
maybe not. But at least it contains the number 2, so it’s not empty. Stream-null? returns #f right away,
without computing or testing any more numbers.

Sometimes (for example, if the number we’re checking is prime) you do have to cash in the promises. If so,
the stream program still follows the same order of events as the original loop program; it tries one number
at a time until either a factor is found or there are no more numbers to try.

Summary: What we’ve accomplished is to decouple the form of a program—the order in which computations
are presented—from the actual order of evaluation. This is one more step on the long march that this whole
course is about, i.e., letting us write programs in language that reflects the problems we’re trying to solve
instead of reflecting the way computers work.

131

• Implementation. How does it work? The crucial point is that when we say something like

(cons-stream from (stream-enumerate-interval (+ from 1) to))

(inside stream-enumerate-interval) we can’t actually evaluate the second argument to cons-stream.
That would defeat the object, which is to defer that evaluation until later (or maybe never). Therefore,
cons-stream has to be a special form. It has to cons its first argument onto a promise to compute the
second argument. The expression

(cons-stream a b)

is equivalent to

(cons a (delay b))

Delay is itself a special form, the one that constructs a promise. Promises could be a primitive data type,
but since this is Scheme, we can represent a promise as a function. So the expression

(delay b)

really just means

(lambda () b)

We use the promised expression as the body of a function with no arguments. (A function with no arguments
is called a thunk.)

Once we have this mechanism, we can use ordinary functions to redeem our promises:

(define (force promise) (promise))

and now we can write the selectors for streams:

(define (stream-car stream) (car stream))
(define (stream-cdr stream) (force (cdr stream)))

Notice that forcing a promise doesn’t compute the entire rest of the job at once, necessarily. For example,
if we take our range [2, 999] and ask for its tail, we don’t get a list of 997 values. All we get is a pair whose
car is 3 and whose cdr is a new promise to compute [4, 999] later.

The name for this whole technique is lazy evaluation or call by need.

• Reordering and functional programming. Suppose your program is written to include the following sequence
of steps:

...
(set! x 2)
...
(set! y (+ x 3))
...
(set! x 7)
...

Now suppose that, because we’re using some form of lazy evaluation, the actual sequence of events is
reordered so that the third set! happens before the second one. We’ll end up with the wrong value for
y. This example shows that we can only get away with below-the-line reordering if the above-the-line
computation is functional.

(Why isn’t it a problem with let? Because let doesn’t mutate the value of one variable in one environment.
It sets up a local environment, and any expression within the body of the let has to be computed within
that environment, even if things are reordered.)

132

• Infinite streams. Think about the plain old list function

(define (enumerate-interval from to)
(if (> from to)

’()
(cons from (enumerate-interval (+ from 1) to))))

When we change this to a stream function, we change very little in the appearance of the program:

(define (stream-enumerate-interval from to)
(if (> from to)

THE-EMPTY-STREAM
(cons-STREAM from (stream-enumerate-interval (+ from 1) to))))

but this tiny above-the-line change makes an enormous difference in the actual behavior of the program.

Now let’s cross out the second argument and the end test:

(define (stream-enumerate-interval from)
(cons-stream from (stream-enumerate-interval (+ from 1))))

This is an enormous above-the-line change! We now have what looks like a recursive function with no base
case—an infinite loop. And yet there is hardly any difference at all in the actual behavior of the program.
The old version computed a range such as [2, 999] by constructing a single pair whose car is 2 and whose
cdr is a promise to compute [3, 999] later. The new version computes a range such as [2,∞] by constructing
a single pair whose car is 2 and whose cdr is a promise to compute [3,∞] later!

This amazing idea lets us construct even some pretty complicated infinite sets, such as the set of all the
prime numbers. (Explain the sieve of Eratosthenes. The program is in the book so it’s not reproduced here.)

• Time-varying information. Functional programming works great for situations in which we are looking for
a timeless answer to some question. That is, the same question always has the same answer regardless of
events in the world. We invented OOP because functional programming didn’t let us model changing state.
But with streams we can model state functionally. We can say

(define (user-stream)
(cons-stream (read) (user-stream)))

and this gives us the stream of everything the user is going to type from now on. Instead of using local state
variables to remember the effect of each thing the user types, one at a time, we can write a program that
computes the result of the (possibly infinite) collection of user requests all at once! This feels really bizarre,
but it does mean that purely functional programming languages can handle user interaction. We don’t need
OOP.

133

CS 61A Lecture Notes First Half of Week 6

Topic: Metacircular evaluator

Reading: Abelson & Sussman, Section 4.1.1–6

We’re going to investigate a Scheme interpreter written in Scheme. This interpreter implements the envi-
ronment model of evaluation.

Why bother? What good is an interpreter for Scheme that we can’t use unless we already have another
interpreter for Scheme?

• It helps you understand the environment model.

• It lets us experiment with modifications to Scheme (new features).

• Even real Scheme interpreters are largely written in Scheme.

• It illustrates a big idea: universality.

Universality means we can write one program that’s equivalent to all other programs. At the hardware level,
this is the idea that made general-purpose computers possible. It used to be that they built a separate
machine, from scratch, for every new problem. An intermediate stage was a machine that had a patchboard
so you could rewire it, effectively changing it into a different machine for each problem, without having to
re-manufacture it. The final step was a single machine that accepted a program as data so that it can do
any problem without rewiring.

Instead of a function machine that computes a particular function, taking (say) a number in the input hopper
and returning another number out the bottom, we have a universal function machine that takes a function
machine in one input hopper, and a number in a second hopper, and returns whatever number the input
machine would have returned. This is the ultimate in data-directed programming.

Our Scheme interpreter leaves out some of the important components of a real one. It gets away with this
by taking advantage of the capabilities of the underlying Scheme. Specifically, we don’t deal with storage
allocation, tail recursion elimination, or implementing any of the Scheme primitives. All we do deal with is
the evaluation of expressions. That turns out to be quite a lot in itself, and pretty interesting.

134

Here is a one-screenful version of the metacircular evaluator with most of the details left out:

;;;;; In file cs61a/lectures/4.1/micro.scm
(define (scheme)

(display "> ")
(print (eval (read) the-global-environment))
(scheme))

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((symbol? exp) (lookup-in-env exp env))
((special-form? exp) (do-special-form exp env))
(else (apply (eval (car exp) env)

(map (lambda (e) (eval e env)) (cdr exp))))))

(define (apply proc args)
(if (primitive? proc)

(do-magic proc args)
(eval (body proc)

(extend-environment (formals proc)
args
(proc-env proc)))))

Although the version in the book is a lot bigger, this really does capture the essential structure, namely,
a mutual recursion between eval (evaluate an expression relative to an environment) and apply (apply a
function to arguments). To evaluate a compound expression means to evaluate the subexpressions recursively,
then apply the car (a function) to the cdr (the arguments). To apply a function to arguments means to
evaluate the body of the function in a new environment.

What’s left out? Primitives, special forms, and a lot of details.

In that other college down the peninsula, they wouldn’t consider you ready for an interpreter until junior or
senior year. At this point in the introductory course, they’d still be teaching you where the semicolons go.
How do we get away with this? We have two big advantages:

• The source language (the language that we’re interpreting) is simple and uniform. Its entire formal
syntax can be described in one page, as we did in week 5. There’s hardly anything to implement!

• The implementation language (the one in which the interpreter itself is written) is powerful enough
to handle a program as data, and to let us construct data structures that are both hierarchical and
circular.

The amazing thing is that the simple source language and the powerful implementation language are both
Scheme! You might think that a powerful language has to be complicated, but it’s not so.

135

• Introduction to Logo. For the programming project you’re turning the metacircular evaluator into an
interpreter for a different language, Logo. To do that you should know a little about Logo itself.

Logo is a dialect of Lisp, just as Scheme is, but its design has different priorities. The goal was to make it
as natural-seeming as possible for kids. That means things like getting rid of all those parentheses, and that
has other syntactic implications.

(To demonstrate Logo, run ~cs61a/logo which is Berkeley Logo.)

Commands and operations: In Scheme, every procedure returns a value, even the ones for which the value is
unspecified and/or useless, like define and print. In Logo, procedures are divided into operations, which
return values, and commands, which don’t return values but are called for their effect. You have to start
each instruction with a command:

print sum 2 3

Syntax: If parentheses aren’t used to delimit function calls, how do you know the difference between a
function and an argument? When a symbol is used without punctuation, that means a function call. When
you want the value of a variable to use as an argument, you put colon in front of it.

make "x 14
print :x
print sum :x :x

Words are quoted just as in Scheme, except that the double-quote character is used instead of single-quote.
But since expressions aren’t represented as lists, the same punctuation that delimits a list also quotes it:

print [a b c]

(Parentheses can be used, as in Scheme, if you want to give extra arguments to something, or indicate infix
precedence.)

print (sum 2 3 4 5)
print 3*(4+5)

No special forms: Except to, the thing that defines a new procedure, all Logo primitives evaluate their
arguments. How is this possible? We “proved” back in chapter 1 that if has to be a special form. But
instead we just quote the arguments to ifelse:

ifelse 2=3 [print "hi] [print "bye]

You don’t notice the quoting since you get it for free with the list grouping.

Functions not first class: In Logo every function has a name; there’s no lambda. Also, the namespace
for functions is separate from the one for variables; a variable can’t have a function as its value. (This
is convenient because we can use things like list or sentence as formal parameters without losing the
functions by those names.) That’s another reason why you need colons for variables.

So how do you write higher-order functions like map? Two answers. First, you can use the name of a function
as an argument, and you can use that name to construct an expression and eval it with run. Second, Logo
has first-class expressions; you can run a list that you get as an argument. (This raises issues about the
scope of variables that we’ll explore next week.)

print map "first [the rain in spain]
print map [? * ?] [3 4 5 6]

136

• Data abstraction in the evaluator. Here is a quote from the Instructor’s Manual, regarding section 4.1.2:

“Point out that this section is boring (as is much of section 4.1.3), and explain why: Writing the selectors,
constructors, and predicates that implement a representation is often uninteresting. It is important to say
explicitly what you expect to be boring and what you expect to be interesting so that students don’t ascribe
their boredom to the wrong aspect of the material and reject the interesting ideas. For example, data
abstraction isn’t boring, although writing selectors is. The details of representing expressions (as given in
section 4.1.2) and environments (as given in section 4.1.3) are mostly boring, but the evaluator certainly
isn’t.”

• Dynamic scope. Logo uses dynamic scope, which we discussed in Section 3.2, instead of Scheme’s lexical
scope. There are advantages and disadvantages to both approaches.

Summary of arguments for lexical scope:
• Allows local state variables (OOP).

• Prevents name “capture” bugs.

• Faster compiled code.

Summary of arguments for dynamic scope:
• Allows first-class expressions (WHILE).

• Easier debugging.

• Allows “semi-global” variables.

Lexical scope is required in order to make possible Scheme’s approach to local state variables. That is, a
procedure that has a local state variable must be defined within the scope where that variable is created,
and must carry that scope around with it. That’s exactly what lexical scope accomplishes.

On the other hand, (1) most lexically scoped languages (e.g., Pascal) don’t have lambda, and so they can’t
give you local state variables despite their lexical scope. And (2) lexical scope is needed for local state
variables only if you want to implement the latter in the particular way that we’ve used. Object Logo, for
example, provides OOP without relying on lambda because it includes local state variables as a primitive
feature.

Almost all computer scientists these days hate dynamic scope, and the reason they give is the one about
name captures. That is, suppose we write procedure P that refers to a global variable V. Example:

(define (area rad)
(* pi rad rad))

This is intended as a reference to a global variable pi whose value, presumably, is 3.141592654. But suppose
we invoke it from within another procedure like this:

(define (mess-up pi)
(area (+ pi 5)))

If we say (mess-up 4) we intend to find the area of a circle with radius 9. But we won’t get the right area
if we’re using dynamic scope, because the name pi in procedure area suddenly refers to the local variable
in mess-up, rather than to the intended global value.

This argument about naming bugs is particularly compelling to people who envision a programming project
in which 5000 programmers work on tiny slivers of the project, so that nobody knows what anyone else is
doing. In such a situation it’s entirely likely that two programmers will happen to use the same name for
different purposes. But note that we had to do something pretty foolish—using the name pi for something
that isn’t π at all—in order to get in trouble.

137

Lexical scope lets you write compilers that produce faster executable programs, because with lexical scope
you can figure out during compilation exactly where in memory any particular variable reference will be.
With dynamic scope you have to defer the name-location correspondence until the program actually runs.
This is the real reason why people prefer lexical scope, despite whatever they say about high principles.

As an argument for dynamic scope, consider this Logo implementation of the while control structure:

to while :condition :action
if not run :condition [stop]
run :action
while :condition :action
end

to example :x
while [:x > 0] [print :x make "x :x-1]
end

? example 3
3
2
1

This wouldn’t work with lexical scope, because within the procedure while we couldn’t evaluate the argument
expressions, because the variable x is not bound in any environment lexically surrounding while. Dynamic
scope makes the local variables of example available to while. That in turn allows first-class expressions.
(That’s what Logo uses in place of first-class functions.)

There are ways to get around this limitation of lexical scope. If you wanted to write while in Scheme,
basically, you’d have to make it a special form that turns into something using thunks. That is, you’d have
to make

(while cond act)

turn into

(while-helper (lambda () cond) (lambda () act))

sort of like what we did for cons-stream. But the Logo point of view is that it’s easier for a beginning
programmer to understand first-class expressions than to understand special forms and thunks.

Most Scheme implementations include a debugger that allows you to examine the values of variables after
an error. But, because of the complexity of the scope rules, the debugging language isn’t Scheme itself.
Instead you have to use a special language with commands like “switch to the environment of the procedure
that called this one.” In Logo, when an error happens you can pause your program and type ordinary Logo
expressions in an environment in which all the relevant variables are available. For example, here is a Logo
program:

138

;;;;; In file cs61a/lectures/4.1/bug.logo
to assq :thing :list
if equalp :thing first first :list [op last first :list]
op assq :thing bf :list
end

to spell :card
pr (se assq bl :card :ranks "of assq last :card :suits)
end

to hand :cards
if emptyp :cards [stop]
spell first :cards
hand bf :cards
end

make "ranks [[a ace] [2 two] [3 three] [4 four] [5 five] [6 six] [7 seven]
[8 eight] [9 nine] [10 ten] [j jack] [q queen] [k king]]

make "suits [[h hearts] [s spades] [d diamonds] [c clubs]]

? hand [10h 2d 3s]
TEN OF HEARTS
TWO OF DIAMONDS
THREE OF SPADES

Suppose we introduce an error into hand by changing the recursive call to

hand first bf :cards

The result will be an error message in assq—two procedure calls down—complaining about an empty
argument to first. Although the error is caught in assq, the real problem is in hand. In Logo we can say
pons, which stands for “print out names,” which means to show the values of all variables accessible at the
moment of the error. This will include the variable cards, so we’ll see that the value of that variable is a
single card instead of a list of cards.

Finally, dynamic scope is useful for allowing “semi-global” variables. Take the metacircular evaluator as
an example. Lots of procedures in it require env as an argument, but there’s nothing special about the
value of env in any one of those procedures. It’s almost always just the current environment, whatever
that happens to be. If Scheme had dynamic scope, env could be a parameter of eval, and it would then
automatically be available to any subprocedure called, directly or indirectly, by eval. (This is the flip side
of the name-capturing problem; in this case we want eval to capture the name env.)

• Environments as circular lists. When we first saw circular lists in chapter 2, they probably seemed to be
an utterly useless curiosity, especially since you can’t print one. But in the MC evaluator, every environment
is a circular list, because the environment contains procedures and each procedure contains a pointer to
the environment in which it’s defined. So, moral number 1 is that circular lists are useful; moral number 2
is not to try to trace a procedure in the evaluator that has an environment as an argument! The tracing
mechanism will take forever to try to print the circular argument list.

139

CS 61A Lecture Notes Second Half of Week 6

Topic: Lazy evaluator

Reading: Abelson & Sussman, Sections 4.2

To load the lazy metacircular evaluator, say

(load "~cs61a/lib/lazy.scm")

Streams require careful attention

To make streams of pairs, the text uses this procedure:

;;;;; In file cs61a/lectures/4.2/pairs.scm
(define (pairs s t)

(cons-stream
(list (stream-car s) (stream-car t))
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))
(pairs (stream-cdr s) (stream-cdr t)))))

In exercise 3.68, Louis Reasoner suggests this simpler version:

(define (pairs s t)
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

t)
(pairs (stream-cdr s) (stream-cdr t))))

Of course you know because it’s Louis that this doesn’t work. But why not? The answer is that interleave
is an ordinary procedure, so its arguments are evaluated right away, including the recursive call. So there is
an infinite recursion before any pairs are generated. The book’s version uses cons-stream, which is a special
form, and so what looks like a recursive call actually isn’t—at least not right away.

But in principle Louis is right! His procedure does correctly specify what the desired result should contain.
It fails because of a detail in the implementation of streams. In a perfect world, a mathematically correct
program such as Louis’s version ought to work on the computer.

In section 3.5.4 they solve a similar problem by making the stream programmer use explicit delay invocations.
(You skipped over that section because it was about calculus.) Here’s how Louis could use that technique:

(define (interleave-delayed s1 delayed-s2)
(if (stream-null? s1)

(force delayed-s2)
(cons-stream
(stream-car s1)
(interleave-delayed (force delayed-s2)

(delay (stream-cdr s1))))))

(define (pairs s t)
(interleave-delayed
(stream-map (lambda (x) (list (stream-car s) x))

t)
(delay (pairs (stream-cdr s) (stream-cdr t)))))

This works, but it’s far too horrible to contemplate; with this technique, the stream programmer has to

140

check carefully every procedure to see what might need to be delayed explicitly. This defeats the object of
an abstraction. The user should be able to write a stream program just as if it were a list program, without
any idea of how streams are implemented!

Lazy evaluation: delay everything automatically

Back in chapter 1 we learned about normal order evaluation, in which argument subexpressions are not
evaluated before calling a procedure. In effect, when you type

(foo a b c)

in a normal order evaluator, it’s equivalent to typing

(foo (delay a) (delay b) (delay c))

in ordinary (applicative order) Scheme. If every argument is automatically delayed, then Louis’s pairs
procedure will work without adding explicit delays.

Louis’s program had explicit calls to force as well as explicit calls to delay. If we’re going to make this
process automatic, when should we automatically force a promise? The answer is that some primitives need
to know the real values of their arguments, e.g., the arithmetic primitives. And of course when Scheme is
about to print the value of a top-level expression, we need the real value.

How do we modify the evaluator?

What changes must we make to the metacircular evaluator in order to get normal order?

We’ve just said that the point at which we want to automatically delay a computation is when an expression
is used as an argument to a procedure. Where does the ordinary metacircular evaluator evaluate argument
subexpressions? In this excerpt from eval:

(define (eval exp env)
(cond ...

((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
...))

It’s list-of-values that recursively calls eval for each argument subexpression. Instead we could make
thunks:

(define (eval exp env)
(cond ...

((application? exp)
(apply (ACTUAL-VALUE (operator exp) env)

(LIST-OF-DELAYED-VALUES (operands exp) env)))
...))

Two things have changed:

1. To find out what procedure to invoke, we use actual-value rather than eval. In the normal order
evaluator, what eval returns may be a promise rather than a final value; actual-value forces the promise
if necessary.

2. Instead of list-of-values we call list-of-delayed-values. The ordinary version uses eval to get the
value of each argument expression; the new version will use delay to make a list of thunks. (This isn’t quite
true, and I’ll fix it in a few paragraphs.)

141

When do we want to force the promises? We do it when calling a primitive procedure. That happens in
apply:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
...))

We change it to force the arguments first:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure (MAP FORCE ARGUMENTS)))
...))

Those are the crucial changes. The book gives a few more details: Some special forms must force their
arguments, and the read-eval-print loop must force the value it’s about to print.

Reinventing delay and force

I said earlier that I was lying about using delay to make thunks. The metacircular evaluator can’t use
Scheme’s built-in delay because that would make a thunk in the underlying Scheme environment, and we
want a thunk in the metacircular environment. (This is one more example of the idea of level confusion.)
Instead, the book uses procedures delay-it and force-it to implement metacircular thunks.

What’s a thunk? It’s an expression and an environment in which we should later evaluate it. So we make
one by combining an expression with an environment:

(define (delay-it exp env)
(list ’thunk exp env))

The rest of the implementation is straightforward.

Notice that the delay-it procedure takes an environment as argument; this is because it’s part of the
implementation of the language, not a user-visible feature. If, instead of a lazy evaluator, we wanted to add
a delay special form to the ordinary metacircular evaluator, we’d do it by adding this clause to eval:

((delay? exp) (delay-it (cadr exp) env))

Here exp represents an expression like (delay foo) and so its cadr is the thing we really want to delay.

The book’s version of eval and apply in the lazy evaluator is a little different from what I’ve shown here.
My version makes thunks in eval and passes them to apply. The book’s version has eval pass the argument
expressions to apply, without either evaluating or thunking them, and also passes the current environment
as a third argument. Then apply either evaluates the arguments (for primitives) or thunks them (for non-
primitives). Their way is more efficient, but I think this way makes the issues clearer because it’s more
nearly parallel to the division of labor between eval and apply in the vanilla metacircular evaluator.

Memoization

Why didn’t we choose normal order evaluation for Scheme in the first place? One reason is that it easily
leads to redundant computations. When we talked about it in chapter 1, I gave this example:

(define (square x) (* x x))

(square (square (+ 2 3)))

In a normal order evaluator, this adds 2 to 3 four times!

(square (square (+ 2 3))) ==>

142

(* (square (+ 2 3)) (square (+ 2 3))) ==>
(* (* (+ 2 3) (+ 2 3)) (* (+ 2 3) (+ 2 3)))

The solution is memoization. If we force the same thunk more than once, the thunk should remember its
value from the first time and not have to repeat the computation. (The four instances of (+ 2 3) in the
last line above are all the same thunk forced four times, not four separate thunks.)

The details are straightforward; you can read them in the text.

143

CS 61A Lecture Notes First Half of Week 7

Topic: Nondeterministic evaluator

Reading: Abelson & Sussman, Sections 4.3

To load the nondeterministic metacircular evaluator, say

(load "~cs61a/lib/vambeval.scm")

Solution spaces, streams, and backtracking

Many problems are of the form “Find all A such that B” or “find an A such that B.” For example: Find an
even integer that is not the sum of two primes; find a set of integers a, b, c, and n such that an + bn = cn

and n > 2. (These problems might not be about numbers: Find all the states in the United States whose
first and last letters are the same.)

In each case, the set A (even integers, sets of four integers, or states) is called the solution space. The
condition B is a predicate function of a potential solution that’s true for actual solutions.

One approach to solving problems of this sort is to represent the solution space as a stream, and use filter
to select the elements that satisfy the predicate:

(filter sum-of-two-primes? even-integers)

(filter Fermat? (pairs (pairs integers integers)
(pairs integers integers)))

(filter (lambda (x) (equal? (first x) (last x))) states)

The stream technique is particularly elegant for infinite problem spaces, because the program seems to be
generating the entire solution space A before checking the predicate B. (Of course we know that really the
steps of the computation are reordered so that the elements are tested as they are generated.)

In the next couple of lectures, we consider a different way to express the same sort of computation, a way
that makes the sequence of events in time more visible. In effect we’ll say:

• Pick a possible solution.

• See if it’s really a solution.

• If so, return it; if not, try another.

Here’s an example of the notation:

> (let ((a (amb 2 3 4))
(b (amb 6 7 8)))

(require (= (remainder b a) 0))
(list a b))

(2 6)
> try-again
(2 8)
> try-again
(3 6)
> try-again
(4 8)
> try-again
There are no more solutions.

144

The main new thing here is the special form amb. This is not part of ordinary Scheme! We are adding it as
a new feature in the metacircular evaluator. Amb takes any number of argument expressions and returns the
value of one of them. You can think about this using either of two metaphors:

• The computer clones itself into as many copies as there are arguments; each clone gets a different value.

• The computer magically knows which argument will give rise to a solution to your problem and chooses
that one.

What really happens is that the evaluator chooses the first argument and returns its value, but if the
computation later fails then it tries again with the second argument, and so on until there are no more to
try. This introduces another new idea: the possibility of the failure of a computation. That’s not the same
thing as an error! Errors (such as taking the car of an empty list) are handled the same in this evaluator
as in ordinary Scheme; they result in an error message and the computation stops. A failure is different; it’s
what happens when you call amb with no arguments, or when all the arguments you gave have been tried
and there are no more left.

In the example above I used require to cause a failure of the computation if the condition is not met.
Require is a simple procedure in the metacircular Scheme-with-amb:

(define (require condition)
(if (not condition) (amb)))

So here’s the sequence of events in the computation above:

a=2
b=6; 6 is a multiple of 2, so return (2 6)

[try-again]
b=7; 7 isn’t a multiple of 2, so fail.
b=8; 8 is a multiple of 2, so return (2 8)

[try-again]
No more values for b, so fail.

a=3
b=6; 6 is a multiple of 3, so return (3 6)

[try-again]
b=7; 7 isn’t a multiple of 3, so fail.
b=8; 8 isn’t a multiple of 3, so fail.
No more values for b, so fail.

a=4
b=6; 6 isn’t a multiple of 4, so fail.
b=7; 7 isn’t a multiple of 4, so fail.
b=8; 8 is a multiple of 4, so return (4 8)

[try-again]
No more values for b, so fail.

No more values for a, so fail.
(No more pending AMBs, so report failure to user.)

145

Recursive AmbAmbAmb

Since amb accepts any argument expressions, not just literal values as in the example above, it can be used
recursively:

(define (an-integer-between from to)
(if (> from to)

(amb)
(amb from (an-integer-between (+ from 1) to))))

or if you prefer:

(define (an-integer-between from to)
(require (>= to from))
(amb from (an-integer-between (+ from 1) to)))

Further, since amb is a special form and only evaluates one argument at a time, it has the same delaying
effect as cons-stream and can be used to make infinite solution spaces:

(define (integers-from from)
(amb from (integers-from (+ from 1))))

This integers-from computation never fails—there is always another integer—and so it won’t work to say

(let ((a (integers-from 1))
(b (integers-from 1)))

...)

because a will never have any value other than 1, because the second amb never fails. This is analogous to
the problem of trying to append infinite streams; in that case we could solve the problem with interleave
but it’s harder here.

Footnote on order of evaluation

In describing the sequence of events in these examples, I’m assuming that Scheme will evaluate the arguments
of the unnamed procedure created by a let from left to right. If I wanted to be sure of that, I should use
let* instead of let. But it matters only in my description of the sequence of events; considered abstractly,
the program will behave correctly regardless of the order of evaluation, because all possible solutions will
eventually be tried—although maybe not in the order shown here.

Success or failure

In the implementation of amb, the most difficult change to the evaluator is that any computation may either
succeed or fail. The most obvious way to try to represent this situation is to have eval return some special
value, let’s say the symbol =failed=, if a computation fails. (This is analogous to the use of =no-value= in
the Logo interpreter project.) The trouble is that if an amb fails, we don’t want to continue the computation;
we want to “back up” to an earlier stage in the computation. Suppose we are trying to evaluate an expression
such as

(a (b (c (d 4))))

and suppose that procedures b and c use amb. Procedure d is actually invoked first; then c is invoked with
the value d returned as argument. The amb inside procedure c returns its first argument, and c uses that to
compute a return value that becomes the argument to b. Now suppose that the amb inside b fails. We don’t
want to invoke a with the value =failed= as its argument! In fact we don’t want to invoke a at all; we want
to re-evaluate the body of c but using the second argument to its amb.

A&S take a different approach. If an amb fails, they want to be able to jump right back to the previous amb,
without having to propagate the failure explicitly through several intervening calls to eval. To make this

146

work, intuitively, we have to give eval two different places to return to when it’s finished, one for a success
and the other for a failure.

Continuations

Ordinarily a procedure doesn’t think explicitly about where to return; it returns to its caller, but Scheme
takes care of that automatically. For example, when we compute

(* 3 (square 5))

the procedure square computes the value 25 and Scheme automatically returns that value to the eval
invocation that’s waiting to use it as an argument to the multiplication. But we could tell square explicitly,
“when you’ve figured out the answer, pass it on to be multiplied by 3” this way:

(define (square x continuation)
(continuation (* x x)))

> (square 5 (lambda (y) (* y 3)))
75

A continuation is a procedure that takes your result as argument and says what’s left to be done in the
computation.

Continuations for success and failure

In the case of the nondeterministic evaluator, we give eval two continuations, one for success and one for
failure. Note that these continuations are part of the implementation of the evaluator; the user of amb doesn’t
deal explicitly with continuations.

Here’s a handwavy example. In the case of

(a (b (c (d 4))))

procedure b’s success continuation is something like

(lambda (value) (a value))

but its failure continuation is

(lambda () (a (b (redo-amb-in-c))))

This example is handwavy because these “continuations” are from the point of view of the user of the
metacircular Scheme, who doesn’t know anything about continuations, really. The true continuations are
written in underlying Scheme, as part of the evaluator itself.

If a computation fails, the most recent amb wants to try another value. So a continuation failure will redo
the amb with one fewer argument. There’s no information that the failing computation needs to send back
to that amb except for the fact of failure itself, so the failure continuation procedure needs no arguments.

On the other hand, if the computation succeeds, we have to carry out the success continuation, and that
continuation needs to know the value that we computed. It also needs to know what to do if the continuation
itself fails; most of the time, this will be the same as the failure continuation we were given, but it might
not be. So a success continuation must be a procedure that takes two arguments: a value and a failure
continuation.

The book bases the nondeterministic evaluator on the analyzing one, but I’ll use a simplified version based
on plain old eval (it’s in cs61a/lib/vambeval.scm).

Most kinds of evaluation always succeed, so they invoke their success continuation and pass on the failure
one. I’ll start with a too-simplified version of eval-if in this form:

147

(define (eval-if exp env succeed fail) ; WRONG!
(if (eval (if-predicate exp) env succeed fail)

(eval (if-consequent exp) env succeed fail)
(eval (if-alternative exp) env succeed fail)))

The trouble is, what if the evaluation of the predicate fails? We don’t then want to evaluate the consequent
or the alternative. So instead, we just evaluate the predicate, giving it a success continuation that will
evaluate the consequent or the alternative, supposing that evaluating the predicate succeeds.

In general, wherever the ordinary metacircular evaluator would say

(define (eval-foo exp env)
(eval step-1 env)
(eval step-2 env))

using eval twice for part of its work, this version has to eval the first part with a continuation that evals
the second part:

(define (eval-foo exp env succeed fail)
(eval step-1

env
(lambda (value-1 fail-1)

(eval step-2 env succeed fail-1))
fail))

(In either case, step-2 presumably uses the result of evaluating step-1 somehow.)

Here’s how that works out for if:

(define (eval-if exp env succeed fail)
(eval (if-predicate exp) ; test the predicate

env
(lambda (pred-value fail2) ; with this success continuation

(if (true? pred-value)
(eval (if-consequent exp) env succeed fail2)
(eval (if-alternative exp) env succeed fail2)))

fail)) ; and the same failure continuation

What’s fail2? It’s the failure continuation that the evaluation of the predicate will supply. Most of the time,
that’ll be the same as our own failure continuation, just as eval-if uses fail as the failure continuation to
pass on to the evaluation of the predicate. But if the predicate involves an amb expression, it will generate
a new failure continuation. Think about an example like this one:

> (if (amb #t #f)
(amb 1)
(amb 2))

1

> try-again
2

(A more realistic example would have the predicate expression be some more complicated procedure call that
had an amb in its body.) The first thing that happens is that the first amb returns #t, and so if evaluates its
second argument, and that second amb returns 1. When the user says to try again, there are no more values
for that amb to return, so it fails. What we must do is re-evaluate the first amb, but this time returning its
second argument, #f. By now you’ve forgotten that we’re trying to work out what fail2 is for in eval-if,
but this example shows why the failure continuation when we evaluate if-consequent (namely the (amb 1)

148

expression) has to be different from the failure continuation for the entire if expression. If the entire if
fails (which will happen if we say try-again again) then its failure continuation will tell us that there are no
more values. That continuation is bound to the name fail in eval-if. What ends up bound to the name
fail2 is the continuation that re-evaluates the predicate amb.

How does fail2 get that binding? When eval-if evaluates the predicate, which turns out to be an amb
expression, eval-amb will evaluate whatever argument it’s up to, but with a new failure continuation:

(define (eval-amb exp env succeed fail)
(if (null? (cdr exp)) ; (car exp) is the word AMB

(fail) ; no more args, call failure cont.
(eval (cadr exp) ; Otherwise evaluate the first arg

env
succeed ; with my same success continuation
(lambda () ; but with a new failure continuation:
(eval-amb (cons ’amb (cddr exp)) ; try the next argument

env
succeed
fail)))))

Notice that eval-if, like most other cases, provides a new success continuation but passes on the same
failure continuation that it was given as an argument. But eval-amb does the opposite: It passes on the
same success continuation it was given, but provides a new failure continuation.

Of course there are a gazillion more details, but the book explains them, once you understand what a con-
tinuation is. The most important of these complications is that anything involving mutation is problematic.
If we say

(define x 5)
(set! x (+ x (amb 2 3)))

it’s clear that the first time around x should end up with the value 7 (5+2). But if we try again, we’d like x
to get the value 8 (5 + 3), not 10 (7 + 3). So set! must set up a failure continuation that undoes the change
in the binding of x, restoring its original value of 5, before letting the amb provide its second argument.

149

CS 61A Lecture Notes Second Half of Week 7

Topic: Nondeterministic evaluator

Reading:

Note: For the second half of week 7, we will finish the nondeterministic evaluator and, time permitting,
perhaps move on to new material.

Any additional reading will be posted on the webpage.

150

CS 61A Lecture Notes First Half of Week 8

Topic: Logic programming

Reading: Abelson & Sussman, Section 4.4.1–3

This week’s big idea is logic programming or declarative programming.

It’s the biggest step we’ve taken away from expressing a computation in hardware terms. When we discovered
streams, we saw how to express an algorithm in a way that’s independent of the order of evaluation. Now
we are going to describe a computation in a way that has no (visible) algorithm at all!

We are using a logic programming language that A&S implemented in Scheme. Because of that, the notation
is Scheme-like, i.e., full of lists. Standard logic languages like Prolog have somewhat different notations, but
the idea is the same.

All we do is assert facts:

> (load "~cs61a/lib/query.scm")
> (query)

;;; Query input:
(assert! (Brian likes potstickers))

and ask questions about the facts:

;;; Query input:
(?who likes potstickers)

;;; Query results:
(BRIAN LIKES POTSTICKERS)

Although the assertions and the queries take the form of lists, and so they look a little like Scheme programs,
they’re not! There is no application of function to argument here; an assertion is just data.

This is true even though, for various reasons, it’s traditional to put the verb (the relation) first:

(assert! (likes Brian potstickers))

We’ll use that convention hereafter, but that makes it even easier to fall into the trap of thinking there is a
function called likes.

• Rules. As long as we just tell the system isolated facts, we can’t get extraordinarily interesting replies.
But we can also tell it rules that allow it to infer one fact from another. For example, if we have a lot of
facts like

(mother Eve Cain)

then we can establish a rule about grandmotherhood:

(assert! (rule (grandmother ?elder ?younger)
(and (mother ?elder ?mom)

(mother ?mom ?younger))))

The rule says that the first part (the conclusion) is true if we can find values for the variables such that the
second part (the condition) is true.

Again, resist the temptation to try to do composition of functions!

(assert! (rule (grandmother ?elder ?younger) ;; WRONG!!!!

151

(mother ?elder (mother ?younger))))

Mother isn’t a function, and you can’t ask for the mother of someone as this incorrect example tries to do.
Instead, as in the correct version above, you have to establish a variable (?mom) that has a value that satisfies
the two motherhood relationships we need.

In this language the words assert!, rule, and, or, and not have special meanings. Everything else is just
a word that can be part of assertions or rules.

Once we have the idea of rules, we can do real magic:

;;;;; In file cs61a/lectures/4.4/logic-utility.scm
(assert! (rule (append (?u . ?v) ?y (?u . ?z))

(append ?v ?y ?z)))

(assert! (rule (append () ?y ?y)))

(The actual online file uses a Scheme procedure aa to add the assertion. It’s just like saying assert! to the
query system, but you say it to Scheme instead. This lets you load the file. Don’t get confused about this
small detail—just ignore it.)

;;; Query input:
(append (a b) (c d e) ?what)

;;; Query results:
(APPEND (A B) (C D E) (A B C D E))

So far this is just like what we could do in Scheme.

;;; Query input:
(append ?what (d e) (a b c d e))

;;; Query results:
(APPEND (A B C) (D E) (A B C D E))

;;; Query input:
(append (a) ?what (a b c d e))

;;; Query results:
(APPEND (A) (B C D E) (A B C D E))

The new thing in logic programming is that we can run a “function” backwards! We can tell it the answer
and get back the question. But the real magic is...

;;; Query input:
(append ?this ?that (a b c d e))

;;; Query results:
(APPEND () (A B C D E) (A B C D E))
(APPEND (A) (B C D E) (A B C D E))
(APPEND (A B) (C D E) (A B C D E))
(APPEND (A B C) (D E) (A B C D E))
(APPEND (A B C D) (E) (A B C D E))
(APPEND (A B C D E) () (A B C D E))

We can use logic programming to compute multiple answers to the same question! Somehow it found all the
possible combinations of values that would make our query true.

152

How does the append program work? Compare it to the Scheme append:

(define (append a b)
(if (null? a)

b
(cons (car a) (append (cdr a) b))))

Like the Scheme program, the logic program has two cases: There is a base case in which the first argument
is empty. In that case the combined list is the same as the second appended list. And there is a recursive
case in which we divide the first appended list into its car and its cdr. We reduce the given problem into a
problem about appending (cdr a) to b. The logic program is different in form, but it says the same thing.
(Just as, in the grandmother example, we had to give the mother a name instead of using a function call,
here we have to give (car a) a name—we call it ?u.)

Unfortunately, this “working backwards” magic doesn’t always work.

;;;;; In file cs61a/lectures/4.4/reverse.scm
(assert! (rule (reverse (?a . ?x) ?y)

(and (reverse ?x ?z)
(append ?z (?a) ?y))))

(assert! (reverse () ()))

This works for (reverse (a b c) ?what) but not the other way around; it gets into an infinite loop. We
can also write a version that works only backwards:

;;;;; In file cs61a/lectures/4.4/reverse.scm
(assert! (rule (backward (?a . ?x) ?y)

(and (append ?z (?a) ?y)
(backward ?x ?z))))

(assert! (backward () ()))

But it’s much harder to write one that works both ways. Even as we speak, logic programming fans are trying
to push the limits of the idea, but right now, you still have to understand something about the below-the-line
algorithm to be confident that your logic program won’t loop.

• Below-the-line implementation.

Think about eval in the MC evaluator. It takes two arguments, an expression and an environment, and it
returns the value of the expression.

In logic programming, there’s no such thing as “the value of the expression.” What we’re given is a query, and
there may or may not be some number of variable bindings that make the query true. The query evaluator
qeval is analogous to eval in that it takes two arguments, something to evaluate and a context in which to
work. But the thing to evaluate is a query, not an expression; the context isn’t just one environment but a
whole collection of environments—one for each set of variable values that satisfy some previous query. And
the result returned by qeval isn’t a value. It’s a new collection of environments! It’s as if eval returned an
environment instead of a value.

153

The “collection” of environments we’re talking about here is represented as a stream. That’s because there
might be infinitely many of them! We use the stream idea to reorder the computation; what really happens
is that we take one potential set of satisfying values and work it all the way through; then we try another
potential set of values. But the program looks as if we compute all the satisfying values at once for each
stage of a query.

Just as every top-level Scheme expression is evaluated in the global environment, every top-level query is
evaluated in an empty stream of environments. (No variables have been assigned values yet.)

If we have a query like (and p q), what happens is that we recursively use qeval to evaluate p in the empty
stream. The result is a stream of variable bindings that satisfy p. Then we use qeval to evaluate q in that
result stream! The final result is a stream of bindings that satisfy p and q simultaneously.

If the query is (or p q) then we use qeval to evaluate each of the pieces independently, starting in both
cases with the empty frame. Then we merge the two result streams to get a stream of bindings that satisfy
either p or q.

If the query is (not q), we can’t make sense of that unless we already have a stream of environments to
work with. That’s why we can only use not in a context such as (and p (not q)). We take the stream of
environments that we already have, and we filter that stream, using as the test predicate the function

(lambda (env) (empty-stream? (qeval q env)))

That is, we keep only those environments for which we can’t satisfy q.

That explains how qeval reduces compound queries to simple ones. How do we evaluate a simple query?
The first step is to pattern match the query against every assertion in the data base. Pattern matching is
just like the recursive equal? function, except that a variable in the pattern (the query) matches anything
in the assertion. (But if the same variable appears more than once, it must match the same thing each time.
That’s why we need to keep an environment of matches so far.)

The next step is to match the query against the conclusions of rules. This is tricky because now there can
be variables in both things being matched. Instead of the simple pattern matching we have to use a more
complicated version called unification. (See the details in the text.) If we find a match, then we take the
condition part of the rule (the body) and use that as a new query, to be satisfied within the environment(s)
that qeval gave us when we matched the conclusion. In other words, first we look at the conclusion to see
whether this rule can possibly be relevant to our query; if so, we see if the conditions of the rule are true.

154

Here’s an example, partly traced:

;;; Query input:
(append ?a ?b (aa bb))

(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY
(append () ?1y ?1y) ; AGAINST BASE CASE RULE
()) ; WITH NO CONSTRAINTS

RETURNS: ((?1y . (aa bb)) (?b . ?1y) (?a . ()))
PRINTS: (append () (aa bb) (aa bb))

Since the base-case rule has no body, once we’ve matched it, we can print a successful result. (Before printing,
we have to look up variables in the environment so what we print is variable-free.) Now we unify the original
query against the conclusion of the other rule:

(unify-match (append ?a ?b (aa bb)) ; MATCH ORIGINAL QUERY
(append (?2u . ?2v) ?2y (?2u . ?2z)) ; AGAINST RECURSIVE RULE
()) ; WITH NO CONSTRAINTS

RETURNS: ((?2z . (bb)) (?2u . aa) (?b . ?2y) (?a . (?2u . ?2v)))
[call it F1]

This was successful, but we’re not ready to print anything yet, because we now have to take the body of
that rule as a new query. Note the indenting to indicate that this call to unify-match is within the pending
rule.

(unify-match (append ?2v ?2y ?2z) ; MATCH BODY OF RECURSIVE RULE
(append () ?3y ?3y) ; AGAINST BASE CASE RULE
F1) ; WITH CONSTRAINTS FROM F1

RETURNS: ((?3y . (bb)) (?2y . ?3y) (?2v . ()) [plus F1])
PRINTS: (append (aa) (bb) (aa bb))

(unify-match (append ?2v ?2y ?2z) ; MATCH SAME BODY
(append (?4u . ?4v) ?4y (?4u . ?4z)) ; AGAINST RECURSIVE RULE
F1) ; WITH F1 CONSTRAINTS

RETURNS: ((?4z . ()) (?4u . bb) (?2y . ?4y) (?2v . (?4u . ?4v))
[plus F1]) [call it F2]

(unify-match (append ?4v ?4y ?4z) ; MATCH BODY FROM NEWFOUND MATCH
(append () ?5y ?5y) ; AGAINST BASE CASE RULE
F2) ; WITH NEWFOUND CONSTRAINTS

RETURNS: ((?5y . ()) (?4y . ?5y) (?4v . ()) [plus F2])
PRINTS: (append (aa bb) () (aa bb))

(unify-match (append ?4v ?4y ?4z) ; MATCH SAME BODY
(append (?6u . ?6v) ?6y (?6u . ?6z)) ; AGAINST RECUR RULE
F2) ; SAME CONSTRAINTS

RETURNS: () ; BUT THIS FAILS

done

155

CS 61A Lecture Notes Second Half of Week 8

Topic: Review

Reading: No new reading; study for the final.

• Go over first-day handout about abstraction; show how each topic involves an abstraction barrier and say
what’s above and what’s below the line.

• Go over the big ideas within each programming paradigm:

Functional Programming:
composition of functions
first-class functions (function as object)
higher-order functions
recursion
delayed (lazy) evaluation
(vocabulary: parameter, argument, scope, iterative process)

Object-Oriented Programming:
actors
message passing
local state
inheritance
identity vs. equal value
(vocabulary: dispatch procedure, delegation, mutation)

Logic Programming:
focus on ends, not means
multiple solutions
running a program backwards
(vocabulary: pattern matching, unification)

• Review where 61A fits into the curriculum. (See the CS abstraction hierarchy in week 1.)

Please, please, don’t forget the ideas of 61A just because you’re not programming in Scheme!

156

CS 61A A&S Section 3.0

Object-Oriented Programming — Above the line view

This document should be read before Section 3.1 of the text. A second document, “Object-Oriented
Programming — Below the line view,” should be read after Section 3.1 and perhaps after Section
3.2; the idea is that you first learn how to use the object-oriented programming facility, then you
learn how it’s implemented.

Object-oriented programming is a metaphor. It expresses the idea of several independent agents
inside the computer, instead of a single process manipulating various data. For example, the next
programming project is an adventure game, in which several people, places, and things interact.
We want to be able to say things like “Ask Fred to pick up the potstickers.” (Fred is a person
object, and the potstickers are a thing object.)

Programmers who use the object metaphor have a special vocabulary to describe the components
of an object-oriented programming (OOP) system. In the example just above, “Fred” is called an
instance and the general category “person” is called a class. Programming languages that support
OOP let the programmer talk directly in this vocabulary; for example, every OOP language has a
“define class” command in some form. For this course, we have provided an extension to Scheme
that supports OOP in the style of other OOP languages. Later we shall see how these new features
are implemented using Scheme capabilities that you already understand. OOP is not magic; it’s a
way of thinking and speaking about the structure of a program.

When we talk about a “metaphor,” in technical terms we mean that we are providing an abstraction.
The above-the-line view is the one about independent agents. Below the line there are three crucial
technical ideas: message-passing (section 2.3), local state (section 3.1), and inheritance (explained
below). This document will explain how these ideas look to the OOP programmer; later we shall
see how they are implemented.

A simpler version of this system and of these notes came from MIT; this version was developed at
Berkeley by Matt Wright.

In order to use the OOP system, you must load the file ~cs61a/lib/obj.scm into Scheme.

Message Passing

The way to get things to happen in an object oriented system is to send messages to objects asking
them to do something. You already know about message passing; we used this technique in Section
2.3 to implement generic operators using “smart” data. For example, in Section 3.1 much of the
discussion will be about bank account objects. Each account has a balance (how much money is in
it); you can send messages to a particular account to deposit or withdraw money. The book’s version
shows how these objects can be created using ordinary Scheme notation, but now we’ll use OOP
vocabulary to do the same thing. Let’s say we have two objects Matt-Account and Brian-Account
of the bank account class. (You can’t actually type this into Scheme yet; the example assumes that
we’ve already created these objects.)

> (ask Matt-Account ’balance)
1000

157

> (ask Brian-Account ’balance)
10000
> (ask Matt-Account ’deposit 100)
1100
> (ask Brian-Account ’withdraw 200)
9800
> (ask Matt-Account ’balance)
1100
> (ask Brian-Account ’withdraw 200)
9600

We use the procedure ask to send a message to an object. In the above example we assumed that
bank account objects knew about three messages: balance, deposit, and withdraw. Notice that
some messages require additional information; when we asked for the balance, that was enough,
but when we ask an account to withdraw or deposit we needed to specify the amount also.

The metaphor is that an object “knows how” to do certain things. These things are called methods.
Whenever you send a message to an object, the object carries out the method it associates with
that message.

Local State

Notice that in the above example, we repeatedly said

(ask Brian-Account ’withdraw 200)

and got a different answer each time. It seemed perfectly natural, because that’s how bank accounts
work in real life. However, until now we’ve been using the functional programming paradigm, in
which, by definition, calling the same function twice with the same arguments must give the same
result.

In the OOP paradigm, the objects have state. That is, they have some knowledge about what has
happened to them in the past. In this example, a bank account has a balance, which changes when
you deposit or withdraw some money. Furthermore, each account has its own balance. In OOP
jargon we say that balance is a local state variable.

You already know what a local variable is: a procedure’s formal parameter is one. When you say

(define (square x) (* x x))

the variable x is local to the square procedure. If you had another procedure (cube x), its variable
x would be entirely separate from that of square. Likewise, the balance of Matt-Account is kept
separate from that of Brian-Account.

On the other hand, every time you invoke square, you supply a new value for x; there is no
memory of the value x had last time around. A state variable is one whose value survives between
invocations. After you deposit some money to Matt-Account, the balance variable’s new value is
remembered the next time you access the account.

To create objects in this system you instantiate a class. For example, Matt-Account and

158

Brian-Account are instances of the account class:

> (define Matt-Account (instantiate account 1000))
Matt-Account
> (define Brian-Account (instantiate account 10000))
Brian-Account

The instantiate function takes a class as its first argument and returns a new object of that class.
Instantiate may require additional arguments depending on the particular class: in this example
you specify an account’s initial balance when you create it.

Most of the code in an object-oriented program consists of definitions of various classes. Here is
the account class:

(define-class (account balance)
(method (deposit amount)

(set! balance (+ amount balance))
balance)

(method (withdraw amount)
(if (< balance amount)

"Insufficient funds"
(begin
(set! balance (- balance amount))
balance))))

There’s a lot to say about this code. First of all, there’s a new special form, define-class. The
syntax of define-class is analogous to that of define. Where you would expect to see the name of
the procedure you’re defining comes the name of the class you’re defining. In place of the parameters
to a procedure come the initialization variables of the class: these are local state variables whose
initial values must be given as the extra arguments to instantiate. The body of a class consists
of any number of clauses; in this example there is only one kind of clause, the method clause, but
we’ll learn about others later. The order in which clauses appear within a define-class doesn’t
matter.

The syntax for defining methods was also chosen to resemble that for defining procedures. The
“name” of the method is actually the message used to access the method. The parameters to the
method correspond to extra arguments to the ask procedure. For example, when we said

(ask Matt-Account ’deposit 100)

we associated the argument 100 with the parameter amount.

You’re probably wondering where we defined the balance method. For each local state variable in
a class, a corresponding method of the same name is defined automatically. These methods have
no arguments, and they just return the current value of the variable with that name.

This example also introduced two new special forms that are not unique to the object system. The
first is set!, whose job it is to change the value of a state variable. Its first argument is unevaluated;
it is the name of the variable whose value you wish to change. The second argument is evaluated;
the value of this expression becomes the new value of the variable. The return value of set! is
undefined.

159

This looks a lot like the kind of define without parentheses around the first argument, but the
meaning is different. Define creates a new variable, while set! changes the value of an existing
variable.

The name set! has an exclamation point in its name because of a Scheme convention for procedures
that modify something. (This is just a convention, like the convention about question marks in the
names of predicate functions, not a firm rule.) The reason we haven’t come across this convention
before is that functional programming rules out the whole idea of modifying things; there is no
memory of past history in a functional program.

The other Scheme primitive special form in this example is begin, which evaluates all of its ar-
gument expressions in order and returns the value of the last one. Until now, in every procedure
we’ve evaluated only one expression, to provide the return value of that procedure. It’s still the
case that a procedure can only return one value. Now, though, we sometimes want to evaluate an
expression for what it does instead of what it returns, e.g. changing the value of a variable. The
call to begin indicates that the (set! amount (- amount balance)) and the balance together
form a single argument to if. You’ll learn more about set! and begin in Chapter 3.

Inheritance

Imagine using OOP in a complicated program with many different kinds of objects. Very often,
there will be a few classes that are almost the same. For example, think about a window system.
There might be different kinds of windows (text windows, graphics windows, and so on) but all
of them will have certain methods in common, e.g., the method to move a window to a different
position on the screen. We don’t want to have to reprogram the same method in several classes.
Instead, we create a more general class (such as “window”) that knows about these general methods;
the specific classes (like “text window”) inherit from the general class. In effect, the definition of
the general class is included in that of the more specific class.

Let’s say we want to create a checking account class. Checking accounts are just like regular bank
accounts, except that you can write checks as well as withdrawing money in person. But you’re
charged ten cents every time you write a check.

> (define Hal-Account (instantiate checking-account 1000))
Hal-Account
> (ask Hal-Account ’balance)
1000
> (ask Hal-Account ’deposit 100)
1100
> (ask Hal-Account ’withdraw 50)
1050
> (ask Hal-Account ’write-check 30)
1019.9

One way to do this would be to duplicate all of the code for regular accounts in the definition of the
checking-account. This isn’t so great, though; if we want to add a new feature to the account
class we would need to remember to add it to the checking-account class as well.

160

It is very common in object-oriented programming that one class will be a specialization of another:
the new class will have all the methods of the old, plus some extras, just as in this bank account
example. To describe this situation we use the metaphor of a family of object classes. The original
class is the parent and the specialized version is the child class. We say that the child inherits the
methods of the parent. (The names subclass for child and superclass for parent are also sometimes
used.)

Here’s how we create a subclass of the account class:

(define-class (checking-account init-balance)
(parent (account init-balance))
(method (write-check amount)

(ask self ’withdraw (+ amount 0.10))))

This example introduces the parent clause in define-class. In this case, the parent is the account
class. Whenever we send a message to a checking-account object, where does the corresponding
method come from? If a method of that name is defined in the checking-account class, it is used;
otherwise, the OOP system looks for a method in the parent account class. (If that class also had
a parent, we might end up inheriting a method from that twice-removed class, and so on.)

Notice also that the write-check method refers to a variable called self. Each object has a local
state variable self whose value is the object itself. (Notice that you might write a method within
the definition of a class C thinking that self will always be an instance of C, but in fact self might
turn out to be an instance of another class that has C as its parent.)

Methods defined in a certain class only have access to the local state variables defined in the
same class. For example, a method defined in the checking-account class can’t refer to the
balance variable defined in the account class; likewise, a method in the account class can’t refer
to the init-balance variable. This rule corresponds to the usual Scheme rule about scope of
variables: each variable is only available within the block in which it’s defined. (Not every OOP
implementation works like this, by the way.)

If a method in the checking-account class needs to refer to the balance variable defined in its
parent class, the method could say

(ask self ’balance)

This invocation of ask sends a message to the checking-account object, but because there is no
balance method defined within the checking-account class itself, the method that’s inherited
from the account class is used.

We used the name init-balance for the new class’s initialization variable, rather than just
balance, because we want that name to mean the variable belonging to the parent class. Since
the OOP system automatically creates a method named after every local variable in the class, if
we called this variable balance then we couldn’t use a balance message to get at the parent’s
balance state variable. (It is the parent, after all, in which the account’s balance is changed for
each transaction.)

We have now described the three most important parts of the OOP system: message passing, local
state, and inheritance. In the rest of this document we introduce some “bells and whistles”—
additional features that make the notation more flexible, but don’t really involve major new ideas.

161

Three Kinds of Local State Variables

So far the only local state variables we’ve seen have been instantiation variables, whose values are
given as arguments when an object is created. Sometimes we’d like each instance to have a local
state variable, but the initial value is the same for every object in the class, so we don’t want to have
to mention it at each instantiation. To achieve this purpose, we’ll use a new kind of define-class
clause, called instance-vars:

(define-class (checking-account init-balance)
(parent (account init-balance))
(instance-vars (check-fee 0.10))
(method (write-check amount)

(ask self ’withdraw (+ amount check-fee)))
(method (set-fee! fee)

(set! check-fee fee)))

We’ve set things up so that every new checking account will have a ten-cent fee for each check. It’s
possible to change the fee for any given account, but we don’t have to say anything if we want to
stick with the ten cent value.

Instantiation variables are also instance variables; that is, every instance has its own private value
for them. The only difference is in the notation—for instantiation variables you give a value when
you call instantiate, but for other instance variables you give the value in the class definition.

The third kind of local state variable is a class variable. Unlike the case of instance variables, there
is only one value for a class variable for the entire class. Every instance of the class shares this
value. For example, let’s say we want to have a class of workers that are all working on the same
project. That is to say, whenever any of them works, the total amount of work done is increased.
On the other hand, each worker gets hungry separately as he or she works. Therefore, there is a
common work-done variable for the class, and a separate hunger variable for each instance.

(define-class (worker)
(instance-vars (hunger 0))
(class-vars (work-done 0))
(method (work)

(set! hunger (1+ hunger))
(set! work-done (1+ work-done))
’whistle-while-you-work))

> (define brian (instantiate worker))
BRIAN
> (define matt (instantiate worker))
MATT
> (ask matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask matt ’hunger)
2

162

> (ask matt ’work-done)
2
> (ask brian ’work)
WHISTLE-WHILE-YOU-WORK
> (ask brian ’hunger)
1
> (ask brian ’work-done)
3
> (ask worker ’work-done)
3

As you can see, asking any worker object to work increments the work-done variable. In contrast,
each worker has its own hunger instance variable, so that when Brian works, Matt doesn’t get
hungry.

You can ask any instance the value of a class variable, or you can ask the class itself. This is an
exception to the usual rule that messages must be sent to instances, not to classes.

Initialization

Sometimes we want every new instance of some class to carry out some initial activity as soon as
it’s created. For example, let’s say we want to maintain a list of all the worker objects. We’ll create
a class variable called all-workers to hold the list, but we also have to make sure that each newly
created instance adds itself to the list. We do this with an initialize clause:

(define-class (worker)
(instance-vars (hunger 0))
(class-vars (all-workers ’())

(work-done 0))
(initialize (set! all-workers (cons self all-workers)))
(method (work)

(set! hunger (1+ hunger))
(set! work-done (1+ work-done))
’whistle-while-you-work))

The body of the initialize clause is evaluated when the object is instantiated. (By the way, don’t
get confused about those two long words that both start with “I.” Instantiation is the process of
creating an instance (that is, a particular object) of a class. Initialization is some optional, class-
specific activity that the newly instantiated object might perform.)

If a class and its parent class both have initialize clauses, the parent’s clause is evaluated first.
This might be important if the child’s initialization refers to local state that is maintained by
methods in the parent class.

Classes That Recognize Any Message

Suppose we want to create a class of objects that return the value of the previous message they

163

received whenever you send them a new message. Obviously, each such object needs an instance
variable in which it will remember the previous message. The hard part is that we want objects of
this class to accept any message, not just a few specific messages. Here’s how:

(define-class (echo-previous)
(instance-vars (previous-message ’first-time))
(default-method

(let ((result previous-message))
(set! previous-message message)
result)))

We used a default-method clause; the body of a default-method clause gets evaluated if an
object receives a message for which it has no method. (In this case, the echo-previous object
doesn’t have any regular methods, so the default-method code is executed for any message.)

Inside the body of the default-method clause, the variable message is bound to the message that
was received and the variable args is bound to a list of any additional arguments to ask.

Using a Parent’s Method Explicitly

In the example about checking accounts earlier, we said

(define-class (checking-account init-balance)
(parent (account init-balance))
(method (write-check amount)

(ask self ’withdraw (+ amount 0.10))))

Don’t forget how this works: Because the checking-account class has a parent, whatever messages
it doesn’t understand are processed in the same way that the parent (account) class would handle
them. In particular, account objects have deposit and withdraw methods.

Although a checking-account object asks itself to withdraw some money, we really intend that
this message be handled by a method defined within the parent account class. There is no problem
here because the checking-account class itself does not have a withdraw method.

Imagine that we want to define a class with a method of the same name as a method in its parent
class. Also, we want the child’s method to invoke the parent’s method of the same name. For
example, we’ll define a TA class that is a specialization of the worker class. The only difference is
that when you ask a TA to work, he or she returns the sentence “Let me help you with that box
and pointer diagram” after invoking the work method defined in the worker class.

We can’t just say (ask self ’work), because that will refer to the method defined in the child
class. That is, suppose we say:

(define-class (TA)
(parent (worker))
(method (work)

(ask self ’work) ;; WRONG!
’(Let me help you with that box and pointer diagram))

(method (grade-exam) ’A+))

164

When we ask a TA to work, we are hoping to get the result of asking a worker to work (increasing
hunger, increasing work done) but return a different sentence. But what actually happens is an
infinite recursion. Since self refers to the TA, and the TA does have its own work method, that’s
what gets used. (In the earlier example with checking accounts, ask self works because the
checking account does not have its own withdraw method.)

Instead we need a way to access the method defined in the parent (worker) class. We can accomplish
this with usual:

(define-class (TA)
(parent (worker))
(method (work)

(usual ’work)
’(Let me help you with that box and pointer diagram))

(method (grade-exam) ’A+))

Usual takes one or more arguments. The first argument is a message, and the others are whatever
extra arguments are needed. Calling usual is just like saying (ask self ...) with the same
arguments, except that only methods defined within an ancestor class (parent, grandparent, etc.)
are eligible to be used. It is an error to invoke usual from a class that doesn’t have a parent class.

You may be thinking that usual is a funny name for this function. Here’s the idea behind the name:
We are thinking of subclasses as specializations. That is, the parent class represents some broad
category of things, and the child is a specialized version. (Think of the relationship of checking
accounts to accounts in general.) The child object does almost everything the same way its parent
does. The child has some special way to handle a few messages, different from the usual way (as
the parent does it). But the child can explicitly decide to do something in the usual (parent-like)
way, rather than in its own specialized way.

Multiple Superclasses

We can have object types that inherit methods from more than one type. We’ll invent a singer
class and then create singer-TAs and TA-singers.

(define-class (singer)
(parent (worker))
(method (sing) ’(tra-la-la)))

(define-class (singer-TA)
(parent (singer) (TA)))

(define-class (TA-singer)
(parent (TA) (singer)))

> (define Matt (instantiate singer-TA))
> (define Chris (instantiate TA-singer))
> (ask Matt ’grade-exam)
A+

165

> (ask Matt ’sing)
(TRA-LA-LA)
> (ask Matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask Chris ’work)
(LET ME HELP YOU WITH THAT BOX AND POINTER DIAGRAM)

Both Matt and Chris can do anything a TA can do, such as grading exams, and anything a singer
can do, such as singing. The only difference between them is how they handle messages that TAs
and singers process differently. Matt is primarily a singer, so he responds to the work message
as a singer would. Chris, however, is primarily a TA, and uses the work method from the TA class.

In the example above, Matt used the work method from the worker class, inherited through two
levels of parent relationships. (The worker class is the parent of singer, which is a parent of
singer-TA.) In some situations it might be better to choose a method inherited directly from a
second-choice parent (the TA class) over one inherited from a first-choice grandparent. Much of
the complexity of contemporary object-oriented programming languages has to do with specifying
ways to control the order of inheritance in situations like this.

166

Reference Manual for the OOP Language

There are only three procedures that you need to use: define-class, which defines a class;
instantiate, which takes a class as its argument and returns an instance of the class; and ask,
which asks an object to do something. Here are the explanations of the procedures:

ASK: (ask object message . args)
Ask gets a method from object corresponding to message. If the object has such a method, invoke
it with the given args; otherwise it’s an error.

INSTANTIATE: (instantiate class . arguments)
Instantiate creates a new instance of the given class, initializes it, and returns it. To initialize
a class, instantiate runs the initialize clauses of all the parent classes of the object and then
runs the initialize clause of this class.

The extra arguments to instantiate give the values of the new object’s instantiation variables.
So if you say

(define-class (account balance) ...)

then saying

(define my-acct (instantiate account 100))

will cause my-acct’s balance variable to be bound to 100.

DEFINE-CLASS:

(define-class (class-name args...) clauses...)
This defines a new class named class-name. The instantiation arguments for this class are args.
(See the explanation of instantiate above.)

The rest of the arguments to define-class are various clauses of the following types. All clauses
are optional. You can have any number of method clauses, in any order.

(METHOD (message arguments...) body)(METHOD (message arguments...) body)(METHOD (message arguments...) body)

A method clause gives the class a method corresponding to the message, with the given
arguments and body. A class definition may contain any number of method clauses. You
invoke methods with ask. For example, say there’s an object with a

(method (add x y) (+ x y))

clause. Then (ask object ’add 2 5) returns 7.

Inside a method, the variable self is bound to the object whose method this is. (Note
that self might be an instance of a child class of the class in which the method is
defined.) A method defined within a particular class has access to the instantiation

167

variables, instance variables, and class variables that are defined within the same class,
but does not have access to variables defined in parent or child classes. (This is similar
to the scope rules for variables within procedures outside of the OOP system.)

Any method that is usable within a given object can invoke any other such method by
invoking (ask self message). However, if a method wants to invoke the method of
the same name within a parent class, it must instead ask for that explicitly by saying

(usual message args...)

where message is the name of the method you want and args... are the arguments to
the method.

(INSTANCE-VARS (var1 value1) (var2 value2) ...)(INSTANCE-VARS (var1 value1) (var2 value2) ...)(INSTANCE-VARS (var1 value1) (var2 value2) ...)

Instance-vars sets up local state variables var1, var2, etc. Each instance of the class
will have its own private set of variables with these names. These are visible inside the
bodies of the methods and the initialization code within the same class definition. The
initial values of the variables are calculated when an instance is created by evaluating
the expressions value1, value2, etc. There can be any number of variables. Also, a
method is automatically created for each variable that returns its value. If there is no
instance-vars clause then the instances of this class won’t have any instance variables.
It is an error for a class definition to contain more than one instance-vars clause.

(CLASS-VARS (var1 value1) (var2 value2) ...)(CLASS-VARS (var1 value1) (var2 value2) ...)(CLASS-VARS (var1 value1) (var2 value2) ...)

Class-vars sets up local state variables var1, var2, etc. The class has only one set
of variables with these names, shared by every instance of the class. (Compare the
instance-vars clause described above.) These variables are visible inside the bodies
of the methods and the initialization code within the same class definition. The initial
values of the variables are calculated when the class is defined by evaluating the expres-
sions value1, value2, etc. There can be any number of variables. Also, a method is
automatically created for each variable that returns its value. If there is no class-vars
clause then the class won’t have any class variables. It is an error for a class definition
to contain more than one class-vars clause.

(PARENT (parent1 args...) (parent2 args...))(PARENT (parent1 args...) (parent2 args...))(PARENT (parent1 args...) (parent2 args...))

Parent defines the parents of a class. The args are the arguments used to instantiate
the parent objects. For example, let’s say that the rectangle class has two arguments:
height and width:

(define-class (rectangle height width) ...)

A square is a kind of rectangle; the height and width of the square’s rectangle are
both the side-length of the square:

(define-class (square side-length)
(parent (rectangle side-length side-length))
...)

168

When an object class doesn’t have an explicit method for a message it receives, it looks
for methods of that name (or default methods, as explained below) in the definitions of
the parent classes, in the order they appear in the parent clause. The method that gets
invoked is from the first parent class that recognizes the message.

A method can invoke a parent’s method of the same name with usual; see the notes on
the method clause above.

(DEFAULT-METHOD body)(DEFAULT-METHOD body)(DEFAULT-METHOD body)

A default-method clause specifies the code that an object should execute if it receives
an unrecognized message (i.e., a message that does not name a method in this class or
any of its superclasses). When the body is executed, the variable message is bound to
the message, and the variable args is bound to a list of the additional arguments to
ask.

(INITIALIZE body)(INITIALIZE body)(INITIALIZE body)

The body of the initialize clause contains code that is executed whenever an instance
of this class is created.

If the class has parents, their initialize code gets executed before the initialize
clause in the class itself. If the class has two or more parents, their initialize code is
executed in the order that they appear in the parent clause.

169

CS 61A A&S Section 3.2 1
2

Object-Oriented Programming — Below the line view

This document documents the Object Oriented Programming system for CS 61A in terms of its
implementation in Scheme. It assumes that you already know what the system does, i.e. that you’ve
read “Object-Oriented Programming — Above the line view.” Also, this handout will assume a
knowledge of how to implement message passing and local state variables in Scheme, from chapters
2.3 and 3.1 of A&S. (Chapter 3.2 from A&S will also be helpful.)

Almost all of the work of the object system is handled by the special form define-class. When
you type a list that begins with the symbol define-class, Scheme translates your class definition
into Scheme code to implement that class. This translated version of your class definition is written
entirely in terms of define, let, lambda, set!, and other Scheme functions that you already know
about.

We will focus on the implementation of the three main technical ideas in OOP: message passing,
local state, and inheritance.

Message Passing

The text introduces message-passing with this example from Section 2.3.3 (page 141):

(define (make-rectangular x y)
(define (dispatch m)

(cond ((eq? m ’real-part) x)
((eq? m ’imag-part) y)
((eq? m ’magnitude)
(sqrt (+ (square x) (square y))))

((eq? m ’angle) (atan y x))
(else
(error "Unknown op -- MAKE-RECTANGULAR" m))))

dispatch)

In this example, a complex number object is represented by a dispatch procedure. The procedure
takes a message as its argument, and returns a number as its result. Later, in Section 3.1.1 (page
173), the text uses a refinement of this representation in which the dispatch procedure returns a
procedure instead of a number. The reason they make this change is to allow for extra arguments
to what we are calling the method that responds to a message. The user says

((acc ’withdraw) 100)

Evaluating this expression requires a two-step process: First, the dispatch procedure (named acc) is
invoked with the message withdraw as its argument. The dispatch procedure returns the withdraw
method procedure, and that second procedure is invoked with 100 as its argument to do the actual
work. All of an object’s activity comes from invoking its method procedures; the only job of the
object itself is to return the right procedure when it gets sent a message.

Any OOP system that uses the message-passing model must have some below-the-line mechanism
for associating methods with messages. In Scheme, with its first-class procedures, it is very natural

170

to use a dispatch procedure as the association mechanism. In some other language the object might
instead be represented as an array of message-method pairs.

If we are treating objects as an abstract data type, programs that use objects shouldn’t have to
know that we happen to be representing objects as procedures. The two-step notation for invoking
a method violates this abstraction barrier. To fix this we invent the ask procedure:

(define (ask object message . args)
(let ((method (object message))) ; Step 1: invoke dispatch procedure

(if (method? method)
(apply method args) ; Step 2: invoke the method
(error "No method" message (cadr method)))))

Ask carries out essentially the same steps as the explicit notation used in the text. First it invokes
the dispatch procedure (that is, the object itself) with the message as its argument. This should
return a method (another procedure). The second step is to invoke that method procedure with
whatever extra arguments have been provided to ask.

The body of ask looks more complicated than the earlier version, but most of that has to do with
error-checking: What if the object doesn’t recognize the message we send it? These details aren’t
very important. Ask does use two features of Scheme that we haven’t discussed before:

The dot notation used in the formal parameter list of ask means that it accepts any number of
arguments. The first two are associated with the formal parameters object and message; all
the remaining arguments (zero or more of them) are put in a list and associated with the formal
parameter args.

The procedure apply takes a procedure and a list of arguments and applies the procedure to the
arguments. The reason we need it here is that we don’t know in advance how many arguments the
method will be given; if we said (method args) we would be giving the method one argument,
namely, a list.

In our OOP system, you generally send messages to instances, but you can also send some messages
to classes, namely the ones to examine class variables. When you send a message to a class, just as
when you send one to an instance, you get back a method. That’s why we can use ask with both
instances and classes. (The OOP system itself also sends the class an instantiate message when
you ask it to create a new instance.) Therefore, both the class and each instance is represented by
a dispatch procedure. The overall structure of a class definition looks something like this:

(define (class-dispatch-procedure class-message)
(cond ((eq? class-message ’some-var-name) (lambda () (get-the-value)))

(...)
((eq? class-message ’instantiate)
(lambda (instantiation-var ...)

(define (instance-dispatch-procedure instance-message)
(cond ((eq? instance-message ’foo) (lambda ...))

(...)
(else (error "No method in instance"))))

instance-dispatch-procedure))
(else (error "No method in class"))))

171

(Please note that this is not exactly what a class really looks like. In this simplified version we
have left out many details. The only crucial point here is that there are two dispatch procedures,
one inside the other.) In each dispatch procedure, there is a cond with a clause for each allow-
able message. The consequent expression of each clause is a lambda expression that defines the
corresponding method. (In the text, the examples often use named method procedures, and the
consequent expressions are names rather than lambdas. We found it more convenient this way, but
it doesn’t really matter.)

Local State

You learned in section 3.1 that the way to give a procedure a local state variable is to define that
procedure inside another procedure that establishes the variable. That outer procedure might be
the implicit procedure in the let special form, as in this example from page 171:

(define new-withdraw
(let ((balance 100))

(lambda (amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)
"Insufficient funds"))))

In the OOP system, there are three kinds of local state variables: class variables, instance variables,
and instantiation variables. Although instantiation variables are just a special kind of instance
variable above the line, they are implemented differently. Here is another simplified view of a class
definition, this time leaving out all the message passing stuff and focusing on the variables:

(define class-dispatch-procedure
(LET ((CLASS-VAR1 VAL1)

(CLASS-VAR2 VAL2) ...)
(lambda (class-message)
(cond ((eq? class-message ’class-var1) (lambda () class-var1))

...
((eq? class-message ’instantiate)
(lambda (INSTANTIATION-VARIABLE1 ...)
(LET ((INSTANCE-VAR1 VAL1)

(INSTANCE-VAR2 VAL2) ...)
(define (instance-dispatch-procedure instance-message)

...)
instance-dispatch-procedure)))))))

The scope of a class variable includes the class dispatch procedure, the instance dispatch procedure,
and all of the methods within those. The scope of an instance variable does not include the class
dispatch procedure in its methods. Each invocation of the class instantiate method gives rise to
a new set of instance variables, just as each new bank account in the book has its own local state
variables.

172

Why are class variables and instance variables implemented using let, but not instantiation vari-
ables? The reason is that class and instance variables are given their (initial) values by the class
definition itself. That’s what let does: It establishes the connection between a name and a value.
Instantiation variables, however, don’t get values until each particular instance of the class is cre-
ated, so we implement these variables as the formal parameters of a lambda that will be invoked
to create an instance.

Inheritance and Delegation

Inheritance is the mechanism through which objects of a child class can use methods from a parent
class. Ideally, all such methods would just be part of the repertoire of the child class; the parent’s
procedure definitions would be “copied into” the Scheme implementation of the child class.

The actual implementation in our OOP system, although it has the same purpose, uses a somewhat
different technique called delegation. Each object’s dispatch procedure contains entries only for the
methods of its own class, not its parent classes. But each object has, in an instance variable, an
object of its parent class. To make it easier to talk about all these objects and classes, let’s take
an example that we looked at before:

(define-class (checking-account init-balance)
(parent (account init-balance))
(method (write-check amount)

(ask self ’withdraw (+ amount 0.10))))

Let’s create an instance of that class:

(define Gerry-account (instantiate checking-account 20000))

Then the object named Gerry-account will have an instance variable named my-account whose
value is an instance of the account class. (The variables my-whatever are created automatically
by define-class.)

What good is this parent instance? If the dispatch procedure for Gerry-account doesn’t recognize
some message, then it reaches the else clause of the cond. In an object without a parent, that
clause will generate an error message. But if the object does have a parent, the else clause passes
the message on to the parent’s dispatch procedure:

(define (make-checking-account-instance init-balance)
(LET ((MY-ACCOUNT (INSTANTIATE ACCOUNT INIT-BALANCE)))

(lambda (message)
(cond ((eq? message ’write-check) (lambda (amount) ...))

((eq? message ’init-balance) (lambda () init-balance))
(ELSE (MY-ACCOUNT MESSAGE))))))

(Naturally, this is a vastly simplified picture. We’ve left out the class dispatch procedure, among
other details. There isn’t really a procedure named make-checking-account-instance in the
implementation; this procedure is really the instantiate method for the class, as we explained
earlier.)

173

When we send Gerry-account a write-check message, it’s handled in the straightforward way
we’ve been talking about before this section. But when we send Gerry-account a deposit message,
we reach the else clause of the cond and the message is delegated to the parent account object.
That object (that is, its dispatch procedure) returns a method, and Gerry-account returns the
method too.

The crucial thing to understand is why the else clause does not say

(else (ask my-parent message))

The Gerry-account dispatch procedure takes a message as its argument, and returns a method as
its result. Ask, you’ll recall, carries out a two-step process in which it first gets the method and then
invokes that method. Within the dispatch procedure we only want to get the method, not invoke
it. (Somewhere there is an invocation of ask waiting for Gerry-account’s dispatch procedure to
return a method, which ask will then invoke.)

There is one drawback to the delegation technique. As we mentioned in the above-the-line handout,
when we ask Gerry-account to deposit some money, the deposit method only has access to the
local state variables of the account class, not those of the checking-account class. Similarly, the
write-check method doesn’t have access to the account local state variables like balance. You
can see why this limitation occurs: Each method is a procedure defined within the scope of one or
the other class procedure, and Scheme’s lexical scoping rules restrict each method to the variables
whose scope contains it. The technical distinction between inheritance and delegation is that an
inheritance-based OOP system does not have this restriction.

We can get around the limitation by using messages that ask the other class (the child asks the
parent, or vice versa) to return (or modify) one of its variables. The (ask self ’withdraw ...)
in the write-check method is an example.

Bells and Whistles

The simplified Scheme implementation shown above hides several complications in the actual OOP
system. What we have explained so far is really the most important part of the implementation,
and you shouldn’t let the details that follow confuse you about the core ideas. We’re giving pretty
brief explanations of these things, leaving out the gory details.

One complication is multiple inheritance. Instead of delegating an unknown message to just one
parent, we have to try more than one. The real else clauses invoke a procedure called get-method
that accepts any number of objects (i.e., dispatch procedures) as arguments, in addition to the
message. Get-method tries to find a method in each object in turn; only if all of the parents fail to
provide a method does it give an error message. (There will be a my-whatever variable for each of
the parent classes.)

Another complication that affects the else clause is the possible use of a default-method in the
class definition. If this optional feature is used, the body of the default-method clause becomes
part of the object’s else clause.

When an instance is created, the instantiate procedure sends it an initialize message. Every
dispatch procedure automatically has a corresponding method. If the initialize clause is used

174

in define-class, then the method includes that code. But even if there is no initialize clause,
the OOP system has some initialization tasks of its own to perform.

In particular, the initialization must provide a value for the self variable. Every initialize
method takes the desired value for self as an argument. If there are no parents or children
involved, self is just another name for the object’s own dispatch procedure. But if an instance is
the my-whatever of some child instance, then self should mean that child. The solution is that
the child’s initialize method invokes the parent’s initialize method with the child’s own self
as the argument. (Where does the child get its self argument? It is provided by the instantiate
procedure.)

Finally, usual involves some complications. Each object has a send-usual-to-parent method
that essentially duplicates the job of the ask procedure, except that it only looks for methods in
the parents, as the else clause does. Invoking usual causes this method to be invoked.

A useful feature

To aid in your understanding of the below-the-line functioning of this system, we have provided a
way to look at the translated Scheme code directly, i.e., to look at the below-the-line version of a
class definition. To look at the definition of the class foo, for example, you type

(show-class ’foo)

If you do this, you will see the complete translation of a define-class, including all the details
we’ve been glossing over. But you should now understand the central issues well enough to be able
to make sense of it.

We end this document with one huge example showing every feature of the object system. Here
are the above-the-line class definitions:

(define-class (person) (method (smell-flowers) ’Mmm!))
(define-class (fruit-lover fruit) (method (favorite-food) fruit))

(define-class (banana-holder name)
(class-vars (list-of-banana-holders ’()))
(instance-vars (bananas 0))
(method (get-more-bananas amount)

(set! bananas (+ bananas amount)))
(default-method ’sorry)
(parent (person) (fruit-lover ’banana))
(initialize
(set! list-of-banana-holders (cons self list-of-banana-holders))))

On the next page we show the translation of the banana-holder class definition into ordinary
Scheme. Of course this is hideously long, since we have artificially defined the class to use every
possible feature at once. The translations aren’t meant to be read by people, ordinarily. The
comments in the translated version were added just for this handout; you won’t see comments if
you use show-class yourself.

175

(define banana-holder
(let ((list-of-banana-holders ’())) ;; class vars set up
(lambda (class-message) ;; class dispatch proc

(cond
((eq? class-message ’list-of-banana-holders)
(lambda () list-of-banana-holders))

((eq? class-message ’instantiate)
(lambda (name) ;; Instantiation vars

(let ((self ’()) ;; Instance vars
(my-person (instantiate-parent person))
(my-fruit-lover (instantiate-parent fruit-lover ’banana))
(bananas 0))

(define (dispatch message) ;; Object dispatch proc
(cond
((eq? message ’initialize) ;; Initialize method:
(lambda (value-for-self) ;; set up self variable

(set! self value-for-self)
(ask my-person ’initialize self)
(ask my-fruit-lover ’initialize self)
(set! list-of-banana-holders ;; user’s init code

(cons self list-of-banana-holders))))
((eq? message ’send-usual-to-parent) ;; How USUAL works
(lambda (message . args)

(let ((method (get-method
’banana-holder
message
my-person
my-fruit-lover)))

(if (method? method)
(apply method args)
(error "No USUAL method" message ’banana-holder)))))

((eq? message ’name) (lambda () name))
((eq? message ’bananas) (lambda () bananas))
((eq? message ’list-of-banana-holders)
(lambda () list-of-banana-holders))
((eq? message ’get-more-bananas)
(lambda (amount) (set! bananas (+ bananas amount))))
(else ;; Else clause:
(let ((method (get-method

’banana-holder
message
my-person
my-fruit-lover)))

(if (method? method) ;; Try delegating...
method
(lambda args ’sorry)))))) ;; default-method

dispatch))) ;; Class’ instantiate
;; proc returns object

(else (error "Bad message to class" class-message))))))

176

UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61A P. N. Hilfinger

Highlights of GNU Emacs

This document describes the major features of GNU Emacs (called “Emacs” hereafter), a
customizable, self-documenting text editor. In the interests of truth, beauty, and justice—and
to undo, in some small part, the damage Berkeley has done by foisting vi on an already-
unhappy world—Emacs will be the official CS61A text editor this semester.

Emacs carries with it on-line documentation of most of its commands, along with a tutorial
for first-time users (see §7). Because this documentation is available, I have not attempted
to present a complete Emacs reference manual here.

To run Emacs, simply enter the command emacs to the shell. Within Emacs, as described
below, you can edit any number of files simultaneously, run UNIX shells, read and send mail,
and run the Scheme interpreter to execute your programs. As a result, it should seldom be
necessary to leave Emacs before you are ready to logout and seldom necessary to create new
windows.

1 Basic Concepts

We’ll begin with some fundamental definitions and notational conventions.

1.1 Buffers, windows, and what’s in them

At any given time, Emacs maintains one or more buffers containing text. Each buffer may,
but need not, be associated with a file. A buffer may be associated with a UNIX process, in
which case the buffer generally contains input and output produced by that process (see, for
example, sections 8 and 10). Within each buffer, there is a position called the point, where
most of the action takes place.

Emacs displays one or more windows into its buffers, each showing some portion of the text
of some buffer. A buffer’s text is retained even when no window displays it; it can be displayed
at any time by giving it a window. Each window has its own point (as just described); when
only one window displays a buffer, its point is the same as the buffer’s point. Two windows
can simultaneously display text (not necessarily the same text) from the same buffer with
a different point in each window, although it is most often useful to use multiple windows
to display multiple files. At the bottom of each window, Emacs displays a mode line, which

177

178 P. N. Hilfinger

generally identifies the buffer being displayed and (if applicable) the file associated with it.
At any given time, the cursor, which generally marks the point of text insertion, is in one of
the windows (called the current window) at that window’s point.

1.2 Commands

At the bottom of Emacs’ display is a single echo area, displaying the contents of the minibuffer.
This is a one-line buffer in which one types commands. It is, for many purposes, an ordinary
Emacs buffer; standard Emacs text-editing commands for moving left or right and for inserting
or deleting characters generally work in it. To issue a command by name, one types M-x
(“meta-x”; this notation is described below) followed by the name of the command and RET
(the return key); the echo area displays the command as it is typed. It is only necessary
to type as much of the command name as suffices to identify it uniquely. For example, to
run the command for looking at a UNIX manual entry—for which the full command is M-x
manual-entry—it suffices to type M-x man, followed by a RET.

All Emacs commands have names, and you can issue them with M-x. You’ll invoke most
commands, however, by using control characters and escape sequences to which these com-
mands are bound. Almost every character typed to Emacs actually executes a command. By
default, typing any of the printable characters executes a command that inserts that character
at the cursor. Many of the control characters are bound to commonly-used commands (see
the quick-reference guide at the end for a summary of particularly important ones). At any
time, it is possible to bind an arbitrary key or sequence of keys to an arbitrary command,
thus customizing Emacs to your own tastes. Hence, all descriptions of key bindings in this
document are actually descriptions of standard or default bindings.

1.3 Notations for special keys

In referring to non-graphic keys (control characters and the like), we’ll use the following
notations.

ESC denotes the escape character.

DEL denotes the delete character. On HP workstations, as we’ve set them up for this class,
the ‘Backspace’ key has the same effect.

SPC denotes the space character.

RET denotes the result of pressing the ‘Return’ key. (Confusingly, the result of typing this into
a file is not a return character (ASCII code 13), but rather a linefeed character (ASCII
code 10). Nevertheless, Emacs distinguishes the two keys.) On the HP workstations,
this is the wide key labelled “Enter” in the main section of the keyboard.

LFD denotes the result of typing the linefeed key. On the HP workstations, this is the tall
key labelled “Enter” in the numeric keypad at the far right of the keyboard.

TAB denotes the tab (also C-i) key.
178

Highlights of GNU Emacs 179

C-α denotes “control-α”—the result of holding down the Control (or Ctrl) key while typing
α.

M-α denotes “meta-α,” which one gets either by typing the two-character sequence ESC fol-
lowed by α, or (on our HP workstations when running the X window system) holding
down either Alt key while typing α.

C-M-α denotes the result of typing the two-character sequence ESC C-α, or (on HP worksta-
tions when running X) holding down both Control and Alt simultaneously with typing
α).

1.4 Command arguments

Certain commands take arguments, and take these arguments from a variety of sources. Any
command may be given a numeric argument. To enter the number comprising the digits
d0d1 · · · dn as a numeric argument (d0 may also be a minus sign), type either ‘M-d0d1 · · · dn’ or
‘C-ud0d1 · · · dn’ before the command. When using C-u, the digits may be omitted, in which
case ‘4’ is assumed. The most common use for numeric arguments is as repetition counts.
Thus, M-4 C-n moves down four lines and M-72 * inserts a line of 72 asterisks in the file.
Other commands give other interpretations, as described below. In describing commands, we
will use the notation ARG to refer to the value of the numeric argument, if present.

When commands prompt for arguments, Emacs will often allow provide a completion
facility. When entering a file name on the echo line, you can usually save time by typing TAB,
which fills in as much of the file name as possible, or SPC which fills in as much as possible
up to a punctuation mark in the file name. Here, “as much as possible” means as much as
is possible without having to guess which of several possible names you must have meant. A
similar facility will attempt to complete the names of functions or buffers that are prompted
for in the echo line.

1.5 Modes

The binding of keys to commands depends on the buffer that currently contains the cursor.
This allows different buffers to respond to characters in different ways. In this document, we
will refer to the set of key bindings in effect within a given buffer as the (major) mode of that
buffer (the term “mode” is actually somewhat ill-defined in Emacs). A set of key bindings
that simply modifies a few characteristics is called a minor mode.

Emacs will automatically establish a mode for buffers containing certain files depending
on the name of their associated file. Thus, buffers start out in ‘C’ mode for files whose names
end in ‘.c’ or ‘.h’; ‘C++’ mode for .cc or .C; or ‘Scheme’ mode (see §9) for .scm. These
modes affect the behavior of the TAB key, for example, causing program text to be indented
according to the conventions for a particular programming language. The shell buffer runs in
Shell mode, which (among many other things) causes the RET key to send the last line typed
to the shell. Files with unclassifiable names generally start in Fundamental mode.

There is one useful minor mode that’s worth knowing about.
179

180 P. N. Hilfinger

M-x auto-fill-mode toggles (reverses the setting) of auto-fill mode, which by default is
usually off. In auto-fill mode, lines get broken automatically as they are being typed
when they get too long. When you are typing comments in C programs, auto-fill mode
will automatically start a new comment on the next line when the current line gets near
to filling up.

2 Important special-purpose commands

C-g quits the current command. Generally useful for cancelling a M-x-style command or other
multi-character command that you have started entering. When in doubt, use it.

C-x C-c exits from Emacs. It prompts (in the echo area) if there are any buffers that have
not been properly saved.

C-x u undoes the effects of the last editing command. If repeated, it undoes each of the
preceding commands in reverse order (there is a limit). This is an extremely important
command; be sure to master it. This does not undo other kinds of commands; the
cursor may end up at some rather odd places.

C-l redraws the screen, and positions the current line to the center of the current window.

3 Basic Editing

The simple commands in this section will enable you to do most of the text entering and
editing that you’ll ordinarily need. Periodic browsing through the on-line documentation (see
section 7.3) will uncover many more.

3.1 Simple text.

To enter text, simply position the cursor to the desired buffer and character position (using
the commands to be described) and type the desired text. Carriage return behaves as you
would expect. To enter control characters and other special characters as if they were ordinary
characters, precede them with a C-q.

3.2 Navigation within a buffer.

The following commands move the cursor within a given buffer. Later sections describe how
to move around between buffers.

C-f moves forward one character (at the end of a line, this goes to the next).

C-b moves backward one character.

M-f moves forward one “word.”

M-b moves backward one word.
180

Highlights of GNU Emacs 181

C-e moves to the end of the current line.

C-a moves to the beginning of the current line.

C-M-f moves forward one Lisp (Scheme) S-expression.

C-M-b moves backward one Lisp (Scheme) S-expression.

M-a moves backward to next beginning-of-sentence. The precise meaning of “sentence” de-
pends on the mode.

M-{ moves backward to next beginning-of-paragraph. The precise meaning of “paragraph”
depends on the mode.

M-e moves to the next end-of-sentence.

M-} moves to the next end-of-paragraph.

C-n moves down to the next line (at roughly the same horizontal position, if possible).

C-p moves up to the previous line.

C-v scrolls the text of the current window up roughly one window-full (i.e., exposes text later
in the buffer). If ARG is supplied, it scrolls up ARG lines.

M-v scrolls the text of the current window down roughly one window-full (i.e., exposes text
earlier in the buffer). If ARG is supplied, it scrolls down ARG lines.

C-M-v scrolls up the text in another window (if any) roughly one window-full. If ARG is
supplied, it scrolls up ARG lines.

M-< moves to the beginning of the current buffer, after setting the mark (see §3.3) to the
current point. If ARG is supplied, it moves to a point ARG/10 of the way through the
buffer, instead of the beginning.

M-> moves to the end of the current buffer. If ARG is supplied, it moves to a point ARG/10
of the way back from the end of the buffer, instead of the end.

M-g goes to the line number given by the argument (prompts for a number in the echo line,
if you haven’t supplied an argument).

M-x what-line displays the number of the current line in the current buffer.

3.3 Regions

In addition to a point (marked by the cursor in the current window), each buffer may contain
a mark. Everything between the point and mark is called the current region. The current
region typically delimits text to be manipulated by certain commands.

181

182 P. N. Hilfinger

C-@ sets the mark at the current point, and pushes the previous mark on a ring of marks. If
ARG is present, it instead puts the point at the current mark and pops a new mark off
this ring.

C-SPC is the same as C-@.

C-x C-x exchanges the point and the mark.

M-@ sets the mark after the end of the next word.

M-h sets the region (point and mark) around the current paragraph.

C-x h sets the region (point and mark) around the entire current buffer.

3.4 Deletion

DEL deletes the character preceding the cursor. At the beginning of a line, it deletes the
preceding end-of-line character, thus joining the current and preceding lines.

M-DEL deletes the word preceding the cursor. The deleted word moves to the kill buffer,
described later.

C-d deletes the character under the cursor (which can be the end-of-line).

M-d deletes the word following the cursor.

C-k deletes the rest of the line following the cursor. If the cursor is on the end-of-line, delete
the end-of-line. The deleted line moves to the kill buffer.

M-\ deletes all horizontal blank space on either side of the cursor.

M-SPC deletes all but one horizontal blank space surrounding the cursor.

C-x C-o on non-blank line, deletes all immediately following blank lines; on isolated blank
line, deletes the line; on other blank lines, deletes all but one.

C-w deletes everything between the point and the mark, moving the deleted text to the kill
buffer.

M-w copies everything between point and mark to the kill buffer, without actually deleting it.

3.5 Insertion and the kill buffer

Several of the preceding commands mention the kill buffer. Text that is deleted is appended
to the end of the current kill buffer, and can later be retrieved and inserted (“pasted” or
“yanked”) elsewhere in the text (even in another buffer different from its original source).
Normally, each time a command that does not append to the kill buffer is executed, the
current kill buffer is saved in a ring of kill buffers, and the next deletion command starts with
an empty kill buffer. Hence, to move a sequence of lines, one can issue a sequence of C-k
commands, with no intervening commands, move to the desired destination, and yank them
back (with C-y).

182

Highlights of GNU Emacs 183

C-y inserts the contents of the current kill buffer at the cursor, and moves cursor to end of
inserted text. If a numeric value of ARG is supplied, inserts the ARGth most recent kill
buffer in the ring.

C-u C-y inserts current kill buffer, as for C-y, but leaves point unchanged.

M-y when issued immediately after a C-y or M-y, deletes the text inserted by the C-y or M-y
and substitutes the text from the next kill buffer in sequence in the kill ring.

C-M-w causes the next command, if a kill command, to append to the end of previous kill
buffer, rather than starting with a new one. This allows you, for example, to delete
lines from several different places and then yank them back into one place.

3.6 Indentation

Indentation generally depends on the mode of the buffer. When a buffer is associated with a
‘.scm’ file, in particular, it is by default in Scheme mode, in which the standard indentation
referred to below is appropriate for Scheme source programs.

TAB indents as appropriate for the current mode. In text files, this is just an ordinary
typewriter-style tab command. In Scheme source files, it indents to the appropriate
point for a standard set of indentation conventions.

LFD is the same as RET TAB. Thus, if in typing in a Scheme program, you end each line with
LFD instead of RET, your program will be indented as you enter it.

M-; indents for a comment according to the current mode. In Scheme mode, this inserts ;.

M-LFD when used inside a comment, will close the comment, if necessary, go to a new line,
and start a properly-indented comment on that line.

C-x TAB indents the current region “rigidly” by ARG spaces to the right (default 4). Negative
arguments indent to the left. Tabs are correctly counted as the appropriate number of
blanks.

C-M-\ indents the current region according to the current mode. For an improperly-indented
Scheme program, for example, this will correct all the indentation within the region.

3.7 Miscellaneous manipulations

C-o inserts a newline after the cursor. This has the same effect as RET C-b (return and then
back up one character).

C-t transposes the character under the cursor with the preceding character. If an end-of-line
is under the cursor, transposes the preceding two characters.

M-t transposes the next word that begins left of the cursor with the word following.

C-x C-t transposes the current and preceding lines.
183

184 P. N. Hilfinger

M-c capitalizes the next word (making all characters other than the first lower case).

M-u converts the next word to all upper case.

M-l converts the next word to all lower case.

3.8 Using the mouse

When you are using Emacs with the X window system, you may use the mouse for simple
positioning, text deletion, and text insertion. The three mouse buttons indicate the operation
to be performed, and the mouse pointer (the slanting arrow, which we’ll usually just call the
pointer) usually indicates the position at which to perform it. In the following, the mouse
buttons are called ‘LB’, ‘MB’, and ‘RB’, for left button, middle button, and right button.
We’ll use C-B to indicate the result of holding down “Control” while pushing button B.

LB places the point and mark at the position (and in the buffer) indicated by the pointer.
You may then drag the mouse with LB depressed; this leaves the mark at the point you
pressed LB and moves the point (and cursor) to the point at which you release LB, thus
defining a new current region.

RB first extends the current region to include all the text between the existing current region
(or the point, if there is no current region) and the pointer. Next, it copies the text
in the current region into the kill buffer, as for M-w above. When clicked twice for the
same text, it also deletes the text. Finally, it also copies the text into something called
the window-system cut buffer. Text in the window-system cut buffer may be “pasted”
(inserted) by MB, as described below, not only into Emacs buffers, but also into any
other X-windows buffer.

MB pastes (inserts) text from the window system cut buffer at the point indicated by the
mouse, and puts the cursor at the beginning and the mark at the end of the inserted
text. This is somewhat like a mouse version of C-y. However, since it takes its text
from the window system cut buffer (common to all windows on the screen), it allows
the insertion of text from or to a window other than the one running Emacs.

C-LB Displays a menu of buffers to move to and allows you to select one (a mouse version of
C-x b, described later).

You may also use the mouse to select from menus that sprout from the menu bar at the
top of your Emacs screen. The content of these menus depends on the kind of buffer you are
in.

4 Context searches

The search commands provide a convenient way to position the cursor quickly over long
distances. One can search either for specific strings or for patterns specified by regular ex-
pressions. Both kinds of searches are carried out incrementally ; that is, as you type in the

184

Highlights of GNU Emacs 185

target string or pattern, the cursor’s position is continually changed to point to the first point
in the buffer (if any) that matches what you have typed so far.

C-s searches forward incrementally.

C-s C-s is as for C-s, but initialize the search string to the one used in the last string search.

C-M-s is as for C-s, but searches for a regular expression.

C-M-s C-s As for C-M-s, but initialize the search pattern to the last pattern used.

C-r Search backward incrementally.

C-r C-r As for C-r, but initialize the search string as for C-s C-s.

M-x occur prompts for a regular expression and lists each line that follows the point and
contains a match for the expression in a buffer. If you give an ARG, it will list that
number of lines of context around each match.

M-x count-matches prompts for a regular expression and displays in the echo area the num-
ber of lines following the point that contain a match for it.

M-x grep prompts for arguments to the UNIX grep utility (which searches files for lines
matching a given regular expression) and runs it asynchronously, allowing other editing
while the search continues. See the command C-x ‘ in §10.1 for a description of how
to look at each of the lines found in turn.

M-x kill-grep stops a grep that was started by M-x grep.

As you type the search string or pattern, the cursor moves in the appropriate direction
to the first matching string, if any (specifically, to the right end of that string for a forward
search and to the left end for a reverse search). By default, the case (upper or lower) of
characters is ignored as long as the pattern you type contains no upper-case characters; ‘a’
will each match either ‘a’ or ‘A’. When the pattern contains at least one upper-case character,
the search becomes case-sensitive; ‘a’ will not match ‘A’, nor will ‘A’ match ‘a’. If matching
fails at any point, you will receive a message to that effect in the echo area. While entering
a search string or pattern, certain command characters have altered effects, as follows.

RET ends the search, leaving the point at the string found, and setting the mark at the original
position of the point.

DEL undoes the effect of the last character typed (and not previously DELed), moving the
search back to wherever it was previously.

C-g aborts the search and returns the cursor to where it was at the beginning of the search.

C-q quotes the next character. That is, it causes the next character to be added to the search
string or pattern as an ordinary character, ignoring any control action it might normally
have. Use this, for example to search for a C-g character or, in a regular-expression
search, to search for a ‘.’.

185

186 P. N. Hilfinger

C-s begins searching forward at the point of the cursor for the next string satisfying the
search string or pattern. If used in a reverse search, therefore, this reverses the sense
of the search. If used at the point of a failing search, this starts the search over at the
beginning of the buffer (“wraps around”).

C-r is like C-s, but searches in the reverse direction, and can reverse the direction of a forward
search.

C-w adds the next word beginning at the cursor to the end of the search string or pattern. It
follows that this has the effect of moving the cursor forward over that word.

LFD adds the rest of the line to the end of the current search string or pattern.

Other control characters terminate the search, and then have their ordinary effect.
Ordinary searches (C-s and C-r) treat all ordinary characters as search characters. For

regular-expression searches, several of these characters have special significance. See also the
on-line documentation.

. matches any character, except end-of-line.

^ matches the beginning of a line (that is, it matches the empty string, and only at the
beginning of a line.)

$ matches the end of a line.

[· · ·] matches any of the characters between the square brackets. A range of characters may
be denoted using ‘-’, as in [a-z0-9], which denotes any digit or letter. To include ‘]’
as one of the characters, put it first. To include ‘-’, use ‘---’. To include ‘^’, do not
make it the first character.

[^· · ·] matches any of the characters not included in the ‘· · ·’. Thus, if end-of-line is not one
of the characters, this will match it.

* when following another regular expression, denotes zero or more occurrences of that reg-
ular expression—in other words, an optional occurrence. This character applies to the
immediately preceding regular expression; it has “highest precedence.” There are spe-
cial parentheses (see below) for cases where this is not what you want. Hence, the
pattern ‘.*’ denotes any number of characters, other than end-of-line. The pattern
‘[a-z][a-z0-9]*’ denotes a letter optionally followed by string of letters, digits, and
underscores.

+ is like ‘*’, but denotes at least one occurrence. Thus, ‘[0-9]+’ denotes an integer literal.

? is like ‘*’, but denotes zero or one occurrence. Hence, the pattern ‘[0-9]+,?’ denotes an
integer literal optionally followed by a comma.

\(· · ·\) groups the items ‘· · ·’. Hence, ‘\([0-9]+,\)?’ denotes an optional string consisting
of an integer literal followed by a comma. The pattern ‘\(01\)* denotes zero or more
occurrences of the two-character string ‘01’.

186

Highlights of GNU Emacs 187

\b matches the empty string at the beginning or end of a word. Hence, ‘\bring\b’ matches
“ring” standing alone, but not “string” or “rings”.

\B matches the empty string, provided that it is not at the beginning or end of a word.

\| matches a string matching either the regular expression to its left or to its right. Use ‘\(\)’
to limit what regular expressions it applies to. Thus, ‘\bf[a-z]+\|[0-9]+’ matches any
integer literal or any word that begins with ‘f’, while ‘\bf\([a-z]+\|[0-9]+\)’ matches
any “word” that begins with ‘f’ and continues with either all letters or with all digits.

\n where n is any digit, denotes the string that matched the pattern within the nth set of
‘\(\)’ brackets in the current regular expression. Thus, ‘\b\([0-9]+\), *\1’ matches
any integer literal that is followed by a comma, an optional space, and a repetition of
the same literal; it matches “23, 23” and “10,10”, but not “23, 24”.

5 Replacement

The following commands allow you to do systematic replacement of one string or pattern with
another within a given buffer.

M-% performs a query-replace operation. It prompts for a search string and a replacement
string. Terminate each of the two with a RET. The command will then display each in-
stance of the search string found, and prompt for its disposal. The options are described
below. If ARG is supplied, it will only match things surrounded by word boundaries, so
that if the search string is “top”, there will be no replacement inside the string “stop”
or “topping”.

M-X query-replace-regexp is the same as M-%, but replaces patterns designated by regular
expressions, rather than just simple strings. The replacement string may contain in-
stances of ‘\n’, for n a digit, which, as described in the section on regular expressions,
denotes the string matched by the nth regular expression in ‘\(\)’ braces in the search
string. Thus, for example, the search pattern ‘(\([a-z][a-z0-9]+\))’ with the re-
placement pattern ‘[\1]’ will replace each C identifier surrounded by parentheses by
the same identifier surrounded by square brackets.

By default, the replacement will preserve the case of the letters replaced if the search string or
pattern has no upper-case letters, and otherwise will use the case supplied in the replacement
string.

At each instance of the search string or pattern, you are prompted for an action. Here
are some common ones.

SPC replaces the indicated occurrence and goes to the next.

DEL keeps the indicated occurrence unchanged and go to the next.

RET exits with no further replacements.
187

188 P. N. Hilfinger

, makes one replacement, but waits for another SPC or DEL before moving to the next match.

. makes one replacement and then exits.

! replaces all remaining occurrences without prompting again.

? prints a help message.

C-r enters a recursive edit level. That is, you are put back in ordinary Emacs at the point
of the current occurrence and can edit in the usual manner. Typing C-M-c then goes
back to the query-replace command.

y same as SPC.

n same as DEL.

q same as RET.

In addition to replacement, there are two often-useful commands for deleting selected
lines.

M-x delete-matching-lines prompts for a regular expression and deletes (without prompt-
ing) each line after the point that contains a match for it.

M-x delete-non-matching-lines prompts for a regular expression and deletes each line
after the point that does not contain a match for it.

6 Files, buffers, and windows

Each buffer has a name. By default, buffers that are associated with particular files have the
name of that file (not including the name of the directory containing it), possibly followed by
a number in angle brackets to distinguish multiple files (from different directories with the
same name.

6.1 Loading into and storing from buffers

C-x C-f prompts for a file name and sets the current window to displaying that file in a buffer
having the same name. If a buffer displaying that file already exists, this command
merely switches the window to that buffer. If the file does not exist, the buffer is
initially empty. The buffer is subsequently associated with the file. This process is
called finding the file.

C-x 4 C-f prompts for a file name, goes to the next window on the screen (creating a new
one, if there is only one), and then acts like C-x C-f.

C-x C-s saves the current buffer in its associated file, if the buffer has been modified. If
the file being saved exists, then the old version is first renamed to have a tilde (~)
appended to its name, if no such file yet exists.

188

Highlights of GNU Emacs 189

C-x C-w prompts for a file name and saves the current buffer into that file. Generally, it is
preferable and safer to use C-x C-f or C-x 4 C-f and then use C-x C-s, but sometimes
this command is handy.

C-x i prompts for a file name and inserts that file at the point. It does not associate the
inserted file with the current buffer.

M-x revert-buffer throws away the contents of the current buffer and restores the contents
of the associated file. It will ask you to confirm these actions before taking them.

6.2 Manipulating buffers and windows

C-x o makes another window on the screen (if any) the current window.

C-x 0 deletes the current window, expanding another window to take its place. The buffer
being displayed in the current window is not affected.

C-x 1 makes the current window the only window on the screen, deleting all others. The
buffers being displayed in the deleted windows are not affected.

C-x 2 splits the current window into two vertically (one on top of the other), both displaying
the same buffer.

C-x 3 splits the current window into two horizontally (beside each other), each displaying
the same buffer.

C-x b prompts for a buffer name and switches the current window to that buffer. When
trying to move to a buffer associated with a file, it is better to use the file finding
commands.

C-x C-b lists the active buffers in a window.

C-x k prompts for a buffer name and deletes that buffer, displaying some other buffer in the
current window. You will be warned if the contents of the buffer have been modified
and not yet saved.

6.3 Auto-saving and recovery

Buffers that are associated with files are periodically saved (“auto-saved”) in files whose names
begin and end with ‘#’. After a crash, you can return yourself to the point at which the last
auto-save of a given file took place by using the following command in place of C-x C-f or
C-x 4 C-f.

M-x recover-file prompts for a file name, F . It then tries to recover the contents of that
file from an auto-save file (named #F#) in the same directory, if such a file exists and
is younger than the any file named F in the directory. After completing this command,
C-x C-s will save the recovered file to F .

189

190 P. N. Hilfinger

7 On-line documentation

7.1 UNIX documentation

Emacs has a simple interface to the standard UNIX ‘man’ command, which provides docu-
mentation to UNIX commands:

M-x manual-entry prompts for a topic (a UNIX command or subprogram name, usually),
and displays the man page for it, if any, in a buffer. The buffer is a perfectly ordinary
buffer; you may put the cursor in it and move around using ordinary Emacs navigational
commands.

7.2 Basic Emacs help

The help command, C-h, provides a variety of useful documentation. The character following
C-h indicates the specific kind of service desired; the descriptions of several of these follow.

C-h a prompts for a pattern (regular expression) and displays a buffer containing all com-
mands whose name contains a match to that pattern, together with a short description
and the key sequence to which the command is bound, if any.

C-h b displays a buffer containing all bindings of commands to keys. The display is in two
parts: the global bindings that apply by default in any buffer, and the local bindings
that apply only when one is in the current buffer, and override any global binding in
that buffer.

C-h f prompts for a function name and then displays its full documentation in a buffer.

C-h C-h documents the help command itself.

C-h i runs the ‘info’ documentation reader (see below).

C-h k prompts for a command key sequence and describes the function invoked by that
sequence.

C-h m prints documentation about the mode of the current buffer.

C-h t puts you into an Emacs tutorial.

C-h w prompts for a function name and tells what key, if any, invokes it.

7.3 The info browser

The key sequence C-h i invokes the documentation browsing system, info. Actually, this
is little more than a buffer with some special bindings to the keys. Aside from the special
bindings, the ordinary Emacs commands will work while inside the info buffer. At any
time, the info buffer, whose name is *info*, contains a node, a section of text documenting
something. These nodes are connected to each other in such a way that one can move quickly
from one node to another that covers a related topic. Some nodes contain menus, indicated
by lines that begin

190

Highlights of GNU Emacs 191

* Menu:

The lines after this give the names of other nodes, and descriptions of their contents. One
such entry reads as follows.

* Commands:: Named functions run by key sequences to do editing.

The word(s) between the asterisk and the double-colon name another node. The following
key commands, defined only when in the buffer *info*, allow one to move through the
documentation. They are only a few of the ones provided.

m prompts for the name of a node from the menu in the current buffer and displays that
node. You need only enter enough to identify the desired entry unambiguously; case is
ignored.

f follows a cross-reference. Cross references are indicated in the text of a node by a phrase
of the form “* Note foo::”. One follows them by typing ‘f’ followed by the name (foo)
of the referenced node, as for the ‘m’ command.

l goes back to the last-visited node.

u goes up to the parent of this node. The definition of parent is actually arbitrary, but is
usually a node that contains the current one in its menu.

d returns to the top (initial) node of the Info system.

q suspends the browser and goes back to where you were when you issued C-h i.

. returns to the beginning of the text of the current node.

? furnishes help about the browser commands.

8 The shell

It is possible to run a UNIX shell under Emacs, and this allows any number of useful effects.
The command M-x shell moves to a buffer named *shell* that is running a UNIX shell
(creating it if necessary). Anything typed into this buffer is sent to the shell, just it would
be outside of Emacs. Any output produced as a result of the commands sent to the shell is
placed at the end of the shell buffer. Because the shell is running in an Emacs window, the
contents of the shell can be edited and navigated freely, and the entire record of the input
and output to the shell is available at all times. A few keys have slightly different-from-usual
meanings in the shell buffer.

RET sends whatever line the cursor is on to the shell and moves to the end of the shell buffer.
Hence, one can repeat a command by placing the cursor anywhere in it and typing RET.

TAB attempts to complete the immediately preceding file name.

C-c C-c is the same as a single C-c outside Emacs.
191

192 P. N. Hilfinger

C-c C-d is the same as C-d (end-of-file) outside Emacs.

C-c C-z is the same as C-z outside Emacs.

C-c C-u kills the current line of input to the shell.

It is sometimes useful to run a single shell command over a region of text in a buffer.

M-| prompts for a shell command and executes it, giving the current region as the standard
input. If the M-| is preceded by C-u, the output of the command replaces the region.
Otherwise, the output goes to a separate buffer. For example, to sort the lines in the
current region, enter the command C-u M-| sort.

9 Running Scheme under Emacs

The best way to run Scheme from a workstation is to do so through Emacs. Just as you
can create an Emacs buffer for communicating with a UNIX shell (§8), you can also do so to
communicate with a Scheme interpreter. Not only can you interact with the interpreter, but
you can also feed files or definitions that you are editing to a running interpreter conveniently
without having to load them explicitly.

The command M-x run-scheme moves to a buffer named *scheme* that is running the
Scheme interpreter, creating this buffer if necessary. Each line that you type into this buffer
gets sent to the interpreter, just as if you had typed it in while running the interpreter
outside of Emacs. Any output from the interpreter in response to your input is appended to
the *scheme* buffer.

The usual way to create and execute a Scheme program is as follows.

• Using Emacs, create a file to contain your program (or load one that you’ve already
started) using C-x C-f or C-x 4 C-f; let’s suppose the file is named something.scm (so
that within Emacs, it lives in a buffer of the same name). We have configured Emacs so
that any file ending in .scm gets edited in Scheme mode, which gives a special meaning
to the keys TAB, LFD, and others described below.

• Edit or add to your file as needed. When typing definitions into the Emacs buffer
for something.scm, using the TAB key at the beginning of each line will automatically
indent that line properly. Alternatively, you can end each line by typing LFD instead of
RET; in Scheme mode, LFD is short for RET TAB. If in the process of editing the buffer,
you mess up the indentation of a definition, place the cursor at the beginning of the
definition (on or before the opening ‘(’) and type M-C-q, which will correctly indent the
entire definition.

• Make sure you have a Scheme buffer (named *scheme*) running under Emacs (M-x
run-scheme) will create one if you don’t).

• In the buffer for something.scm, type C-c M-l to load your program into the running
Scheme interpreter. Emacs will ask you for a file name; just type RET, which will

192

Highlights of GNU Emacs 193

use something.scm. If you haven’t saved your changes to something.scm, Emacs will
ask if it should do it for you. The effect of C-c M-l is to send the command (load
"something.scm") to the Scheme interpreter and also to put the cursor in the *scheme*
buffer, ready to enter Scheme expressions. You’ll see the usual response to the load
command in the *scheme* buffer.

• Sometimes—especially when you are correcting a file whose contents you’ve already
loaded into Scheme—it is convenient to send just a single revised definition to the
Scheme interpreter. To so do, place the cursor at the beginning of the definition (on or
before the opening ‘(’) and type C-c M-e. This also puts you into the Scheme buffer.

Here is a concise summary of the Scheme-related commands. These commands are also
available from the menu bar. With the exception of M-x commands, all of these commands
are in effect only in buffers that are in Scheme mode (normally, those containing files whose
name ends in .scm).

M-x run-scheme when used for the first time, creates a buffer named *scheme* and runs the
Scheme interpreter in it, displaying input from you and output from the interpreter. If
the buffer already exists, this command simply moves to that buffer.

C-c C-z puts the cursor in the *scheme* buffer.

C-c M-e sends the definition after the cursor to Scheme (that is, it copies it the *scheme*
buffer and then sends it to the Scheme interpreter that attached to that buffer). The
command also places the cursor at the end of the *scheme* buffer.

C-c C-e is the same as C-c M-e, but leaves the cursor where it is.

C-c M-l loads an entire file into Scheme Prompts for a file name; the default is the current
buffer’s file. Puts the cursor at the end of the *scheme* buffer.

C-c C-l is the same as C-c M-l, but leaves the cursor where it is.

C-c M-r sends all the text in the current region to Scheme and puts the cursor at the end of
the *scheme* buffer.

C-c C-r is the same as C-c M-r, but leaves the cursor where it is.

M-C-q indents the definition after the cursor according to the usual rules for indenting Scheme
expressions.

M-C-\ indents all Scheme expressions in the current region.

TAB indents the current line of Scheme code as appropriate for the surrounding context.

LFD is the same as RET TAB.
193

194 P. N. Hilfinger

10 Compiling, debugging, and tags

[This section is not relevant to CS61A.] Emacs provides rather nice ways of compiling pro-
grams, correcting any compilation errors, and debugging the results. It is so much more
convenient than entering compilation commands directly from a shell that there is no excuse
not to use it.

10.1 Compilation

M-x compile prompts for a shell command, and then executes that command in a special
buffer, named *compilation*. The current file at the time the M-x compile is issued
determines the directory in which the shell command executes. The default command
is simply make -k. Assuming you follow the convention of putting an appropriate make
input file named makefile or Makefile in each source directory, this command will
generally do the right thing. While the compilation proceeds, you are free to edit or use
the *shell* buffer.

C-x ‘ finds the next error message in the buffer *compilation* (if any), finds the source files
and line referred to by the error message, and displays the error message in one window
and the source file in another. Thus, after a compilation is complete (actually, even while
it proceeds), you can step through the error messages produced, going automatically
to the offending points in the source file so that they can be corrected. The buffer
compilation also contains the output from the M-x grep command described in §4.

M-x kill-compiler cancels a compilation started by M-x compile, if any.

10.2 Using GDB under Emacs

[This section is not relevant to CS61A.] The GNU debugger, GDB, is an interactive source-
level debugger for C and several other languages. It can be run under Emacs, which provides
a few rather nifty additional features. Full on-line documentation of gdb is available using
the C-h i command in Emacs. The command M-x gdb will prompt for an executable file
name, and then run GDB on that file, displaying the interaction in a buffer that acts much
like a shell buffer described previously. Within that buffer, however, several commands have
a slightly different meaning. In addition, whenever GDB displays the current position in the
program (for example, after a step, at a breakpoint, or after an interrupt), Emacs will try to
display the indicated source file and line in another window, with an arrow (‘=>’) pointing at
the corresponding line in the source text (this arrow is not actually in the file being displayed).

The following commands are peculiar to GDB buffers.

C-c C-n performs a GDB ‘next’ command (step to next line in the source program).

C-c C-s performs a GDB ‘step’ command (step to next line in the source program to be
executed, stopping at the beginning of any procedure that gets called.)

C-c C-i performs a GDB ‘stepi’ command (step to next machine-language instruction—not
usually used unless you are programming in assembly language.

194

Highlights of GNU Emacs 195

C-c < performs a GDB ‘up’ command (go up to procedure that called current one).

C-c > performs a GDB ‘down’ command (opposite of ‘up’).

C-c C-r performs a GDB ‘finish’ command (continues from last breakpoint).

C-c C-b set a breakpoint at the current position in the program (as indicated by the position
of the ‘=>’ arrow).

C-c C-d delete a breakpoint (if any) at the current position in the program (as indicated by
the position of the ‘=>’ arrow).

In addition, within any source file buffer, there is the following command.

C-x SPC puts a break point at the point in the program indicated by the cursor.

10.3 Tags

In UNIX terminology, a tag table is an index that tells how to find the definition of any
certain identifiers (‘tags’) defined in some collection of source files. In effect, it provides a
smart, multi-file search that is particularly useful when navigating in non-trivial directories
of source files. Typically, you set things up by going into the directory containing the source
text to be indexed and issuing the UNIX command

etags options files

where files is a list of all the source files that need to be indexed. This creates a file named
‘TAGS’ containing the tag table. For C programs, the tags are the names of functions defined
in the named source files. The -t option causes etags to record typedef declarations as well.
The tag table produced is organized in such a way that simple edits to a source file will not
invalidate it. The following Emacs commands deal with tag tables.

M-x visit-tags-table prompts for the name of a tags table file, and uses its contents in
future tag-related searches.

M-. prompts for a tag and then positions the current window in the file containing its first
definition and puts the cursor on that definition. You may also give a null response
(just RET), in which case the word before or around the point is used as the tag.

C-u M-. finds the next alternate definition of the last tag specified.

C-x 4 . is the same as M-., but displays the text containing the tag in the other window
instead of the current one.

M-x tags-search prompts and searches for a regular expression as for C-M-s, but is does a
non-incremental search through all the files given in the currently-visited tag table.

M-x tags-query-replace acts like M-Q, but looks through all the files given in the currently-
visited tag table.

195

196 P. N. Hilfinger

M-, restarts the last tags-search or tags-query-replace from the current location of the
point.

M-x tags-apropos prompts for a regular expression and displays a list of all tags in the
currently-visited table that match it.

11 But wait; there’s more!

As indicated at the beginning, this is not a complete reference manual. It has not covered
scrolling sideways, tab setting, the mail system, the Emacs internal Lisp dialect, automatic
abbreviation, the spelling checker, the directory editor, the change-log editor, or how to
replace all groups of lines of your program that are indented more than ARG spaces by
‘. . .’1. You can learn about these and other topics by using C-h i. You might also try typing
C-h f SPC C-x o, which creates a buffer containing the names of all Emacs functions and
then puts the cursor there so that you can scroll through and look for likely-sounding names.

Just use it. Every session is an adventure.

1You probably think I’m kidding, don’t you? Guess again.

196

GNU Emacs
Quick Reference Guide

for CS61A

Bullets (•) mark a suggested starting set of commands.
Daggers (†) denote key bindings that are not standard in
GNU Emacs. ARG denotes the prefix numeric argument
(entered with C-u or M-digit). The notation ‘C-x’ means
“control-x”, the result of holding down the control key while
typing x. ‘M-x’ means “meta-x”, the result of holding down
the ‘Meta’, Alt, or ¦ key (depending on keyboard) while
typing x. If you are not using a window system or have a
keyboard without these keys, the sequence of two characters
ESC x is equivalent. The notation ‘C-M-x’ is equivalent to
holding down both control and meta keys while typing x,
or of typing the two characters ESC C-x.

Cursor motion.

C-f Forward character.•
C-b Backward character.•
M-f Forward word.•
M-b Backward word.•
C-e Forward to end of line.•
C-a Backward to start of line.•
C-M-f Forward S-expression.•
C-M-b Backward S-expression.•
M-e Forward sentence.
M-[Forward paragraph.
M-a Backward sentence.
M-] Backward paragraph.

C-n Next line.•
C-p Previous line.•
M-< Beginning of buffer.•
M-> End of buffer.•
C-v Scroll text up one screen (or ARG lines).•
M-v Scroll text down (or ARG lines).•
M-g Go to line number ARG.†
M-x what-line Display line number.
C-M-v Scroll other window up one screen (or ARG

lines).

Marking regions of text

C-@ Set mark at point.•
C-x C-x Exchange mark and point.•

C-SPC Same as C-@.
M-@ Set mark after end of next word.
M-h Set mark and point around current

paragraph.

C-x h Set mark and point around current buffer.

Deletion and yanking

DEL Delete character before cursor.•
M-DEL Delete word before cursor and add to kill

buffer.•
C-d Delete character at cursor.•
M-d Delete word at and after cursor and add to

kill buffer.•
C-k Delete to end of line and add to kill buffer.•
C-w Delete current region, and add to kill buffer.•
M-w Copy current region to kill buffer without

deleting.•
M-\ Delete surrounding blanks and tabs.
M-SPC Delete all but one surrounding blank.
C-x C-o Delete all but one surrounding blank line.
C-M-w Cause next command, if a kill, to append to

previous kill buffer, instead of new one.

C-y Insert text from kill buffer at point.•
C-u C-y Insert text from kill buffer at point without

moving point.
M-y Replace preceding C-y text with next most

recent kill buffer.

M-w Copy region to kill buffer, no deletion.

Indentation

TAB Indent according to mode.•
LFD Same as RET TAB.
M-; Indent and start comment.
M-LFD Continue comment on next line.
C-x TAB Indent region rigidly by ARG.
C-M-\ Indent region according to mode.•

Search

C-s Search forward.•
C-s C-s Same as C-s with last string.•
C-r Search backward.•

197

C-r C-r Same as C-r with last string.•
C-u C-s Search forward for regular expression.
M-x occur Display lines matching a regular expression.
M-x grep Display results of UNIX grep utility.
M-x count-matches

The following subcommands are valid during a search.

RET End search.•
DEL Undo effect of last search character typed.•
C-g Abort search.•
C-s Search for next match forward.•
C-r Search for next match backward.•
C-q Quote next character.
C-w Extend search string with next word.
LFD Extend search string with rest of line.

Replacement

M-% Query replace.•
M-x delete-matching-lines

M-x delete-non-matching-lines

During a query-replacement, the following are valid re-
sponses to prompts.

SPC Make replacement and go to next.•
DEL Skip replacement and go to next.•
RET End replacement.•
! Replace all remaining instances without

asking.•
C-r Enter recursive edit; return with C-M-c.

Regular expressions

. Match any character.•
^ Match at start of line.•
$ Match at end of line.•
[...] Match any character in the ‘...’.•
[^...] Match any character except those in ‘...’.•
* Match 0 or more of pattern to left.•
+ Match 1 or more of pattern to left.
? Match 0 or 1 of pattern to left.
\c Quotes c, except for the following.
\b Match at beginning or end of word.
\B Match except at beginning or end of word.
\| Match either pattern to left or right.
\(...\) Grouping.

\n Match copy of whatever matched nth group.

Miscellaneous editing

C-o Insert newline after cursor.
C-t Transpose characters.
M-t Transpose words.
C-x C-t Transpose lines.
M-u Convert whole word to upper case.
M-l Convert whole word to lower case.
M-c Capitalize word.

Files

C-x C-f Find file; load if needed.•
C-x 4 C-f Find file in other window.•
C-x C-s Save file.•
C-x C-w Write to explicitly-named file.
C-x i Insert file at cursor.
M-x recover-file Recover file after disaster from auto-

save file.
M-x revert-buffer Throw away changes to buffer and re-

store from file.

Buffers and windows

C-x o Put cursor in other window.•
C-x 1 Grow current window to full screen.•
C-x 2 Split current window vertically.•
C-x b Put named buffer in window.•
C-x 0 Remove current window.
C-x 3 Split current window horizontally.
C-x C-b List all buffers.
C-x k Delete buffer.

Shells

M-x shell Run UNIX shell in a buffer.•
M-| Execute single shell command on region.

With ARG, replaces region.

Commands active in shell buffers:

RET Send current line to shell.•
TAB Complete preceding file name.•
C-c C-c Send interrupt to shell.•

198

C-c C-u Erase current input line.•
C-c C-z Send stop signal to shell.•
C-c C-d Send EOF to shell.

Scheme

M-x run-scheme Run Scheme interpreter in buffer
scheme.•

C-c C-z Put the cursor in buffer *scheme*.•
C-c C-e Send definition to *scheme*.
C-c M-e Same as C-c C-e C-c C-z.
C-c C-l Load file into *scheme*.
C-c M-l Same as C-c C-l C-c C-z.•†
C-c C-r Send current region to *scheme*.
C-c M-r Same as C-c C-r C-c C-z.
M-C-q Indent Scheme expression.•
M-C-\ Indent current region.
TAB Indent the current line.•
LFD Same as RET TAB.

Compilation, debugging, and tags

M-x compile Execute command (by default, make) asyn-
chronously.

C-x ‘ Position to next error or next line found by
M-x grep command.

M-x kill-compiler Stop active compile.

M-x visit-tags-table Specify file containing tags pro-
duced by etags.

M-. Display source for given tag.
C-u M-. Find next alternate definition for last tag.
C-x 4 . Display source for tag in other window.
M-x tags-search

M-x tags-query-replace Look for pattern in all files
named in tags table.

M-x tags-apropos Display matching tags.

M-x gdb Run GNU debugger on file.

Commands valid in gdb mode.

C-c C-s Step.
C-c C-n Next.
C-c < Up stack.
C-c > Down stack.
C-c C-r Finish.

C-x SPC In any source file, sets a break point.
C-c C-i Stepi.

Help and documentation

M-x manual-entry UNIX man page for given topic.
C-h a Look up names of matching Emacs

commands.•
C-h b Display key bindings.•
C-h f Help for M-x function.•
C-h C-h Help for C-h.•
C-h i Run info browser.•
C-h k Help for key.•
C-h m Help for current mode.
C-h t Tutorial.
C-h w Key containing function.

Inside an *info* buffer (result of C-h i), the following are
defined.

m Select menu item.•
l Go to last-visited node.•
? Get help for browser.•
u Go to node’s parent.•
n Go to next node in sequence.•
q Leave browser.•
. Go to top of node.
d Go to top-level node.

Mouse commands

Left, middle, and right buttons are LB, MB, and RB.
LB Put cursor at mouse. Dragging marks

region.•
MB Paste text from window-system cut buffer at

mouse.•
RB Extend region to pointer and copy into

cut and kill buffers. Clicking twice deletes
region.•

C-LB Select a buffer.

199

 200

 Errata for Structure and Interpretation of Computer Programs · 2nd edition
 __

 Positive line numbers count from the top of the page or exercise,
 negative line numbers count from the bottom.

 Page 45, line -13: Exponent should be n/2, not b/2

 Page 112, line 2 of exercise 2.30: Square-LIST should be
 square-TREE. ("That is, square-tree should behave as follows:")

 Page 118, lines 1-2: Should say "...the product OF THE SQUARES
 of the odd integers..."

 Page 176, before procedures rectangular? and polar?: Should say
 "rectangular and polar numbers, respectively"

 Page 181, line -5: Should not refer to exercise 3.24, just to
 section 3.3.3.

 Page 185, exercise 2.73a: Should ask about VARIABLE?, not
 SAME-VARIABLE?

 Pages 246 and 247, figures 3.7 and 3.8: There is an extra ')' at
 the end of the code.

 Page 287, figure 3.28: Rightmost box should have +, not *

 Page 324, exercise 3.50: Should refer to section 2.2.1, not
 2.2.3.

 Page 341, line 3 of exercise 3.66: Should say "For example,
 APPROXIMATELY how many pairs..."

 Page 375, line 1 of exercise 4.7: Last LET should be LET*
 ("...bindings of the let* variables...")

 Last updated 08/09/99

 201

BERKELEY SCHEME EXTENSIONS:
WORD AND SENTENCE MANIPULATION PROCEDURES

The first chapter of the textbook deals exclusively with numeric data.
To allow some variety, with interesting examples that aren't about
calculus, we are going to use some additional Scheme procedures that
manipulate linguistic data: words and sentences. A word can be
considered as a string of characters, such as letters and digits.
(Numbers can be treated as words.) A sentence is a string of words
in parentheses.

PROCEDURES TO TAKE APART WORDS AND SENTENCES:

FIRST returns the first character of a word, or
 the first word of a sentence

BUTFIRST returns all but the first character of a word,
 or all but the first word of a sentence

BF same as BUTFIRST

LAST returns the last character of a word, or
 the last word of a sentence

BUTLAST returns all but the last character of a word,
 or all but the last word of a sentence

BL same as BUTLAST

Examples:

> (first 'hello)
h

> (butlast '(symbolic data are fun))
(symbolic data are)

PROCEDURES TO COMBINE WORDS AND SENTENCES

WORD arguments must be words; returns the word with
 all the arguments strung together

SENTENCE returns the sentence with all the arguments
 (words or sentences) strung together

 202

SE same as SENTENCE

Examples:

> (word 'now 'here)
nowhere

> (se 'lisp '(is cool))
(lisp is cool)

PREDICATE PROCEDURES

EQUAL? returns true if its two arguments are the same word
 or the same sentence (a one-word sentence is not
 equal to the word inside it)

MEMBER? returns true if the first argument is a member of
 the second; the members of a word are its letters
 and the members of a sentence are its words

EMPTY? returns true if the argument is either the empty
 word [which can be represented as ""] or the
 empty sentence [which can be represented as '()]

MISCELLANEOUS

COUNT returns the number of letters in the argument word, or
 the number of words in the argument sentence.

ITEM takes two arguments: a positive integer N, and a word or
 sentence; returns the Nth letter of the word, or the Nth
 word of the sentence (counting from 1).

Examples:

(define (buzz n)
 (cond ((member? 7 n) 'buzz)
 ((= (remainder n 7) 0) 'buzz)
 (else n)))

(define (plural wd)
 (if (equal? (last wd) 'y)
 (word (bl wd) 'ies)
 (word wd 's)))

Revised� Report on the Algorithmic Language
Scheme

RICHARD KELSEY� WILLIAM CLINGER� AND JONATHAN REES �Editors�
H� ABELSON R� K� DYBVIG C� T� HAYNES G� J� ROZAS

N� I� ADAMS IV D� P� FRIEDMAN E� KOHLBECKER G� L� STEELE JR�
D� H� BARTLEY R� HALSTEAD D� OXLEY G� J� SUSSMAN
G� BROOKS C� HANSON K� M� PITMAN M� WAND

Dedicated to the Memory of Robert Hieb

�� February ����

SUMMARY

The report gives a de�ning description of the program�
ming language Scheme� Scheme is a statically scoped and
properly tail�recursive dialect of the Lisp programming
language invented by Guy Lewis Steele Jr� and Gerald
Jay Sussman� It was designed to have an exceptionally
clear and simple semantics and few di�erent ways to form
expressions� A wide variety of programming paradigms� in�
cluding imperative� functional� and message passing styles�
�nd convenient expression in Scheme�

The introduction o�ers a brief history of the language and
of the report�

The �rst three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language�

Chapters 	 and
 describe the syntax and semantics of
expressions� programs� and de�nitions�

Chapter � describes Scheme�s built�in procedures� which
include all of the language�s data manipulation and in�
putoutput primitives�

Chapter � provides a formal syntax for Scheme written in
extended BNF� along with a formal denotational semantics�
An example of the use of the language follows the formal
syntax and semantics�

The report concludes with a list of references and an al�
phabetic index�

CONTENTS

Introduction �

� Overview of Scheme �

��� Semantics �

��� Syntax �

��� Notation and terminology � � � � � � � � � � � � � � � � �

� Lexical conventions �

��� Identi�ers �

��� Whitespace and comments � � � � � � � � � � � � � � � � �

��� Other notations �

� Basic concepts �

��� Variables	 syntactic keywords	 and regions � � � � � � � �

��� Disjointness of types �

��� External representations � � � � � � � � � � � � � � � � � �

��
 Storage model �

��� Proper tail recursion �

 Expressions �

�� Primitive expression types � � � � � � � � � � � � � � � � �

�� Derived expression types � � � � � � � � � � � � � � � � � �

�� Macros ��

� Program structure ��

��� Programs ��

��� De�nitions ��

��� Syntax de�nitions ��

� Standard procedures ��

��� Equivalence predicates � � � � � � � � � � � � � � � � � � ��

��� Numbers ��

��� Other data types ��

��
 Control features ��

��� Eval ��

��� Input and output ��

� Formal syntax and semantics � � � � � � � � � � � � � � � � � � ��

��� Formal syntax ��

��� Formal semantics �

��� Derived expression types � � � � � � � � � � � � � � � � �
�

Notes �
�

Additional material �
�

Example �
�

References �
�

Alphabetic index of de�nitions of concepts	

keywords	 and procedures � � � � � � � � � � � � � � � �
�

203

� Revised� Scheme

INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature� but by removing the weaknesses
and restrictions that make additional features appear nec�
essary� Scheme demonstrates that a very small number of
rules for forming expressions� with no restrictions on how
they are composed� su�ce to form a practical and e�cient
programming language that is �exible enough to support
most of the major programming paradigms in use today�

Scheme was one of the �rst programming languages to in�
corporate �rst class procedures as in the lambda calculus�
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language� Scheme
was the �rst major dialect of Lisp to distinguish procedures
from lambda expressions and symbols� to use a single lex�
ical environment for all variables� and to evaluate the op�
erator position of a procedure call in the same way as an
operand position� By relying entirely on procedure calls
to express iteration� Scheme emphasized the fact that tail�
recursive procedure calls are essentially goto�s that pass
arguments� Scheme was the �rst widely used program�
ming language to embrace �rst class escape procedures�
from which all previously known sequential control struc�
tures can be synthesized� A subsequent version of Scheme
introduced the concept of exact and inexact numbers� an
extension of Common Lisp�s generic arithmetic� More re�
cently� Scheme became the �rst programming language to
support hygienic macros� which permit the syntax of a
block�structured language to be extended in a consistent
and reliable manner�

Background

The �rst description of Scheme was written in ���
 ����� A
revised report ��
� appeared in ����� which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler ����� Three
distinct projects began in ���� and ���� to use variants
of Scheme for courses at MIT� Yale� and Indiana Univer�
sity ���� ��� ���� An introductory computer science text�
book using Scheme was published in ���	 ����

As Scheme became more widespread� local dialects be�
gan to diverge until students and researchers occasion�
ally found it di�cult to understand code written at other
sites� Fifteen representatives of the major implementations
of Scheme therefore met in October ���	 to work toward
a better and more widely accepted standard for Scheme�
Their report �	� was published at MIT and Indiana Univer�
sity in the summer of ���
� Further revision took place in
the spring of ���� ����� and in the spring of ���� ���� The
present report re�ects further revisions agreed upon in a
meeting at Xerox PARC in June �����

We intend this report to belong to the entire Scheme com�

munity� and so we grant permission to copy it in whole or in
part without fee� In particular� we encourage implementors
of Scheme to use this report as a starting point for manuals
and other documentation� modifying it as necessary�

Acknowledgements

We would like to thank the following people for their
help� Alan Bawden� Michael Blair� George Carrette� Andy
Cromarty� Pavel Curtis� Je� Dalton� Olivier Danvy� Ken
Dickey� Bruce Duba� Marc Feeley� Andy Freeman� Richard
Gabriel� Yekta G�ursel� Ken Haase� Robert Hieb� Paul
Hudak� Morry Katz� Chris Lindblad� Mark Meyer� Jim
Miller� Jim Philbin� John Ramsdell� Mike Sha�� Jonathan
Shapiro� Julie Sussman� Perry Wagle� Daniel Weise� Henry
Wu� and Ozan Yigit� We thank Carol Fessenden� Daniel
Friedman� and Christopher Haynes for permission to use
text from the Scheme ��� version 	 reference manual�
We thank Texas Instruments� Inc� for permission to use
text from the TI Scheme Language Reference Manual�����
We gladly acknowledge the in�uence of manuals for MIT
Scheme����� T����� Scheme �	�����Common Lisp����� and
Algol �������

We also thank Betty Dexter for the extreme e�ort she put
into setting this report in TEX� and Donald Knuth for de�
signing the program that caused her troubles�

The Arti�cial Intelligence Laboratory of the Massachusetts
Institute of Technology� the Computer Science Department
of Indiana University� the Computer and Information Sci�
ences Department of the University of Oregon� and the
NEC Research Institute supported the preparation of this
report� Support for the MIT work was provided in part by
the Advanced Research Projects Agency of the Department
of Defense under O�ce of Naval Research contract N����	�
���C��
�
� Support for the Indiana University work was
provided by NSF grants NCS ����	
�� and NCS �������
�

204

�� Overview of Scheme �

DESCRIPTION OF THE LANGUAGE

�� Overview of Scheme

���� Semantics

This section gives an overview of Scheme�s semantics� A
detailed informal semantics is the subject of chapters �
through �� For reference purposes� section ��� provides a
formal semantics of Scheme�

Following Algol� Scheme is a statically scoped program�
ming language� Each use of a variable is associated with a
lexically apparent binding of that variable�

Scheme has latent as opposed to manifest types� Types
are associated with values �also called objects� rather than
with variables� �Some authors refer to languages with
latent types as weakly typed or dynamically typed lan�
guages�� Other languages with latent types are APL�
Snobol� and other dialects of Lisp� Languages with mani�
fest types �sometimes referred to as strongly typed or stat�
ically typed languages� include Algol ��� Pascal� and C�

All objects created in the course of a Scheme computation�
including procedures and continuations� have unlimited ex�
tent� No Scheme object is ever destroyed� The reason that
implementations of Scheme do not �usually�� run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation� Other
languages in which most objects have unlimited extent in�
clude APL and other Lisp dialects�

Implementations of Scheme are required to be properly
tail�recursive� This allows the execution of an iterative
computation in constant space� even if the iterative compu�
tation is described by a syntactically recursive procedure�
Thus with a properly tail�recursive implementation� iter�
ation can be expressed using the ordinary procedure�call
mechanics� so that special iteration constructs are useful
only as syntactic sugar� See section ��
�

Scheme procedures are objects in their own right� Pro�
cedures can be created dynamically� stored in data struc�
tures� returned as results of procedures� and so on� Other
languages with these properties include Common Lisp and
ML�

One distinguishing feature of Scheme is that continuations�
which in most other languages only operate behind the
scenes� also have ��rst�class� status� Continuations are
useful for implementing a wide variety of advanced control
constructs� including non�local exits� backtracking� and
coroutines� See section ��	�

Arguments to Scheme procedures are always passed by
value� which means that the actual argument expressions
are evaluated before the procedure gains control� whether
the procedure needs the result of the evaluation or not�

ML� C� and APL are three other languages that always
pass arguments by value� This is distinct from the lazy�
evaluation semantics of Haskell� or the call�by�name se�
mantics of Algol ��� where an argument expression is not
evaluated unless its value is needed by the procedure�

Scheme�s model of arithmetic is designed to remain as in�
dependent as possible of the particular ways in which num�
bers are represented within a computer� In Scheme� every
integer is a rational number� every rational is a real� and
every real is a complex number� Thus the distinction be�
tween integer and real arithmetic� so important to many
programming languages� does not appear in Scheme� In its
place is a distinction between exact arithmetic� which cor�
responds to the mathematical ideal� and inexact arithmetic
on approximations� As in Common Lisp� exact arithmetic
is not limited to integers�

���� Syntax

Scheme� like most dialects of Lisp� employs a fully paren�
thesized pre�x notation for programs and �other� data� the
grammar of Scheme generates a sublanguage of the lan�
guage used for data� An important consequence of this sim�
ple� uniform representation is the susceptibility of Scheme
programs and data to uniform treatment by other Scheme
programs� For example� the eval procedure evaluates a
Scheme program expressed as data�

The read procedure performs syntactic as well as lexical
decomposition of the data it reads� The read procedure
parses its input as data �section ������� not as program�

The formal syntax of Scheme is described in section ����

���� Notation and terminology

������ Primitive� library� and optional features

It is required that every implementation of Scheme support
all features that are not marked as being optional� Imple�
mentations are free to omit optional features of Scheme
or to add extensions� provided the extensions are not in
con�ict with the language reported here� In particular�
implementations must support portable code by providing
a syntactic mode that preempts no lexical conventions of
this report�

To aid in understanding and implementing Scheme� some
features are marked as library� These can be easily imple�
mented in terms of the other� primitive� features� They are
redundant in the strict sense of the word� but they capture
common patterns of usage� and are therefore provided as
convenient abbreviations�

205

	 Revised� Scheme

������ Error situations and unspeci	ed behavior

When speaking of an error situation� this report uses the
phrase �an error is signalled� to indicate that implemen�
tations must detect and report the error� If such wording
does not appear in the discussion of an error� then imple�
mentations are not required to detect or report the error�
though they are encouraged to do so� An error situation
that implementations are not required to detect is usually
referred to simply as �an error��

For example� it is an error for a procedure to be passed an
argument that the procedure is not explicitly speci�ed to
handle� even though such domain errors are seldom men�
tioned in this report� Implementations may extend a pro�
cedure�s domain of de�nition to include such arguments�

This report uses the phrase �may report a violation of an
implementation restriction� to indicate circumstances un�
der which an implementation is permitted to report that
it is unable to continue execution of a correct program be�
cause of some restriction imposed by the implementation�
Implementation restrictions are of course discouraged� but
implementations are encouraged to report violations of im�
plementation restrictions�

For example� an implementation may report a violation of
an implementation restriction if it does not have enough
storage to run a program�

If the value of an expression is said to be �unspeci�ed��
then the expression must evaluate to some object without
signalling an error� but the value depends on the imple�
mentation� this report explicitly does not say what value
should be returned�

������ Entry format

Chapters 	 and � are organized into entries� Each entry de�
scribes one language feature or a group of related features�
where a feature is either a syntactic construct or a built�in
procedure� An entry begins with one or more header lines
of the form

template category

for required� primitive features� or

template quali�er category

where quali�er is either �library� or �optional� as de�ned
in section ������

If category is �syntax�� the entry describes an expression
type� and the template gives the syntax of the expression
type� Components of expressions are designated by syn�
tactic variables� which are written using angle brackets�
for example� hexpressioni� hvariablei� Syntactic variables
should be understood to denote segments of program text�
for example� hexpressioni stands for any string of charac�
ters which is a syntactically valid expression� The notation

hthing�i � � �

indicates zero or more occurrences of a hthingi� and

hthing�i hthing�i � � �

indicates one or more occurrences of a hthingi�

If category is �procedure�� then the entry describes a pro�
cedure� and the header line gives a template for a call to the
procedure� Argument names in the template are italicized �
Thus the header line

�vector�ref vector k� procedure

indicates that the built�in procedure vector�ref takes two
arguments� a vector vector and an exact non�negative in�
teger k �see below�� The header lines

�make�vector k� procedure
�make�vector k �ll� procedure

indicate that the make�vector procedure must be de�ned
to take either one or two arguments�

It is an error for an operation to be presented with an ar�
gument that it is not speci�ed to handle� For succinctness�
we follow the convention that if an argument name is also
the name of a type listed in section ���� then that argu�
ment must be of the named type� For example� the header
line for vector�ref given above dictates that the �rst ar�
gument to vector�ref must be a vector� The following
naming conventions also imply type restrictions�

obj any object
list� list�� � � � listj � � � � list �see section ������
z� z�� � � � zj � � � � complex number
x� x�� � � � xj � � � � real number
y� y�� � � � yj � � � � real number
q� q�� � � � qj � � � � rational number
n� n�� � � � nj � � � � integer
k� k�� � � � kj � � � � exact non�negative integer

����
� Evaluation examples

The symbol ���� used in program examples should be
read �evaluates to�� For example�

�� � �� �� ��

means that the expression �� � �� evaluates to the ob�
ject �	� Or� more precisely� the expression given by the
sequence of characters ��� � ��� evaluates� in the initial
environment� to an object that may be represented exter�
nally by the sequence of characters ��	�� See section ���
for a discussion of external representations of objects�

������ Naming conventions

By convention� the names of procedures that always return
a boolean value usually end in �
�� Such procedures are
called predicates�

206

�� Lexical conventions

By convention� the names of procedures that store values
into previously allocated locations �see section ��	� usually
end in ���� Such procedures are called mutation proce�
dures� By convention� the value returned by a mutation
procedure is unspeci�ed�

By convention� ���� appears within the names of proce�
dures that take an object of one type and return an anal�
ogous object of another type� For example� list��vector
takes a list and returns a vector whose elements are the
same as those of the list�

�� Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs� For a formal
syntax of Scheme� see section ����

Upper and lower case forms of a letter are never distin�
guished except within character and string constants� For
example� Foo is the same identi�er as FOO� and x�AB is
the same number as X�ab�

���� Identi�ers

Most identi�ers allowed by other programming languages
are also acceptable to Scheme� The precise rules for form�
ing identi�ers vary among implementations of Scheme� but
in all implementations a sequence of letters� digits� and �ex�
tended alphabetic characters� that begins with a character
that cannot begin a number is an identi�er� In addition�
�� �� and ��� are identi�ers� Here are some examples of
identi�ers�

lambda q

list�	vector soup

 V��a

�� a��kTMNs

the�word�recursion�has�many�meanings

Extended alphabetic characters may be used within iden�
ti�ers as if they were letters� The following are extended
alphabetic characters�

� � � � �
 � � � � � 	 � � � � �

See section ����� for a formal syntax of identi�ers�

Identi�ers have two uses within Scheme programs�

� Any identi�er may be used as a variable or as a syn�
tactic keyword �see sections ��� and 	����

� When an identi�er appears as a literal or within a
literal �see section 	������ it is being used to denote a
symbol �see section �������

���� Whitespace and comments

Whitespace characters are spaces and newlines� �Imple�
mentations typically provide additional whitespace char�
acters such as tab or page break�� Whitespace is used for
improved readability and as necessary to separate tokens
from each other� a token being an indivisible lexical unit
such as an identi�er or number� but is otherwise insigni��
cant� Whitespace may occur between any two tokens� but
not within a token� Whitespace may also occur inside a
string� where it is signi�cant�

A semicolon ��� indicates the start of a comment� The
comment continues to the end of the line on which the
semicolon appears� Comments are invisible to Scheme� but
the end of the line is visible as whitespace� This prevents a
comment from appearing in the middle of an identi�er or
number�

��� The FACT procedure computes the factorial

��� of a non�negative integer�

�define fact

�lambda �n�

�if �� n ��

� �Base case� return �

�� n �fact �� n �������

���� Other notations

For a description of the notations used for numbers� see
section ����

� � � These are used in numbers� and may also occur
anywhere in an identi�er except as the �rst charac�
ter� A delimited plus or minus sign by itself is also an
identi�er� A delimited period �not occurring within a
number or identi�er� is used in the notation for pairs
�section ������� and to indicate a rest�parameter in a
formal parameter list �section 	���	�� A delimited se�
quence of three successive periods is also an identi�er�

� � Parentheses are used for grouping and to notate lists
�section �������

� The single quote character is used to indicate literal data
�section 	������

� The backquote character is used to indicate almost�
constant data �section 	������

� �� The character comma and the sequence comma at�
sign are used in conjunction with backquote �sec�
tion 	������

� The double quote character is used to delimit strings
�section ����
��

207

� Revised� Scheme

� Backslash is used in the syntax for character constants
�section ����	� and as an escape character within string
constants �section ����
��

� � � � � Left and right square brackets and curly braces
and vertical bar are reserved for possible future exten�
sions to the language�

 Sharp sign is used for a variety of purposes depending
on the character that immediately follows it�

t f These are the boolean constants �section �������

� This introduces a character constant �section ����	��

� This introduces a vector constant �section ������� Vec�
tor constants are terminated by � �

e i b o d x These are used in the notation for
numbers �section ����	��

�� Basic concepts

���� Variables� syntactic keywords� and re�

gions

An identi�er may name a type of syntax� or it may name
a location where a value can be stored� An identi�er that
names a type of syntax is called a syntactic keyword and is
said to be bound to that syntax� An identi�er that names
a location is called a variable and is said to be bound to
that location� The set of all visible bindings in e�ect at
some point in a program is known as the environment in
e�ect at that point� The value stored in the location to
which a variable is bound is called the variable�s value�
By abuse of terminology� the variable is sometimes said
to name the value or to be bound to the value� This is
not quite accurate� but confusion rarely results from this
practice�

Certain expression types are used to create new kinds of
syntax and bind syntactic keywords to those new syntaxes�
while other expression types create new locations and bind
variables to those locations� These expression types are
called binding constructs� Those that bind syntactic key�
words are listed in section 	��� The most fundamental of
the variable binding constructs is the lambda expression�
because all other variable binding constructs can be ex�
plained in terms of lambda expressions� The other variable
binding constructs are let� let�� letrec� and do expres�
sions �see sections 	���	� 	����� and 	���	��

Like Algol and Pascal� and unlike most other dialects of
Lisp except for Common Lisp� Scheme is a statically scoped
language with block structure� To each place where an
identi�er is bound in a program there corresponds a region

of the program text within which the binding is visible�

The region is determined by the particular binding con�
struct that establishes the binding� if the binding is estab�
lished by a lambda expression� for example� then its region
is the entire lambda expression� Every mention of an iden�
ti�er refers to the binding of the identi�er that established
the innermost of the regions containing the use� If there is
no binding of the identi�er whose region contains the use�
then the use refers to the binding for the variable in the
top level environment� if any �chapters 	 and ��� if there is
no binding for the identi�er� it is said to be unbound�

���� Disjointness of types

No object satis�es more than one of the following predi�
cates�

boolean� pair�

symbol� number�

char� string�

vector� port�

procedure�

These predicates de�ne the types boolean� pair� symbol�
number� char �or character�� string� vector� port� and pro�

cedure� The empty list is a special object of its own type�
it satis�es none of the above predicates�

Although there is a separate boolean type� any Scheme
value can be used as a boolean value for the purpose of a
conditional test� As explained in section ������ all values
count as true in such a test except for f� This report uses
the word �true� to refer to any Scheme value except f�
and the word �false� to refer to f�

���� External representations

An important concept in Scheme �and Lisp� is that of the
external representation of an object as a sequence of char�
acters� For example� an external representation of the inte�
ger �� is the sequence of characters ����� and an external
representation of a list consisting of the integers � and ��
is the sequence of characters ��� �����

The external representation of an object is not neces�
sarily unique� The integer �� also has representations
�e���			� and �x�c�� and the list in the previous para�
graph also has the representations �� 	� �� �� and ���
� ��� � ����� �see section �������

Many objects have standard external representations� but
some� such as procedures� do not have standard represen�
tations �although particular implementations may de�ne
representations for them��

An external representation may be written in a program to
obtain the corresponding object �see quote� section 	������

208

�� Basic concepts �

External representations can also be used for input and
output� The procedure read �section ������ parses external
representations� and the procedure write �section ������
generates them� Together� they provide an elegant and
powerful inputoutput facility�

Note that the sequence of characters ��� � ��� is not an
external representation of the integer �� even though it is an
expression evaluating to the integer �� rather� it is an exter�
nal representation of a three�element list� the elements of
which are the symbol � and the integers � and �� Scheme�s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object� This can lead to confusion� since it may not
be obvious out of context whether a given sequence of char�
acters is intended to denote data or program� but it is also
a source of power� since it facilitates writing programs such
as interpreters and compilers that treat programs as data
�or vice versa��

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter ��

��	� Storage model

Variables and objects such as pairs� vectors� and strings
implicitly denote locations or sequences of locations� A
string� for example� denotes as many locations as there
are characters in the string� �These locations need not
correspond to a full machine word�� A new value may be
stored into one of these locations using the string�set�

procedure� but the string continues to denote the same
locations as before�

An object fetched from a location� by a variable reference or
by a procedure such as car� vector�ref� or string�ref�
is equivalent in the sense of eqv
 �section ���� to the object
last stored in the location before the fetch�

Every location is marked to show whether it is in use� No
variable or object ever refers to a location that is not in use�
Whenever this report speaks of storage being allocated for
a variable or object� what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use� and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them�

In many systems it is desirable for constants �i�e� the val�
ues of literal expressions� to reside in read�only�memory�
To express this� it is convenient to imagine that every
object that denotes locations is associated with a �ag
telling whether that object is mutable or immutable� In
such systems literal constants and the strings returned by
symbol��string are immutable objects� while all objects

created by the other procedures listed in this report are
mutable� It is an error to attempt to store a new value
into a location that is denoted by an immutable object�

��
� Proper tail recursion

Implementations of Scheme are required to be properly tail�
recursive� Procedure calls that occur in certain syntactic
contexts de�ned below are tail calls�� A Scheme imple�
mentation is properly tail�recursive if it supports an un�
bounded number of active tail calls� A call is active if
the called procedure may still return� Note that this in�
cludes calls that may be returned from either by the cur�
rent continuation or by continuations captured earlier by
call�with�current�continuation that are later invoked�
In the absence of captured continuations� calls could return
at most once and the active calls would be those that had
not yet returned� A formal de�nition of proper tail recur�
sion can be found in ����

Rationale�

Intuitively� no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call�
Although an improper implementation might use a new con�
tinuation in the call� a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure� A properly tail�recursive implementation re�
turns to that continuation directly�

Proper tail recursion was one of the central ideas in Steele and
Sussman�s original version of Scheme� Their �rst Scheme in�
terpreter implemented both functions and actors� Control �ow
was expressed using actors� which di�ered from functions in
that they passed their results on to another actor instead of
returning to a caller� In the terminology of this section� each
actor �nished with a tail call to another actor�

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language�

A tail call is a procedure call that occurs in a tail con�

text� Tail contexts are de�ned inductively� Note that a tail
context is always determined with respect to a particular
lambda expression�

� The last expression within the body of a lambda ex�
pression� shown as htail expressioni below� occurs in a
tail context�

�lambda hformalsi
hde�nitioni! hexpressioni! htail expressioni�

� If one of the following expressions is in a tail context�
then the subexpressions shown as htail expressioni are
in a tail context� These were derived from rules in

209

� Revised� Scheme

the grammar given in chapter � by replacing some oc�
currences of hexpressioni with htail expressioni� Only
those rules that contain tail contexts are shown here�

�if hexpressioni htail expressioni htail expressioni�
�if hexpressioni htail expressioni�

�cond hcond clausei��
�cond hcond clausei! �else htail sequencei��

�case hexpressioni
hcase clausei��

�case hexpressioni
hcase clausei!
�else htail sequencei��

�and hexpressioni! htail expressioni�
�or hexpressioni! htail expressioni�

�let �hbinding speci!� htail bodyi�
�let hvariablei �hbinding speci!� htail bodyi�
�let� �hbinding speci!� htail bodyi�
�letrec �hbinding speci!� htail bodyi�

�let�syntax �hsyntax speci!� htail bodyi�
�letrec�syntax �hsyntax speci!� htail bodyi�

�begin htail sequencei�

�do �hiteration speci!�
�htesti htail sequencei�

hexpressioni!�

where

hcond clausei �� �htesti htail sequencei�
hcase clausei �� ��hdatumi!� htail sequencei�

htail bodyi �� hde�nitioni! htail sequencei
htail sequencei �� hexpressioni! htail expressioni

� If a cond expression is in a tail context� and has a
clause of the form �hexpression�i � hexpression�i�
then the �implied� call to the procedure that results
from the evaluation of hexpression�i is in a tail context�
hexpression�i itself is not in a tail context�

Certain built�in procedures are also required to perform
tail calls� The �rst argument passed to apply and to
call�with�current�continuation� and the second argu�
ment passed to call�with�values� must be called via a
tail call� Similarly� eval must evaluate its argument as if
it were in tail position within the eval procedure�

In the following example the only tail call is the call to f�
None of the calls to g or h are tail calls� The reference to
x is in a tail context� but it is not a call and thus is not a
tail call�

�lambda ��

�if �g�

�let ��x �h���

x�

�and �g� �f����

Note� Implementations are allowed� but not required� to recog�

nize that some non�tail calls� such as the call to h above� can be

evaluated as though they were tail calls� In the example above�

the let expression could be compiled as a tail call to h� 	The

possibility of h returning an unexpected number of values can

be ignored� because in that case the e�ect of the let is explicitly

unspeci�ed and implementation�dependent�

	� Expressions

Expression types are categorized as primitive or derived�
Primitive expression types include variables and procedure
calls� Derived expression types are not semantically prim�
itive� but can instead be de�ned as macros� With the ex�
ception of quasiquote� whose macro de�nition is complex�
the derived expressions are classi�ed as library features�
Suitable de�nitions are given in section ����

	��� Primitive expression types

����� Variable references

hvariablei syntax

An expression consisting of a variable �section ���� is a
variable reference� The value of the variable reference is
the value stored in the location to which the variable is
bound� It is an error to reference an unbound variable�

�define x ���

x �� ��

����� Literal expressions

�quote hdatumi� syntax
�hdatumi syntax
hconstanti syntax

�quote hdatumi� evaluates to hdatumi� hDatumi may be
any external representation of a Scheme object �see sec�
tion ����� This notation is used to include literal constants
in Scheme code�

�quote a� �� a

�quote ��a b c�� �� ��a b c�

�quote �
 � ��� �� �
 � ��

210

	� Expressions �

�quote hdatumi� may be abbreviated as �hdatumi� The
two notations are equivalent in all respects�

�a �� a

���a b c� �� ��a b c�

��� �� ��

��
 � �� �� �
 � ��

��quote a� �� �quote a�

��a �� �quote a�

Numerical constants� string constants� character constants�
and boolean constants evaluate �to themselves�� they need
not be quoted�

� abc �� abc

 abc �� abc

����!�� �� ���!��

���!�� �� ���!��

��t �� �t

�t �� �t

As noted in section ��	� it is an error to alter a constant
�i�e� the value of a literal expression� using a mutation pro�
cedure like set�car� or string�set��

����� Procedure calls

�hoperatori hoperand�i � � � � syntax

A procedure call is written by simply enclosing in paren�
theses expressions for the procedure to be called and the
arguments to be passed to it� The operator and operand
expressions are evaluated �in an unspeci�ed order� and the
resulting procedure is passed the resulting arguments�

�
 � �� �� �

��if �f
 �� � �� �� ��

A number of procedures are available as the values of vari�
ables in the initial environment� for example� the addition
and multiplication procedures in the above examples are
the values of the variables � and �� New procedures are cre�
ated by evaluating lambda expressions �see section 	���	��

Procedure calls may return any number of values �see
values in section ��	�� With the exception of values the
procedures available in the initial environment return one
value or� for procedures such as apply� pass on the values
returned by a call to one of their arguments�

Procedure calls are also called combinations�

Note� In contrast to other dialects of Lisp� the order of

evaluation is unspeci�ed� and the operator expression and the

operand expressions are always evaluated with the same evalu�

ation rules�

Note� Although the order of evaluation is otherwise unspeci�

�ed� the e�ect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation� The order of evaluation may be

chosen di�erently for each procedure call�

Note� In many dialects of Lisp� the empty combination� ���

is a legitimate expression� In Scheme� combinations must have

at least one subexpression� so �� is not a syntactically valid

expression�

���
� Procedures

�lambda hformalsi hbodyi� syntax

Syntax� hFormalsi should be a formal arguments list as
described below� and hbodyi should be a sequence of one
or more expressions�

Semantics� A lambda expression evaluates to a procedure�
The environment in e�ect when the lambda expression was
evaluated is remembered as part of the procedure� When
the procedure is later called with some actual arguments�
the environment in which the lambda expression was evalu�
ated will be extended by binding the variables in the formal
argument list to fresh locations� the corresponding actual
argument values will be stored in those locations� and the
expressions in the body of the lambda expression will be
evaluated sequentially in the extended environment� The
result�s� of the last expression in the body will be returned
as the result�s� of the procedure call�

�lambda �x� �
 x x�� �� a procedure

��lambda �x� �
 x x�� �� �� �

�define reverse�subtract

�lambda �x y� �� y x���

�reverse�subtract � ��� �� �

�define add�

�let ��x ���

�lambda �y� �
 x y����

�add� "� �� ��

hFormalsi should have one of the following forms�

� �hvariable�i � � � �� The procedure takes a �xed num�
ber of arguments� when the procedure is called� the
arguments will be stored in the bindings of the corre�
sponding variables�

� hvariablei� The procedure takes any number of ar�
guments� when the procedure is called� the sequence
of actual arguments is converted into a newly allo�
cated list� and the list is stored in the binding of the
hvariablei�

� �hvariable�i � � � hvariableni � hvariablen��i�� If a
space�delimited period precedes the last variable� then
the procedure takes n or more arguments� where n
is the number of formal arguments before the period
�there must be at least one�� The value stored in the
binding of the last variable will be a newly allocated
list of the actual arguments left over after all the other
actual arguments have been matched up against the
other formal arguments�

211

�� Revised� Scheme

It is an error for a hvariablei to appear more than once in
hformalsi�

��lambda x x� � � � "� �� �� � � "�

��lambda �x y � z� z�

� � � "� �� �� "�

Each procedure created as the result of evaluating a lambda

expression is �conceptually� tagged with a storage location�
in order to make eqv
 and eq
 work on procedures �see
section �����

����� Conditionals

�if htesti hconsequenti halternatei� syntax
�if htesti hconsequenti� syntax

Syntax� hTesti� hconsequenti� and halternatei may be arbi�
trary expressions�

Semantics� An if expression is evaluated as follows� �rst�
htesti is evaluated� If it yields a true value �see sec�
tion ������� then hconsequenti is evaluated and its value�s�
is�are� returned� Otherwise halternatei is evaluated and its
value�s� is�are� returned� If htesti yields a false value and
no halternatei is speci�ed� then the result of the expression
is unspeci�ed�

�if �	 � �� �yes �no� �� yes

�if �	 � �� �yes �no� �� no

�if �	 � ��

�� � ��

�
 � ��� �� �

����� Assignments

�set� hvariablei hexpressioni� syntax

hExpressioni is evaluated� and the resulting value is stored
in the location to which hvariablei is bound� hVariablei
must be bound either in some region enclosing the set�

expression or at top level� The result of the set� expression
is unspeci�ed�

�define x ��

�
 x �� �� �

�set� x �� �� unspeci�ed

�
 x �� �� �

	��� Derived expression types

The constructs in this section are hygienic� as discussed
in section 	��� For reference purposes� section ��� gives
macro de�nitions that will convert most of the constructs
described in this section into the primitive constructs de�
scribed in the previous section�

����� Conditionals

�cond hclause�i hclause�i � � � � library syntax

Syntax� Each hclausei should be of the form

�htesti hexpression�i � � � �

where htesti is any expression� Alternatively� a hclausei
may be of the form

�htesti �	 hexpressioni�

The last hclausei may be an �else clause�� which has the
form

�else hexpression�i hexpression�i � � � ��

Semantics� A cond expression is evaluated by evaluating
the htesti expressions of successive hclauseis in order until
one of them evaluates to a true value �see section �������
When a htesti evaluates to a true value� then the remain�
ing hexpressionis in its hclausei are evaluated in order�
and the result�s� of the last hexpressioni in the hclausei
is�are� returned as the result�s� of the entire cond expres�
sion� If the selected hclausei contains only the htesti and no
hexpressionis� then the value of the htesti is returned as the
result� If the selected hclausei uses the � alternate form�
then the hexpressioni is evaluated� Its value must be a pro�
cedure that accepts one argument� this procedure is then
called on the value of the htesti and the value�s� returned
by this procedure is�are� returned by the cond expression�
If all htestis evaluate to false values� and there is no else
clause� then the result of the conditional expression is un�
speci�ed� if there is an else clause� then its hexpressionis are
evaluated� and the value�s� of the last one is�are� returned�

�cond ��	 � �� �greater�

�� � �� �less�� �� greater

�cond ��	 � �� �greater�

�� � �� �less�

�else �equal�� �� equal

�cond ��assv �b ���a �� �b ���� �	 cadr�

�else �f�� �� �

�case hkeyi hclause�i hclause�i � � � � library syntax

Syntax� hKeyi may be any expression� Each hclausei
should have the form

��hdatum�i � � � � hexpression�i hexpression�i � � � ��

where each hdatumi is an external representation of some
object� All the hdatumis must be distinct� The last
hclausei may be an �else clause�� which has the form

�else hexpression�i hexpression�i � � � ��

Semantics� A case expression is evaluated as follows�
hKeyi is evaluated and its result is compared against each
hdatumi� If the result of evaluating hkeyi is equivalent
�in the sense of eqv
� see section ���� to a hdatumi� then
the expressions in the corresponding hclausei are evaluated
from left to right and the result�s� of the last expression in

212

	� Expressions ��

the hclausei is�are� returned as the result�s� of the case ex�
pression� If the result of evaluating hkeyi is di�erent from
every hdatumi� then if there is an else clause its expres�
sions are evaluated and the result�s� of the last is�are� the
result�s� of the case expression� otherwise the result of the
case expression is unspeci�ed�

�case �� � ��

��� � � �� �prime�

��� � " � !� �composite�� �� composite

�case �car ��c d��

��a� �a�

��b� �b�� �� unspeci�ed

�case �car ��c d��

��a e i o u� �vowel�

��w y� �semivowel�

�else �consonant�� �� consonant

�and htest�i � � �� library syntax

The htesti expressions are evaluated from left to right� and
the value of the �rst expression that evaluates to a false
value �see section ������ is returned� Any remaining ex�
pressions are not evaluated� If all the expressions evaluate
to true values� the value of the last expression is returned�
If there are no expressions then t is returned�

�and �� � �� �	 � ��� �� �t

�and �� � �� � � ��� �� �f

�and � � �c ��f g�� �� �f g�

�and� �� �t

�or htest�i � � � � library syntax

The htesti expressions are evaluated from left to right� and
the value of the �rst expression that evaluates to a true
value �see section ������ is returned� Any remaining ex�
pressions are not evaluated� If all expressions evaluate to
false values� the value of the last expression is returned� If
there are no expressions then f is returned�

�or �� � �� �	 � ��� �� �t

�or �� � �� � � ��� �� �t

�or �f �f �f� �� �f

�or �memq �b ��a b c��

�� � ��� �� �b c�

����� Binding constructs

The three binding constructs let� let�� and letrec give
Scheme a block structure� like Algol ��� The syntax of the
three constructs is identical� but they di�er in the regions
they establish for their variable bindings� In a let ex�
pression� the initial values are computed before any of the
variables become bound� in a let� expression� the bind�
ings and evaluations are performed sequentially� while in a
letrec expression� all the bindings are in e�ect while their

initial values are being computed� thus allowing mutually
recursive de�nitions�

�let hbindingsi hbodyi� library syntax

Syntax� hBindingsi should have the form

��hvariable�i hinit�i� � � � ��

where each hiniti is an expression� and hbodyi should be a
sequence of one or more expressions� It is an error for a
hvariablei to appear more than once in the list of variables
being bound�

Semantics� The hinitis are evaluated in the current envi�
ronment �in some unspeci�ed order�� the hvariableis are
bound to fresh locations holding the results� the hbodyi is
evaluated in the extended environment� and the value�s� of
the last expression of hbodyi is�are� returned� Each bind�
ing of a hvariablei has hbodyi as its region�

�let ��x �� �y ���

�� x y�� �� "

�let ��x �� �y ���

�let ��x ��

�z �
 x y���

�� z x��� �� ��

See also named let� section 	���	�

�let� hbindingsi hbodyi� library syntax

Syntax� hBindingsi should have the form

��hvariable�i hinit�i� � � � ��

and hbodyi should be a sequence of one or more expres�
sions�

Semantics� Let� is similar to let� but the bindings are
performed sequentially from left to right� and the region of
a binding indicated by �hvariablei hiniti� is that part of
the let� expression to the right of the binding� Thus the
second binding is done in an environment in which the �rst
binding is visible� and so on�

�let ��x �� �y ���

�let� ��x ��

�z �
 x y���

�� z x��� �� ��

�letrec hbindingsi hbodyi� library syntax

Syntax� hBindingsi should have the form

��hvariable�i hinit�i� � � � ��

and hbodyi should be a sequence of one or more expres�
sions� It is an error for a hvariablei to appear more than
once in the list of variables being bound�

Semantics� The hvariableis are bound to fresh locations
holding unde�ned values� the hinitis are evaluated in the

213

�� Revised� Scheme

resulting environment �in some unspeci�ed order�� each
hvariablei is assigned to the result of the corresponding
hiniti� the hbodyi is evaluated in the resulting environment�
and the value�s� of the last expression in hbodyi is�are� re�
turned� Each binding of a hvariablei has the entire letrec

expression as its region� making it possible to de�ne mutu�
ally recursive procedures�

�letrec ��even�

�lambda �n�

�if �zero� n�

�t

�odd� �� n ������

�odd�

�lambda �n�

�if �zero� n�

�f

�even� �� n �������

�even� ����

�� �t

One restriction on letrec is very important� it must be
possible to evaluate each hiniti without assigning or refer�
ring to the value of any hvariablei� If this restriction is
violated� then it is an error� The restriction is necessary
because Scheme passes arguments by value rather than by
name� In the most common uses of letrec� all the hinitis
are lambda expressions and the restriction is satis�ed au�
tomatically�

����� Sequencing

�begin hexpression�i hexpression�i � � �� library syntax

The hexpressionis are evaluated sequentially from left to
right� and the value�s� of the last hexpressioni is�are� re�
turned� This expression type is used to sequence side ef�
fects such as input and output�

�define x ��

�begin �set� x ��

�
 x ��� �� "

�begin �display � plus � equals �

�display �
 � ���� �� unspeci�ed

and prints � plus � equals �

���
� Iteration

�do ��hvariable�i hinit�i hstep�i� library syntax
� � � �
�htesti hexpressioni � � � �

hcommandi � � � �

Do is an iteration construct� It speci�es a set of variables
to be bound� how they are to be initialized at the start�
and how they are to be updated on each iteration� When a

termination condition is met� the loop exits after evaluating
the hexpressionis�

Do expressions are evaluated as follows� The hiniti ex�
pressions are evaluated �in some unspeci�ed order�� the
hvariableis are bound to fresh locations� the results of
the hiniti expressions are stored in the bindings of the
hvariableis� and then the iteration phase begins�

Each iteration begins by evaluating htesti� if the result is
false �see section ������� then the hcommandi expressions
are evaluated in order for e�ect� the hstepi expressions
are evaluated in some unspeci�ed order� the hvariableis
are bound to fresh locations� the results of the hstepis are
stored in the bindings of the hvariableis� and the next iter�
ation begins�

If htesti evaluates to a true value� then the hexpressionis
are evaluated from left to right and the value�s� of the
last hexpressioni is�are� returned� If no hexpressionis are
present� then the value of the do expression is unspeci�ed�

The region of the binding of a hvariablei consists of the
entire do expression except for the hinitis� It is an error
for a hvariablei to appear more than once in the list of do
variables�

A hstepi may be omitted� in which case the e�ect is the
same as if �hvariablei hiniti hvariablei� had been written
instead of �hvariablei hiniti��

�do ��vec �make�vector ���

�i � �
 i ����

��� i �� vec�

�vector�set� vec i i�� �� ��� � � � ��

�let ��x ��� � � � !���

�do ��x x �cdr x��

�sum � �
 sum �car x����

��null� x� sum��� �� ��

�let hvariablei hbindingsi hbodyi� library syntax

�Named let� is a variant on the syntax of let which pro�
vides a more general looping construct than do and may
also be used to express recursions� It has the same syn�
tax and semantics as ordinary let except that hvariablei
is bound within hbodyi to a procedure whose formal argu�
ments are the bound variables and whose body is hbodyi�
Thus the execution of hbodyi may be repeated by invoking
the procedure named by hvariablei�

�let loop ��numbers ��� �� � " ����

�nonneg ����

�neg �����

�cond ��null� numbers� �list nonneg neg��

��	� �car numbers� ��

�loop �cdr numbers�

�cons �car numbers� nonneg�

neg��

�� �car numbers� ��

214

	� Expressions ��

�loop �cdr numbers�

nonneg

�cons �car numbers� neg�����

�� ��" � �� ��� ����

����� Delayed evaluation

�delay hexpressioni� library syntax

The delay construct is used together with the proce�
dure force to implement lazy evaluation or call by need�
�delay hexpressioni� returns an object called a promise

which at some point in the future may be asked �by the
force procedure� to evaluate hexpressioni� and deliver the
resulting value� The e�ect of hexpressioni returning multi�
ple values is unspeci�ed�

See the description of force �section ��	� for a more com�
plete description of delay�

����� Quasiquotation

�quasiquote hqq templatei� syntax
�hqq templatei syntax

�Backquote� or �quasiquote� expressions are useful for
constructing a list or vector structure when most but not
all of the desired structure is known in advance� If no
commas appear within the hqq templatei� the result of
evaluating �hqq templatei is equivalent to the result of
evaluating �hqq templatei� If a comma appears within
the hqq templatei� however� the expression following the
comma is evaluated ��unquoted�� and its result is inserted
into the structure instead of the comma and the expres�
sion� If a comma appears followed immediately by an at�
sign ���� then the following expression must evaluate to
a list� the opening and closing parentheses of the list are
then �stripped away� and the elements of the list are in�
serted in place of the comma at�sign expression sequence�
A comma at�sign should only appear within a list or vector
hqq templatei�

#�list $�
 � �� �� �� �list � ��

�let ��name �a�� #�list $name �$name��

�� �list a �quote a��

#�a $�
 � �� $��map abs ��� �� "�� b�

�� �a � � � " b�

#�� foo $�� �� ��� $��cdr ��c�� � $�car ��cons���

�� ��foo �� � cons�

#���� � $�sqrt �� $��map sqrt ���" !�� ��

�� ���� � � � � ��

Quasiquote forms may be nested� Substitutions are made
only for unquoted components appearing at the same nest�
ing level as the outermost backquote� The nesting level in�
creases by one inside each successive quasiquotation� and
decreases by one inside each unquotation�

#�a #�b $�
 � �� $�foo $�
 � �� d� e� f�

�� �a #�b $�
 � �� $�foo � d� e� f�

�let ��name� �x�

�name� �y��

#�a #�b $$name� $�$name� d� e��

�� �a #�b $x $�y d� e�

The two notations �hqq templatei and �quasiquote

hqq templatei� are identical in all respects� �hexpressioni
is identical to �unquote hexpressioni�� and ��hexpressioni
is identical to �unquote�splicing hexpressioni�� The ex�
ternal syntax generated by write for two�element lists
whose car is one of these symbols may vary between im�
plementations�

�quasiquote �list �unquote �
 � ��� ���

�� �list � ��

��quasiquote �list �unquote �
 � ��� ���

�� #�list $�
 � �� ��

i�e�� �quasiquote �list �unquote �
 � ��� ���

Unpredictable behavior can result if any of the symbols
quasiquote� unquote� or unquote�splicing appear in po�
sitions within a hqq templatei otherwise than as described
above�

	��� Macros

Scheme programs can de�ne and use new derived expres�
sion types� called macros� Program�de�ned expression
types have the syntax

�hkeywordi hdatumi ����

where hkeywordi is an identi�er that uniquely determines
the expression type� This identi�er is called the syntactic

keyword� or simply keyword� of the macro� The number of
the hdatumis� and their syntax� depends on the expression
type�

Each instance of a macro is called a use of the macro� The
set of rules that speci�es how a use of a macro is transcribed
into a more primitive expression is called the transformer

of the macro�

The macro de�nition facility consists of two parts�

� A set of expressions used to establish that certain iden�
ti�ers are macro keywords� associate them with macro
transformers� and control the scope within which a
macro is de�ned� and

� a pattern language for specifying macro transformers�

The syntactic keyword of a macro may shadow variable
bindings� and local variable bindings may shadow keyword
bindings� All macros de�ned using the pattern language
are �hygienic� and �referentially transparent� and thus
preserve Scheme�s lexical scoping ��	� �
� �� �� ���

215

�	 Revised� Scheme

� If a macro transformer inserts a binding for an identi�
�er �variable or keyword�� the identi�er will in e�ect be
renamed throughout its scope to avoid con�icts with
other identi�ers� Note that a define at top level may
or may not introduce a binding� see section
���

� If a macro transformer inserts a free reference to an
identi�er� the reference refers to the binding that was
visible where the transformer was speci�ed� regardless
of any local bindings that may surround the use of the
macro�

����� Binding constructs for syntactic keywords

Let�syntax and letrec�syntax are analogous to let and
letrec� but they bind syntactic keywords to macro trans�
formers instead of binding variables to locations that con�
tain values� Syntactic keywords may also be bound at top
level� see section
���

�let�syntax hbindingsi hbodyi� syntax

Syntax� hBindingsi should have the form

��hkeywordi htransformer speci� � � � �

Each hkeywordi is an identi�er� each htransformer speci
is an instance of syntax�rules� and hbodyi should be a
sequence of one or more expressions� It is an error for a
hkeywordi to appear more than once in the list of keywords
being bound�

Semantics� The hbodyi is expanded in the syntactic envi�
ronment obtained by extending the syntactic environment
of the let�syntax expression with macros whose keywords
are the hkeywordis� bound to the speci�ed transformers�
Each binding of a hkeywordi has hbodyi as its region�

�let�syntax ��when �syntax�rules ��

��when test stmt� stmt� ����

�if test

�begin stmt�

stmt� ���������

�let ��if �t��

�when if �set� if �now��

if�� �� now

�let ��x �outer��

�let�syntax ��m �syntax�rules �� ��m� x����

�let ��x �inner��

�m���� �� outer

�letrec�syntax hbindingsi hbodyi� syntax

Syntax� Same as for let�syntax�

Semantics� The hbodyi is expanded in the syntactic envi�
ronment obtained by extending the syntactic environment

of the letrec�syntax expression with macros whose key�
words are the hkeywordis� bound to the speci�ed trans�
formers� Each binding of a hkeywordi has the hbindingsi
as well as the hbodyi within its region� so the transformers
can transcribe expressions into uses of the macros intro�
duced by the letrec�syntax expression�

�letrec�syntax

��my�or �syntax�rules ��

��my�or� �f�

��my�or e� e�

��my�or e� e� ����

�let ��temp e���

�if temp

temp

�my�or e� ����������

�let ��x �f�

�y ��

�temp ��

�let odd��

�if even���

�my�or x

�let temp�

�if y�

y��� �� �

����� Pattern language

A htransformer speci has the following form�

�syntax�rules hliteralsi hsyntax rulei � � � �

Syntax� hLiteralsi is a list of identi�ers and each
hsyntax rulei should be of the form

�hpatterni htemplatei�

The hpatterni in a hsyntax rulei is a list hpatterni that
begins with the keyword for the macro�

A hpatterni is either an identi�er� a constant� or one of the
following

�hpatterni ����

�hpatterni hpatterni ��� � hpatterni�
�hpatterni ��� hpatterni hellipsisi�
��hpatterni ����

��hpatterni ��� hpatterni hellipsisi�

and a template is either an identi�er� a constant� or one of
the following

�helementi ����

�helementi helementi ��� � htemplatei�
��helementi ����

where an helementi is a htemplatei optionally followed by
an hellipsisi and an hellipsisi is the identi�er ����� �which
cannot be used as an identi�er in either a template or a
pattern��

Semantics� An instance of syntax�rules produces a new
macro transformer by specifying a sequence of hygienic

216

	� Expressions �

rewrite rules� A use of a macro whose keyword is associated
with a transformer speci�ed by syntax�rules is matched
against the patterns contained in the hsyntax ruleis� be�
ginning with the leftmost hsyntax rulei� When a match is
found� the macro use is transcribed hygienically according
to the template�

An identi�er that appears in the pattern of a hsyntax rulei
is a pattern variable� unless it is the keyword that begins
the pattern� is listed in hliteralsi� or is the identi�er ������
Pattern variables match arbitrary input elements and are
used to refer to elements of the input in the template� It
is an error for the same pattern variable to appear more
than once in a hpatterni�

The keyword at the beginning of the pattern in a
hsyntax rulei is not involved in the matching and is not
considered a pattern variable or literal identi�er�

Rationale� The scope of the keyword is determined by the

expression or syntax de�nition that binds it to the associated

macro transformer� If the keyword were a pattern variable or

literal identi�er� then the template that follows the pattern

would be within its scope regardless of whether the keyword

were bound by let�syntax or by letrec�syntax�

Identi�ers that appear in hliteralsi are interpreted as literal
identi�ers to be matched against corresponding subforms
of the input� A subform in the input matches a literal
identi�er if and only if it is an identi�er and either both its
occurrence in the macro expression and its occurrence in
the macro de�nition have the same lexical binding� or the
two identi�ers are equal and both have no lexical binding�

A subpattern followed by ��� can match zero or more el�
ements of the input� It is an error for ��� to appear in
hliteralsi� Within a pattern the identi�er ��� must follow
the last element of a nonempty sequence of subpatterns�

More formally� an input form F matches a pattern P if and
only if�

� P is a non�literal identi�er� or

� P is a literal identi�er and F is an identi�er with the
same binding� or

� P is a list �P� � � � Pn� and F is a list of n forms that
match P� through Pn� respectively� or

� P is an improper list �P� P� � � � Pn � Pn��� and
F is a list or improper list of n or more forms that
match P� through Pn� respectively� and whose nth
�cdr� matches Pn��� or

� P is of the form �P� � � � Pn Pn�� hellipsisi� where
hellipsisi is the identi�er ��� and F is a proper list
of at least n forms� the �rst n of which match P�

through Pn� respectively� and each remaining element
of F matches Pn��� or

� P is a vector of the form �P� � � � Pn� and F is a
vector of n forms that match P� through Pn� or

� P is of the form �P� � � � Pn Pn�� hellipsisi� where
hellipsisi is the identi�er ��� and F is a vector of n or
more forms the �rst n of which match P� through Pn�
respectively� and each remaining element of F matches
Pn��� or

� P is a datum and F is equal to P in the sense of the
equal
 procedure�

It is an error to use a macro keyword� within the scope of
its binding� in an expression that does not match any of
the patterns�

When a macro use is transcribed according to the template
of the matching hsyntax rulei� pattern variables that occur
in the template are replaced by the subforms they match
in the input� Pattern variables that occur in subpatterns
followed by one or more instances of the identi�er ��� are
allowed only in subtemplates that are followed by as many
instances of ���� They are replaced in the output by all
of the subforms they match in the input� distributed as
indicated� It is an error if the output cannot be built up
as speci�ed�

Identi�ers that appear in the template but are not pattern
variables or the identi�er ��� are inserted into the output
as literal identi�ers� If a literal identi�er is inserted as a
free identi�er then it refers to the binding of that identi�er
within whose scope the instance of syntax�rules appears�
If a literal identi�er is inserted as a bound identi�er then
it is in e�ect renamed to prevent inadvertent captures of
free identi�ers�

As an example� if let and cond are de�ned as in section ���
then they are hygienic �as required� and the following is not
an error�

�let ���	 �f��

�cond ��t �	 �ok��� �� ok

The macro transformer for cond recognizes � as a local
variable� and hence an expression� and not as the top�level
identi�er �� which the macro transformer treats as a syn�
tactic keyword� Thus the example expands into

�let ���	 �f��

�if �t �begin �	 �ok���

instead of

�let ���	 �f��

�let ��temp �t��

�if temp ��ok temp����

which would result in an invalid procedure call�

217

�� Revised� Scheme

� Program structure

��� Programs

A Scheme program consists of a sequence of expressions�
de�nitions� and syntax de�nitions� Expressions are de�
scribed in chapter 	� de�nitions and syntax de�nitions are
the subject of the rest of the present chapter�

Programs are typically stored in �les or entered inter�
actively to a running Scheme system� although other
paradigms are possible� questions of user interface lie out�
side the scope of this report� �Indeed� Scheme would still be
useful as a notation for expressing computational methods
even in the absence of a mechanical implementation��

De�nitions and syntax de�nitions occurring at the top level
of a program can be interpreted declaratively� They cause
bindings to be created in the top level environment or mod�
ify the value of existing top�level bindings� Expressions
occurring at the top level of a program are interpreted im�
peratively� they are executed in order when the program
is invoked or loaded� and typically perform some kind of
initialization�

At the top level of a program �begin hform�i � � � � is
equivalent to the sequence of expressions� de�nitions� and
syntax de�nitions that form the body of the begin�

��� De�nitions

De�nitions are valid in some� but not all� contexts where
expressions are allowed� They are valid only at the top
level of a hprogrami and at the beginning of a hbodyi�

A de�nition should have one of the following forms�

� �define hvariablei hexpressioni�

� �define �hvariablei hformalsi� hbodyi�

hFormalsi should be either a sequence of zero or more
variables� or a sequence of one or more variables fol�
lowed by a space�delimited period and another vari�
able �as in a lambda expression�� This form is equiv�
alent to

�define hvariablei
�lambda �hformalsi� hbodyi���

� �define �hvariablei � hformali� hbodyi�

hFormali should be a single variable� This form is
equivalent to

�define hvariablei
�lambda hformali hbodyi���

������ Top level de	nitions

At the top level of a program� a de�nition

�define hvariablei hexpressioni�

has essentially the same e�ect as the assignment expres�
sion

�set� hvariablei hexpressioni�

if hvariablei is bound� If hvariablei is not bound� however�
then the de�nition will bind hvariablei to a new location
before performing the assignment� whereas it would be an
error to perform a set� on an unbound variable�

�define add�

�lambda �x� �
 x ����

�add� �� �� "

�define first car�

�first ��� ��� �� �

Some implementations of Scheme use an initial environ�
ment in which all possible variables are bound to locations�
most of which contain unde�ned values� Top level de�ni�
tions in such an implementation are truly equivalent to
assignments�

������ Internal de	nitions

De�nitions may occur at the beginning of a hbodyi �that
is� the body of a lambda� let� let�� letrec� let�syntax�
or letrec�syntax expression or that of a de�nition of an
appropriate form�� Such de�nitions are known as internal
de�nitions as opposed to the top level de�nitions described
above� The variable de�ned by an internal de�nition is
local to the hbodyi� That is� hvariablei is bound rather
than assigned� and the region of the binding is the entire
hbodyi� For example�

�let ��x ���

�define foo �lambda �y� �bar x y���

�define bar �lambda �a b� �
 �� a b� a���

�foo �
 x ���� �� ��

A hbodyi containing internal de�nitions can always be con�
verted into a completely equivalent letrec expression� For
example� the let expression in the above example is equiv�
alent to

�let ��x ���

�letrec ��foo �lambda �y� �bar x y���

�bar �lambda �a b� �
 �� a b� a����

�foo �
 x �����

Just as for the equivalent letrec expression� it must be
possible to evaluate each hexpressioni of every internal def�
inition in a hbodyi without assigning or referring to the
value of any hvariablei being de�ned�

Wherever an internal de�nition may occur �begin

hde�nition�i � � � � is equivalent to the sequence of de�ni�
tions that form the body of the begin�

218

�� Standard procedures ��

��� Syntax de�nitions

Syntax de�nitions are valid only at the top level of a
hprogrami� They have the following form�

�define�syntax hkeywordi htransformer speci�

hKeywordi is an identi�er� and the htransformer speci
should be an instance of syntax�rules� The top�level syn�
tactic environment is extended by binding the hkeywordi
to the speci�ed transformer�

There is no define�syntax analogue of internal de�ni�
tions�

Although macros may expand into de�nitions and syntax
de�nitions in any context that permits them� it is an error
for a de�nition or syntax de�nition to shadow a syntactic
keyword whose meaning is needed to determine whether
some form in the group of forms that contains the shad�
owing de�nition is in fact a de�nition� or� for internal def�
initions� is needed to determine the boundary between the
group and the expressions that follow the group� For ex�
ample� the following are errors�

�define define ��

�begin �define begin list��

�let�syntax

��foo �syntax�rules ��

��foo �proc args ���� body ����

�define proc

�lambda �args ����

body ���������

�let ��x ���

�foo �plus x y� �
 x y��

�define foo x�

�plus foo x���

�� Standard procedures

This chapter describes Scheme�s built�in procedures� The
initial �or �top level�� Scheme environment starts out with
a number of variables bound to locations containing useful
values� most of which are primitive procedures that ma�
nipulate data� For example� the variable abs is bound to
�a location initially containing� a procedure of one argu�
ment that computes the absolute value of a number� and
the variable � is bound to a procedure that computes sums�
Built�in procedures that can easily be written in terms of
other built�in procedures are identi�ed as �library proce�
dures��

A program may use a top�level de�nition to bind any vari�
able� It may subsequently alter any such binding by an
assignment �see 	������ These operations do not modify
the behavior of Scheme�s built�in procedures� Altering any

top�level binding that has not been introduced by a de�ni�
tion has an unspeci�ed e�ect on the behavior of the built�in
procedures�

���� Equivalence predicates

A predicate is a procedure that always returns a boolean
value �t or f�� An equivalence predicate is the compu�
tational analogue of a mathematical equivalence relation
�it is symmetric� re�exive� and transitive�� Of the equiva�
lence predicates described in this section� eq
 is the �nest
or most discriminating� and equal
 is the coarsest� Eqv

is slightly less discriminating than eq
�

�eqv
 obj� obj�� procedure

The eqv
 procedure de�nes a useful equivalence relation
on objects� Brie�y� it returns t if obj� and obj� should
normally be regarded as the same object� This relation is
left slightly open to interpretation� but the following par�
tial speci�cation of eqv
 holds for all implementations of
Scheme�

The eqv
 procedure returns t if�

� obj� and obj� are both t or both f�

� obj� and obj� are both symbols and

�string�� �symbol�	string obj��

�symbol�	string obj���

�� �t

Note� This assumes that neither obj� nor obj� is an �un�

interned symbol� as alluded to in section ����� This re�

port does not presume to specify the behavior of eqv� on

implementation�dependent extensions�

� obj� and obj� are both numbers� are numerically equal
�see � section ����� and are either both exact or both
inexact�

� obj� and obj� are both characters and are the same
character according to the char
 procedure �sec�
tion ����	��

� both obj� and obj� are the empty list�

� obj� and obj� are pairs� vectors� or strings that denote
the same locations in the store �section ��	��

� obj� and obj� are procedures whose location tags are
equal �section 	���	��

The eqv
 procedure returns f if�

� obj� and obj� are of di�erent types �section �����

219

�� Revised� Scheme

� one of obj� and obj� is t but the other is f�

� obj� and obj� are symbols but

�string�� �symbol�	string obj��

�symbol�	string obj���

�� �f

� one of obj� and obj� is an exact number but the other
is an inexact number�

� obj� and obj� are numbers for which the procedure
returns f�

� obj� and obj� are characters for which the char
 pro�
cedure returns f�

� one of obj� and obj� is the empty list but the other is
not�

� obj� and obj� are pairs� vectors� or strings that denote
distinct locations�

� obj� and obj� are procedures that would behave di�er�
ently �return di�erent value�s� or have di�erent side
e�ects� for some arguments�

�eqv� �a �a� �� �t

�eqv� �a �b� �� �f

�eqv� � �� �� �t

�eqv� ��� ���� �� �t

�eqv� ��������� ���������� �� �t

�eqv� �cons � �� �cons � ����� �f

�eqv� �lambda �� ��

�lambda �� ��� �� �f

�eqv� �f �nil� �� �f

�let ��p �lambda �x� x���

�eqv� p p�� �� �t

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv
� All that
can be said about such cases is that the value returned by
eqv
 must be a boolean�

�eqv� � �� unspeci�ed

�eqv� ���� ����� �� unspeci�ed

�eqv� �lambda �x� x�

�lambda �x� x�� �� unspeci�ed

�eqv� �lambda �x� x�

�lambda �y� y�� �� unspeci�ed

The next set of examples shows the use of eqv
 with pro�
cedures that have local state� Gen�counter must return a
distinct procedure every time� since each procedure has its
own internal counter� Gen�loser� however� returns equiv�
alent procedures each time� since the local state does not
a�ect the value or side e�ects of the procedures�

�define gen�counter

�lambda ��

�let ��n ���

�lambda �� �set� n �
 n ��� n����

�let ��g �gen�counter���

�eqv� g g�� �� �t

�eqv� �gen�counter� �gen�counter��

�� �f

�define gen�loser

�lambda ��

�let ��n ���

�lambda �� �set� n �
 n ��� ������

�let ��g �gen�loser���

�eqv� g g�� �� �t

�eqv� �gen�loser� �gen�loser��

�� unspeci�ed

�letrec ��f �lambda �� �if �eqv� f g� �both �f���

�g �lambda �� �if �eqv� f g� �both �g����

�eqv� f g��

�� unspeci�ed

�letrec ��f �lambda �� �if �eqv� f g� �f �both���

�g �lambda �� �if �eqv� f g� �g �both����

�eqv� f g��

�� �f

Since it is an error to modify constant objects �those re�
turned by literal expressions�� implementations are per�
mitted� though not required� to share structure between
constants where appropriate� Thus the value of eqv
 on
constants is sometimes implementation�dependent�

�eqv� ��a� ��a�� �� unspeci�ed

�eqv� a a � �� unspeci�ed

�eqv� ��b� �cdr ��a b��� �� unspeci�ed

�let ��x ��a���

�eqv� x x�� �� �t

Rationale� The above de�nition of eqv� allows implementa�

tions latitude in their treatment of procedures and literals� im�

plementations are free either to detect or to fail to detect that

two procedures or two literals are equivalent to each other� and

can decide whether or not to merge representations of equivalent

objects by using the same pointer or bit pattern to represent

both�

�eq
 obj� obj�� procedure

Eq
 is similar to eqv
 except that in some cases it is capable
of discerning distinctions �ner than those detectable by
eqv
�

Eq
 and eqv
 are guaranteed to have the same behavior on
symbols� booleans� the empty list� pairs� procedures� and
non�empty strings and vectors� Eq
�s behavior on numbers
and characters is implementation�dependent� but it will al�
ways return either true or false� and will return true only
when eqv
 would also return true� Eq
 may also behave
di�erently from eqv
 on empty vectors and empty strings�

220

�� Standard procedures ��

�eq� �a �a� �� �t

�eq� ��a� ��a�� �� unspeci�ed

�eq� �list �a� �list �a�� �� �f

�eq� a a � �� unspeci�ed

�eq� � �� unspeci�ed

�eq� ��� ���� �� �t

�eq� � �� �� unspeci�ed

�eq� �%A �%A� �� unspeci�ed

�eq� car car� �� �t

�let ��n �
 � ����

�eq� n n�� �� unspeci�ed

�let ��x ��a���

�eq� x x�� �� �t

�let ��x ������

�eq� x x�� �� �t

�let ��p �lambda �x� x���

�eq� p p�� �� �t

Rationale� It will usually be possible to implement eq� much

more e�ciently than eqv�� for example� as a simple pointer com�

parison instead of as some more complicated operation� One

reason is that it may not be possible to compute eqv� of two

numbers in constant time� whereas eq� implemented as pointer

comparison will always �nish in constant time� Eq� may be used

like eqv� in applications using procedures to implement objects

with state since it obeys the same constraints as eqv��

�equal
 obj� obj�� library procedure

Equal
 recursively compares the contents of pairs� vectors�
and strings� applying eqv
 on other objects such as num�
bers and symbols� A rule of thumb is that objects are
generally equal
 if they print the same� Equal
 may fail
to terminate if its arguments are circular data structures�

�equal� �a �a� �� �t

�equal� ��a� ��a�� �� �t

�equal� ��a �b� c�

��a �b� c�� �� �t

�equal� abc abc � �� �t

�equal� � �� �� �t

�equal� �make�vector � �a�

�make�vector � �a�� �� �t

�equal� �lambda �x� x�

�lambda �y� y�� �� unspeci�ed

���� Numbers

Numerical computation has traditionally been neglected
by the Lisp community� Until Common Lisp there was
no carefully thought out strategy for organizing numerical
computation� and with the exception of the MacLisp sys�
tem ���� little e�ort was made to execute numerical code
e�ciently� This report recognizes the excellent work of the
Common Lisp committee and accepts many of their rec�
ommendations� In some ways this report simpli�es and
generalizes their proposals in a manner consistent with the
purposes of Scheme�

It is important to distinguish between the mathemati�
cal numbers� the Scheme numbers that attempt to model
them� the machine representations used to implement the
Scheme numbers� and notations used to write numbers�
This report uses the types number� complex� real� rational�
and integer to refer to both mathematical numbers and
Scheme numbers� Machine representations such as �xed
point and �oating point are referred to by names such as
�xnum and �onum�

������ Numerical types

Mathematically� numbers may be arranged into a tower of
subtypes in which each level is a subset of the level above
it�

number
complex
real
rational
integer

For example� � is an integer� Therefore � is also a rational�
a real� and a complex� The same is true of the Scheme
numbers that model �� For Scheme numbers� these types
are de�ned by the predicates number
� complex
� real
�
rational
� and integer
�

There is no simple relationship between a number�s type
and its representation inside a computer� Although most
implementations of Scheme will o�er at least two di�erent
representations of �� these di�erent representations denote
the same integer�

Scheme�s numerical operations treat numbers as abstract
data� as independent of their representation as possible�
Although an implementation of Scheme may use �xnum�
�onum� and perhaps other representations for numbers�
this should not be apparent to a casual programmer writing
simple programs�

It is necessary� however� to distinguish between numbers
that are represented exactly and those that may not be�
For example� indexes into data structures must be known
exactly� as must some polynomial coe�cients in a symbolic
algebra system� On the other hand� the results of measure�
ments are inherently inexact� and irrational numbers may
be approximated by rational and therefore inexact approx�
imations� In order to catch uses of inexact numbers where
exact numbers are required� Scheme explicitly distinguishes
exact from inexact numbers� This distinction is orthogonal
to the dimension of type�

������ Exactness

Scheme numbers are either exact or inexact� A number is
exact if it was written as an exact constant or was derived
from exact numbers using only exact operations� A number

221

�� Revised� Scheme

is inexact if it was written as an inexact constant� if it
was derived using inexact ingredients� or if it was derived
using inexact operations� Thus inexactness is a contagious
property of a number�

If two implementations produce exact results for a com�
putation that did not involve inexact intermediate results�
the two ultimate results will be mathematically equivalent�
This is generally not true of computations involving inex�
act numbers since approximate methods such as �oating
point arithmetic may be used� but it is the duty of each
implementation to make the result as close as practical to
the mathematically ideal result�

Rational operations such as � should always produce ex�
act results when given exact arguments� If the operation
is unable to produce an exact result� then it may either
report the violation of an implementation restriction or it
may silently coerce its result to an inexact value� See sec�
tion ������

With the exception of inexact��exact� the operations de�
scribed in this section must generally return inexact results
when given any inexact arguments� An operation may�
however� return an exact result if it can prove that the
value of the result is una�ected by the inexactness of its
arguments� For example� multiplication of any number by
an exact zero may produce an exact zero result� even if the
other argument is inexact�

������ Implementation restrictions

Implementations of Scheme are not required to implement
the whole tower of subtypes given in section ������ but
they must implement a coherent subset consistent with
both the purposes of the implementation and the spirit
of the Scheme language� For example� an implementation
in which all numbers are real may still be quite useful�

Implementations may also support only a limited range of
numbers of any type� subject to the requirements of this
section� The supported range for exact numbers of any
type may be di�erent from the supported range for inex�
act numbers of that type� For example� an implementation
that uses �onums to represent all its inexact real numbers
may support a practically unbounded range of exact inte�
gers and rationals while limiting the range of inexact reals
�and therefore the range of inexact integers and rationals�
to the dynamic range of the �onum format� Furthermore
the gaps between the representable inexact integers and ra�
tionals are likely to be very large in such an implementation
as the limits of this range are approached�

An implementation of Scheme must support exact integers
throughout the range of numbers that may be used for
indexes of lists� vectors� and strings or that may result
from computing the length of a list� vector� or string� The
length� vector�length� and string�length procedures

must return an exact integer� and it is an error to use
anything but an exact integer as an index� Furthermore
any integer constant within the index range� if expressed
by an exact integer syntax� will indeed be read as an exact
integer� regardless of any implementation restrictions that
may apply outside this range� Finally� the procedures listed
below will always return an exact integer result provided all
their arguments are exact integers and the mathematically
expected result is representable as an exact integer within
the implementation�

 � �

quotient remainder modulo

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt

Implementations are encouraged� but not required� to sup�
port exact integers and exact rationals of practically unlim�
ited size and precision� and to implement the above proce�
dures and the ! procedure in such a way that they always
return exact results when given exact arguments� If one of
these procedures is unable to deliver an exact result when
given exact arguments� then it may either report a vio�
lation of an implementation restriction or it may silently
coerce its result to an inexact number� Such a coercion
may cause an error later�

An implementation may use �oating point and other ap�
proximate representation strategies for inexact numbers�
This report recommends� but does not require� that the
IEEE ���bit and �	�bit �oating point standards be followed
by implementations that use �onum representations� and
that implementations using other representations should
match or exceed the precision achievable using these �oat�
ing point standards �����

In particular� implementations that use �onum represen�
tations must follow these rules� A �onum result must be
represented with at least as much precision as is used to
express any of the inexact arguments to that operation� It
is desirable �but not required� for potentially inexact oper�
ations such as sqrt� when applied to exact arguments� to
produce exact answers whenever possible �for example the
square root of an exact 	 ought to be an exact ��� If� how�
ever� an exact number is operated upon so as to produce an
inexact result �as by sqrt�� and if the result is represented
as a �onum� then the most precise �onum format available
must be used� but if the result is represented in some other
way then the representation must have at least as much
precision as the most precise �onum format available�

Although Scheme allows a variety of written notations for
numbers� any particular implementation may support only
some of them� For example� an implementation in which
all numbers are real need not support the rectangular and

222

�� Standard procedures ��

polar notations for complex numbers� If an implementa�
tion encounters an exact numerical constant that it cannot
represent as an exact number� then it may either report a
violation of an implementation restriction or it may silently
represent the constant by an inexact number�

����
� Syntax of numerical constants

The syntax of the written representations for numbers is
described formally in section ������ Note that case is not
signi�cant in numerical constants�

A number may be written in binary� octal� decimal� or hex�
adecimal by the use of a radix pre�x� The radix pre�xes
are b �binary�� o �octal�� d �decimal�� and x �hexadec�
imal�� With no radix pre�x� a number is assumed to be
expressed in decimal�

A numerical constant may be speci�ed to be either exact or
inexact by a pre�x� The pre�xes are e for exact� and i

for inexact� An exactness pre�x may appear before or after
any radix pre�x that is used� If the written representation
of a number has no exactness pre�x� the constant may be
either inexact or exact� It is inexact if it contains a decimal
point� an exponent� or a �� character in the place of a
digit� otherwise it is exact�

In systems with inexact numbers of varying precisions it
may be useful to specify the precision of a constant� For
this purpose� numerical constants may be written with an
exponent marker that indicates the desired precision of the
inexact representation� The letters s� f� d� and l specify
the use of short � single � double � and long precision� respec�
tively� �When fewer than four internal inexact represen�
tations exist� the four size speci�cations are mapped onto
those available� For example� an implementation with two
internal representations may map short and single together
and long and double together�� In addition� the exponent
marker e speci�es the default precision for the implemen�
tation� The default precision has at least as much precision
as double � but implementations may wish to allow this de�
fault to be set by the user�

������!�"����!�!F�

Round to single � ������!�

��"L�

Extend to long � �"��������������

������ Numerical operations

The reader is referred to section ����� for a summary of
the naming conventions used to specify restrictions on the
types of arguments to numerical routines� The examples
used in this section assume that any numerical constant
written using an exact notation is indeed represented as
an exact number� Some examples also assume that certain
numerical constants written using an inexact notation can

be represented without loss of accuracy� the inexact con�
stants were chosen so that this is likely to be true in imple�
mentations that use �onums to represent inexact numbers�

�number
 obj� procedure
�complex
 obj� procedure
�real
 obj� procedure
�rational
 obj� procedure
�integer
 obj� procedure

These numerical type predicates can be applied to any kind
of argument� including non�numbers� They return t if the
object is of the named type� and otherwise they return f�
In general� if a type predicate is true of a number then
all higher type predicates are also true of that number�
Consequently� if a type predicate is false of a number� then
all lower type predicates are also false of that number�

If z is an inexact complex number� then �real
 z� is true
if and only if �zero
 �imag�part z�� is true� If x is an
inexact real number� then �integer
 x� is true if and only
if � x �round x���

�complex� �
�i� �� �t

�complex� �� �� �t

�real� �� �� �t

�real� ����
���i� �� �t

�real� �e�e��� �� �t

�rational� "���� �� �t

�rational� "��� �� �t

�integer� �
�i� �� �t

�integer� ���� �� �t

�integer� ���� �� �t

Note� The behavior of these type predicates on inexact num�

bers is unreliable� since any inaccuracy may a�ect the result�

Note� In many implementations the rational� procedure will

be the same as real�� and the complex� procedure will be the

same as number�� but unusual implementations may be able

to represent some irrational numbers exactly or may extend the

number system to support some kind of non�complex numbers�

�exact
 z� procedure
�inexact
 z� procedure

These numerical predicates provide tests for the exactness
of a quantity� For any Scheme number� precisely one of
these predicates is true�

� z� z� z� � � � � procedure
�" x� x� x� � � � � procedure
�� x� x� x� � � � � procedure
�" x� x� x� � � � � procedure
�� x� x� x� � � � � procedure

These procedures return t if their arguments are �respec�
tively�� equal� monotonically increasing� monotonically de�
creasing� monotonically nondecreasing� or monotonically
nonincreasing�

223

�� Revised� Scheme

These predicates are required to be transitive�

Note� The traditional implementations of these predicates in

Lisp�like languages are not transitive�

Note� While it is not an error to compare inexact numbers

using these predicates� the results may be unreliable because a

small inaccuracy may a�ect the result� this is especially true of

� and zero�� When in doubt� consult a numerical analyst�

�zero
 z� library procedure
�positive
 x� library procedure
�negative
 x� library procedure
�odd
 n� library procedure
�even
 n� library procedure

These numerical predicates test a number for a particular
property� returning t or f� See note above�

�max x� x� � � � � library procedure
�min x� x� � � � � library procedure

These procedures return the maximum or minimum of their
arguments�

�max � �� �� � � exact

�max ��! �� �� ��� � inexact

Note� If any argument is inexact� then the result will also be

inexact 	unless the procedure can prove that the inaccuracy is

not large enough to a�ect the result� which is possible only in

unusual implementations
� If min or max is used to compare

numbers of mixed exactness� and the numerical value of the

result cannot be represented as an inexact number without loss

of accuracy� then the procedure may report a violation of an

implementation restriction�

�� z� � � � � procedure
�� z� � � � � procedure

These procedures return the sum or product of their argu�
ments�

�
 � �� �� �

�
 �� �� �

�
� �� �

�� �� �� �

��� �� �

�� z� z�� procedure
�� z� procedure
�� z� z� � � �� optional procedure
�! z� z�� procedure
�! z� procedure
�! z� z� � � �� optional procedure

With two or more arguments� these procedures return the
di�erence or quotient of their arguments� associating to the
left� With one argument� however� they return the additive
or multiplicative inverse of their argument�

�� � �� �� ��

�� � � �� �� �"

�� �� �� ��

�� � � �� �� ����

�� �� �� ���

�abs x� library procedure

Abs returns the absolute value of its argument�

�abs ��� �� �

�quotient n� n�� procedure
�remainder n� n�� procedure
�modulo n� n�� procedure

These procedures implement number�theoretic �integer� di�
vision� n� should be non�zero� All three procedures return
integers� If n�n� is an integer�

�quotient n� n�� �� n��n�
�remainder n� n�� �� �

�modulo n� n�� �� �

If n�n� is not an integer�

�quotient n� n�� �� nq
�remainder n� n�� �� nr
�modulo n� n�� �� nm

where nq is n��n� rounded towards zero� � � jnrj � jn�j�
� � jnmj � jn�j� nr and nm di�er from n� by a multiple of
n�� nr has the same sign as n�� and nm has the same sign
as n��

From this we can conclude that for integers n� and n� with
n� not equal to ��

�� n� �
 �� n� �quotient n� n���
�remainder n� n����

�� �t

provided all numbers involved in that computation are ex�
act�

�modulo �� �� �� �

�remainder �� �� �� �

�modulo ��� �� �� �

�remainder ��� �� �� ��

�modulo �� ��� �� ��

�remainder �� ��� �� �

�modulo ��� ��� �� ��

�remainder ��� ��� �� ��

�remainder ��� ����� �� ���� � inexact

224

�� Standard procedures ��

�gcd n� � � �� library procedure
�lcm n� � � �� library procedure

These procedures return the greatest common divisor or
least common multiple of their arguments� The result is
always non�negative�

�gcd �� ��"� �� �

�gcd� �� �

�lcm �� ��"� �� ���

�lcm ���� ��"� �� ����� � inexact

�lcm� �� �

�numerator q� procedure
�denominator q� procedure

These procedures return the numerator or denominator of
their argument� the result is computed as if the argument
was represented as a fraction in lowest terms� The denom�
inator is always positive� The denominator of � is de�ned
to be ��

�numerator �� " ��� �� �

�denominator �� " ��� �� �

�denominator

�exact�	inexact �� " ���� �� ���

�floor x� procedure
�ceiling x� procedure
�truncate x� procedure
�round x� procedure

These procedures return integers� Floor returns the
largest integer not larger than x� Ceiling returns the
smallest integer not smaller than x� Truncate returns the
integer closest to x whose absolute value is not larger than
the absolute value of x� Round returns the closest inte�
ger to x� rounding to even when x is halfway between two
integers�

Rationale� Round rounds to even for consistency with the de�

fault rounding mode speci�ed by the IEEE �oating point stan�

dard�

Note� If the argument to one of these procedures is inexact�

then the result will also be inexact� If an exact value is needed�

the result should be passed to the inexact�	exact procedure�

�floor ����� �� ����

�ceiling ����� �� ����

�truncate ����� �� ����

�round ����� �� ����

�floor ���� �� ���

�ceiling ���� �� ���

�truncate ���� �� ���

�round ���� �� ��� � inexact

�round ���� �� � � exact

�round �� �� �

�rationalize x y� library procedure

Rationalize returns the simplest rational number di�er�
ing from x by no more than y� A rational number r� is
simpler than another rational number r� if r� � p��q� and
r� � p��q� �in lowest terms� and jp�j � jp�j and jq�j � jq�j�
Thus ��
 is simpler than 	��� Although not all rationals
are comparable in this ordering �consider ��� and ��
� any
interval contains a rational number that is simpler than ev�
ery other rational number in that interval �the simpler ��

lies between ��� and ��
�� Note that � � ��� is the sim�
plest rational of all�

�rationalize

�inexact�	exact ��� ����� �� ��� � exact

�rationalize �� ����� �� �i��� � inexact

�exp z� procedure
�log z� procedure
�sin z� procedure
�cos z� procedure
�tan z� procedure
�asin z� procedure
�acos z� procedure
�atan z� procedure
�atan y x� procedure

These procedures are part of every implementation that
supports general real numbers� they compute the usual
transcendental functions� Log computes the natural log�
arithm of z �not the base ten logarithm�� Asin� acos�
and atan compute arcsine �sin���� arccosine �cos���� and
arctangent �tan���� respectively� The two�argument vari�
ant of atan computes �angle �make�rectangular x y��
�see below�� even in implementations that don�t support
general complex numbers�

In general� the mathematical functions log� arcsine� arc�
cosine� and arctangent are multiply de�ned� The value of
log z is de�ned to be the one whose imaginary part lies in
the range from �� �exclusive� to � �inclusive�� log � is un�
de�ned� With log de�ned this way� the values of sin�� z�
cos�� z� and tan�� z are according to the following for�
mul"�

sin�� z � �i log�iz #
p

� � z��

cos�� z � ��� � sin�� z

tan�� z � �log�� # iz�� log�� � iz�����i�

The above speci�cation follows ����� which in turn
cites ����� refer to these sources for more detailed discussion
of branch cuts� boundary conditions� and implementation
of these functions� When it is possible these procedures
produce a real result from a real argument�

225

�	 Revised� Scheme

�sqrt z� procedure

Returns the principal square root of z� The result will have
either positive real part� or zero real part and non�negative
imaginary part�

�expt z� z�� procedure

Returns z� raised to the power z�� For z� �� �

z�
z� � ez� log z�

�z is � if z � � and � otherwise�

�make�rectangular x� x�� procedure
�make�polar x� x�� procedure
�real�part z� procedure
�imag�part z� procedure
�magnitude z� procedure
�angle z� procedure

These procedures are part of every implementation that
supports general complex numbers� Suppose x�� x�� x��
and x� are real numbers and z is a complex number such
that

z � x� # x�i � x� � e
ix�

Then

�make�rectangular x� x�� �� z
�make�polar x� x�� �� z
�real�part z� �� x�
�imag�part z� �� x�
�magnitude z� �� jx�j
�angle z� �� xangle

where �� � xangle � � with xangle � x� # ��n for some
integer n�

Rationale� Magnitude is the same as abs for a real argu�

ment� but abs must be present in all implementations� whereas

magnitude need only be present in implementations that sup�

port general complex numbers�

�exact��inexact z� procedure
�inexact��exact z� procedure

Exact��inexact returns an inexact representation of z�
The value returned is the inexact number that is numeri�
cally closest to the argument� If an exact argument has no
reasonably close inexact equivalent� then a violation of an
implementation restriction may be reported�

Inexact��exact returns an exact representation of z� The
value returned is the exact number that is numerically clos�
est to the argument� If an inexact argument has no rea�
sonably close exact equivalent� then a violation of an im�
plementation restriction may be reported�

These procedures implement the natural one�to�one corre�
spondence between exact and inexact integers throughout
an implementation�dependent range� See section ������

������ Numerical input and output

�number��string z� procedure
�number��string z radix� procedure

Radix must be an exact integer� either �� �� ��� or ��� If
omitted� radix defaults to ��� The procedure number��
string takes a number and a radix and returns as a string
an external representation of the given number in the given
radix such that

�let ��number number�
�radix radix��

�eqv� number

�string�	number �number�	string number

radix�

radix���

is true� It is an error if no possible result makes this ex�
pression true�

If z is inexact� the radix is ��� and the above expression
can be satis�ed by a result that contains a decimal point�
then the result contains a decimal point and is expressed
using the minimum number of digits �exclusive of exponent
and trailing zeroes� needed to make the above expression
true ���
�� otherwise the format of the result is unspeci�ed�

The result returned by number��string never contains an
explicit radix pre�x�

Note� The error case can occur only when z is not a complex

number or is a complex number with a non�rational real or

imaginary part�

Rationale� If z is an inexact number represented using �onums�

and the radix is ��� then the above expression is normally satis�

�ed by a result containing a decimal point� The unspeci�ed case

allows for in�nities� NaNs� and non��onum representations�

�string��number string� procedure
�string��number string radix� procedure

Returns a number of the maximally precise representation
expressed by the given string� Radix must be an exact
integer� either �� �� ��� or ��� If supplied� radix is a default
radix that may be overridden by an explicit radix pre�x in
string �e�g� �o�##��� If radix is not supplied� then the
default radix is ��� If string is not a syntactically valid
notation for a number� then string��number returns f�

�string�	number ��� � �� ���

�string�	number ��� �"� �� ��"

�string�	number �e� � �� �����

�string�	number ���� � �� ������

Note� The domain of string�	number may be restricted by

implementations in the following ways� String�	number is per�

mitted to return �f whenever string contains an explicit radix

pre�x� If all numbers supported by an implementation are real�

226

�� Standard procedures �

then string�	number is permitted to return �f whenever string

uses the polar or rectangular notations for complex numbers� If

all numbers are integers� then string�	number may return �f

whenever the fractional notation is used� If all numbers are

exact� then string�	number may return �f whenever an ex�

ponent marker or explicit exactness pre�x is used� or if a �

appears in place of a digit� If all inexact numbers are integers�

then string�	number may return �f whenever a decimal point

is used�

���� Other data types

This section describes operations on some of Scheme�s non�
numeric data types� booleans� pairs� lists� symbols� char�
acters� strings and vectors�

������ Booleans

The standard boolean objects for true and false are written
as t and f� What really matters� though� are the objects
that the Scheme conditional expressions �if� cond� and�
or� do� treat as true or false� The phrase �a true value�
�or sometimes just �true�� means any object treated as
true by the conditional expressions� and the phrase �a false
value� �or �false�� means any object treated as false by the
conditional expressions�

Of all the standard Scheme values� only f counts as false
in conditional expressions� Except for f� all standard
Scheme values� including t� pairs� the empty list� sym�
bols� numbers� strings� vectors� and procedures� count as
true�

Note� Programmers accustomed to other dialects of Lisp

should be aware that Scheme distinguishes both �f and the

empty list from the symbol nil�

Boolean constants evaluate to themselves� so they do not
need to be quoted in programs�

�t �� �t

�f �� �f

��f �� �f

�not obj� library procedure

Not returns t if obj is false� and returns f otherwise�

�not �t� �� �f

�not �� �� �f

�not �list ��� �� �f

�not �f� �� �t

�not ���� �� �f

�not �list�� �� �f

�not �nil� �� �f

�boolean
 obj� library procedure

Boolean
 returns t if obj is either t or f and returns
f otherwise�

�boolean� �f� �� �t

�boolean� �� �� �f

�boolean� ���� �� �f

������ Pairs and lists

A pair �sometimes called a dotted pair� is a record structure
with two �elds called the car and cdr �elds �for historical
reasons�� Pairs are created by the procedure cons� The
car and cdr �elds are accessed by the procedures car and
cdr� The car and cdr �elds are assigned by the procedures
set�car� and set�cdr��

Pairs are used primarily to represent lists� A list can be
de�ned recursively as either the empty list or a pair whose
cdr is a list� More precisely� the set of lists is de�ned as
the smallest set X such that

� The empty list is in X �

� If list is in X � then any pair whose cdr �eld contains
list is also in X �

The objects in the car �elds of successive pairs of a list are
the elements of the list� For example� a two�element list
is a pair whose car is the �rst element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list� The length of a list is the number of elements�
which is the same as the number of pairs�

The empty list is a special object of its own type �it is not
a pair�� it has no elements and its length is zero�

Note� The above de�nitions imply that all lists have �nite

length and are terminated by the empty list�

The most general notation �external representation� for
Scheme pairs is the �dotted� notation �c� � c�� where c�
is the value of the car �eld and c� is the value of the cdr
�eld� For example �� � �� is a pair whose car is 	 and
whose cdr is
� Note that �� � �� is the external repre�
sentation of a pair� not an expression that evaluates to a
pair�

A more streamlined notation can be used for lists� the
elements of the list are simply enclosed in parentheses and
separated by spaces� The empty list is written �� � For
example�

�a b c d e�

and

�a � �b � �c � �d � �e � �������

227

�� Revised� Scheme

are equivalent notations for a list of symbols�

A chain of pairs not ending in the empty list is called an
improper list� Note that an improper list is not a list�
The list and dotted notations can be combined to represent
improper lists�

�a b c � d�

is equivalent to

�a � �b � �c � d���

Whether a given pair is a list depends upon what is stored
in the cdr �eld� When the set�cdr� procedure is used� an
object can be a list one moment and not the next�

�define x �list �a �b �c��

�define y x�

y �� �a b c�

�list� y� �� �t

�set�cdr� x �� �� unspeci�ed

x �� �a � ��

�eqv� x y� �� �t

y �� �a � ��

�list� y� �� �f

�set�cdr� x x� �� unspeci�ed

�list� x� �� �f

Within literal expressions and representations of ob�
jects read by the read procedure� the forms �hdatumi�
�hdatumi� �hdatumi� and ��hdatumi denote two�ele�
ment lists whose �rst elements are the symbols quote�
quasiquote� unquote� and unquote�splicing� respec�
tively� The second element in each case is hdatumi� This
convention is supported so that arbitrary Scheme pro�
grams may be represented as lists� That is� according
to Scheme�s grammar� every hexpressioni is also a hdatumi
�see section ������� Among other things� this permits the
use of the read procedure to parse Scheme programs� See
section ����

�pair
 obj� procedure

Pair
 returns t if obj is a pair� and otherwise returns f�

�pair� ��a � b�� �� �t

�pair� ��a b c�� �� �t

�pair� ���� �� �f

�pair� ���a b�� �� �f

�cons obj� obj�� procedure

Returns a newly allocated pair whose car is obj� and whose
cdr is obj�� The pair is guaranteed to be di�erent �in the
sense of eqv
� from every existing object�

�cons �a ���� �� �a�

�cons ��a� ��b c d�� �� ��a� b c d�

�cons a ��b c�� �� � a b c�

�cons �a �� �� �a � ��

�cons ��a b� �c� �� ��a b� � c�

�car pair� procedure

Returns the contents of the car �eld of pair � Note that it
is an error to take the car of the empty list�

�car ��a b c�� �� a

�car ���a� b c d�� �� �a�

�car ��� � ��� �� �

�car ���� �� error

�cdr pair� procedure

Returns the contents of the cdr �eld of pair � Note that it
is an error to take the cdr of the empty list�

�cdr ���a� b c d�� �� �b c d�

�cdr ��� � ��� �� �

�cdr ���� �� error

�set�car� pair obj� procedure

Stores obj in the car �eld of pair � The value returned by
set�car� is unspeci�ed�

�define �f� �list �not�a�constant�list��

�define �g� ��constant�list��

�set�car� �f� �� �� unspeci�ed

�set�car� �g� �� �� error

�set�cdr� pair obj� procedure

Stores obj in the cdr �eld of pair � The value returned by
set�cdr� is unspeci�ed�

�caar pair� library procedure
�cadr pair� library procedure

���
���

�cdddar pair� library procedure
�cddddr pair� library procedure

These procedures are compositions of car and cdr� where
for example caddr could be de�ned by

�define caddr �lambda �x� �car �cdr �cdr x������

Arbitrary compositions� up to four deep� are provided�
There are twenty�eight of these procedures in all�

�null
 obj� library procedure

Returns t if obj is the empty list� otherwise returns f�

�list
 obj� library procedure

Returns t if obj is a list� otherwise returns f� By de�ni�
tion� all lists have �nite length and are terminated by the
empty list�

228

�� Standard procedures ��

�list� ��a b c�� �� �t

�list� ���� �� �t

�list� ��a � b�� �� �f

�let ��x �list �a���

�set�cdr� x x�

�list� x�� �� �f

�list obj � � � � library procedure

Returns a newly allocated list of its arguments�

�list �a �
 � �� �c� �� �a � c�

�list� �� ��

�length list� library procedure

Returns the length of list �

�length ��a b c�� �� �

�length ��a �b� �c d e��� �� �

�length ���� �� �

�append list � � � � library procedure

Returns a list consisting of the elements of the �rst list

followed by the elements of the other lists�

�append ��x� ��y�� �� �x y�

�append ��a� ��b c d�� �� �a b c d�

�append ��a �b�� ���c��� �� �a �b� �c��

The resulting list is always newly allocated� except that
it shares structure with the last list argument� The last
argument may actually be any object� an improper list
results if the last argument is not a proper list�

�append ��a b� ��c � d�� �� �a b c � d�

�append ��� �a� �� a

�reverse list� library procedure

Returns a newly allocated list consisting of the elements of
list in reverse order�

�reverse ��a b c�� �� �c b a�

�reverse ��a �b c� d �e �f����

�� ��e �f�� d �b c� a�

�list�tail list k� library procedure

Returns the sublist of list obtained by omitting the �rst k
elements� It is an error if list has fewer than k elements�
List�tail could be de�ned by

�define list�tail

�lambda �x k�

�if �zero� k�

x

�list�tail �cdr x� �� k ������

�list�ref list k� library procedure

Returns the kth element of list � �This is the same as the
car of �list�tail list k��� It is an error if list has fewer
than k elements�

�list�ref ��a b c d� �� �� c

�list�ref ��a b c d�

�inexact�	exact �round ������

�� c

�memq obj list� library procedure
�memv obj list� library procedure
�member obj list� library procedure

These procedures return the �rst sublist of list whose car
is obj � where the sublists of list are the non�empty lists
returned by �list�tail list k� for k less than the length
of list � If obj does not occur in list � then f �not the empty
list� is returned� Memq uses eq
 to compare obj with the
elements of list � while memv uses eqv
 and member uses
equal
�

�memq �a ��a b c�� �� �a b c�

�memq �b ��a b c�� �� �b c�

�memq �a ��b c d�� �� �f

�memq �list �a� ��b �a� c�� �� �f

�member �list �a�

��b �a� c�� �� ��a� c�

�memq ��� ����� ��� ����� �� unspeci�ed

�memv ��� ����� ��� ����� �� ���� ����

�assq obj alist� library procedure
�assv obj alist� library procedure
�assoc obj alist� library procedure

Alist �for �association list�� must be a list of pairs� These
procedures �nd the �rst pair in alist whose car �eld is obj �
and returns that pair� If no pair in alist has obj as its car�
then f �not the empty list� is returned� Assq uses eq
 to
compare obj with the car �elds of the pairs in alist � while
assv uses eqv
 and assoc uses equal
�

�define e ���a �� �b �� �c ����

�assq �a e� �� �a ��

�assq �b e� �� �b ��

�assq �d e� �� �f

�assq �list �a� ����a�� ��b�� ��c����

�� �f

�assoc �list �a� ����a�� ��b�� ��c����

�� ��a��

�assq � ���� �� �� �� ��� �����

�� unspeci�ed

�assv � ���� �� �� �� ��� �����

�� �� ��

Rationale� Although they are ordinarily used as predicates�

memq� memv� member� assq� assv� and assoc do not have question

marks in their names because they return useful values rather

than just �t or �f�

229

�� Revised� Scheme

������ Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical �in the sense of eqv
� if and only
if their names are spelled the same way� This is exactly the
property needed to represent identi�ers in programs� and
so most implementations of Scheme use them internally for
that purpose� Symbols are useful for many other applica�
tions� for instance� they may be used the way enumerated
values are used in Pascal�

The rules for writing a symbol are exactly the same as the
rules for writing an identi�er� see sections ��� and ������

It is guaranteed that any symbol that has been returned as
part of a literal expression� or read using the read proce�
dure� and subsequently written out using the write proce�
dure� will read back in as the identical symbol �in the sense
of eqv
�� The string��symbol procedure� however� can
create symbols for which this writeread invariance may
not hold because their names contain special characters or
letters in the non�standard case�

Note� Some implementations of Scheme have a feature known
as �slashi�cation� in order to guarantee write�read invariance
for all symbols� but historically the most important use of this
feature has been to compensate for the lack of a string data
type�

Some implementations also have �uninterned symbols�� which

defeat write�read invariance even in implementations with

slashi�cation� and also generate exceptions to the rule that two

symbols are the same if and only if their names are spelled the

same�

�symbol
 obj� procedure

Returns t if obj is a symbol� otherwise returns f�

�symbol� �foo� �� �t

�symbol� �car ��a b��� �� �t

�symbol� bar � �� �f

�symbol� �nil� �� �t

�symbol� ���� �� �f

�symbol� �f� �� �f

�symbol��string symbol� procedure

Returns the name of symbol as a string� If the symbol was
part of an object returned as the value of a literal expres�
sion �section 	����� or by a call to the read procedure� and
its name contains alphabetic characters� then the string
returned will contain characters in the implementation�s
preferred standard case$some implementations will prefer
upper case� others lower case� If the symbol was returned
by string��symbol� the case of characters in the string
returned will be the same as the case in the string that
was passed to string��symbol� It is an error to apply
mutation procedures like string�set� to strings returned
by this procedure�

The following examples assume that the implementation�s
standard case is lower case�

�symbol�	string �flying�fish�

�� flying�fish

�symbol�	string �Martin� �� martin

�symbol�	string

�string�	symbol Malvina ��

�� Malvina

�string��symbol string� procedure

Returns the symbol whose name is string � This procedure
can create symbols with names containing special charac�
ters or letters in the non�standard case� but it is usually
a bad idea to create such symbols because in some imple�
mentations of Scheme they cannot be read as themselves�
See symbol��string�

The following examples assume that the implementation�s
standard case is lower case�

�eq� �mISSISSIppi �mississippi�

�� �t

�string�	symbol mISSISSIppi �

�� the symbol with name mISSISSIppi

�eq� �bitBlt �string�	symbol bitBlt ��

�� �f

�eq� �JollyWog

�string�	symbol

�symbol�	string �JollyWog���

�� �t

�string�� K� Harper$ M�D�

�symbol�	string

�string�	symbol K� Harper$ M�D� ���

�� �t

����
� Characters

Characters are objects that represent printed characters
such as letters and digits� Characters are written using the
notation �hcharacteri or �hcharacter namei� For exam�
ple�

�a � lower case letter
�A � upper case letter
�� � left parenthesis
� � the space character
�space � the preferred way to write a space
�newline � the newline character

Case is signi�cant in �hcharacteri� but not in �hcharacter
namei� If hcharacteri in �hcharacteri is alphabetic� then
the character following hcharacteri must be a delimiter
character such as a space or parenthesis� This rule resolves
the ambiguous case where� for example� the sequence of

230

�� Standard procedures ��

characters ��space� could be taken to be either a repre�
sentation of the space character or a representation of the
character ��s� followed by a representation of the symbol
�pace��

Characters written in the � notation are self�evaluating�
That is� they do not have to be quoted in programs�

Some of the procedures that operate on characters ignore
the di�erence between upper case and lower case� The pro�
cedures that ignore case have ��ci� �for �case insensitive��
embedded in their names�

�char
 obj� procedure

Returns t if obj is a character� otherwise returns f�

�char
 char� char�� procedure
�char"
 char� char�� procedure
�char�
 char� char�� procedure
�char"
 char� char�� procedure
�char�
 char� char�� procedure

These procedures impose a total ordering on the set of
characters� It is guaranteed that under this ordering�

� The upper case characters are in order� For example�
�char"
 �A �B� returns t�

� The lower case characters are in order� For example�
�char"
 �a �b� returns t�

� The digits are in order� For example� �char"
 �	

�$� returns t�

� Either all the digits precede all the upper case letters�
or vice versa�

� Either all the digits precede all the lower case letters�
or vice versa�

Some implementations may generalize these procedures to
take more than two arguments� as with the corresponding
numerical predicates�

�char�ci
 char� char�� library procedure
�char�ci"
 char� char�� library procedure
�char�ci�
 char� char�� library procedure
�char�ci"
 char� char�� library procedure
�char�ci�
 char� char�� library procedure

These procedures are similar to char
 et cetera� but they
treat upper case and lower case letters as the same� For
example� �char�ci
 �A �a� returns t� Some imple�
mentations may generalize these procedures to take more
than two arguments� as with the corresponding numerical
predicates�

�char�alphabetic
 char� library procedure
�char�numeric
 char� library procedure
�char�whitespace
 char� library procedure
�char�upper�case
 letter� library procedure
�char�lower�case
 letter� library procedure

These procedures return t if their arguments are alpha�
betic� numeric� whitespace� upper case� or lower case char�
acters� respectively� otherwise they return f� The follow�
ing remarks� which are speci�c to the ASCII character set�
are intended only as a guide� The alphabetic characters are
the
� upper and lower case letters� The numeric charac�
ters are the ten decimal digits� The whitespace characters
are space� tab� line feed� form feed� and carriage return�

�char��integer char� procedure
�integer��char n� procedure

Given a character� char��integer returns an exact inte�
ger representation of the character� Given an exact inte�
ger that is the image of a character under char��integer�
integer��char returns that character� These procedures
implement order�preserving isomorphisms between the set
of characters under the char"
 ordering and some subset
of the integers under the " ordering� That is� if

�char�� a b� �� �t and �� x y� �� �t

and x and y are in the domain of integer��char� then

�� �char�	integer a�
�char�	integer b�� �� �t

�char�� �integer�	char x�
�integer�	char y�� �� �t

�char�upcase char� library procedure
�char�downcase char� library procedure

These procedures return a character char� such that
�char�ci
 char char��� In addition� if char is alpha�
betic� then the result of char�upcase is upper case and
the result of char�downcase is lower case�

������ Strings

Strings are sequences of characters� Strings are written
as sequences of characters enclosed within doublequotes
���� A doublequote can be written inside a string only by
escaping it with a backslash ���� as in

 The word % recursion% has many meanings�

A backslash can be written inside a string only by escaping
it with another backslash� Scheme does not specify the
e�ect of a backslash within a string that is not followed by
a doublequote or backslash�

231

�� Revised� Scheme

A string constant may continue from one line to the next�
but the exact contents of such a string are unspeci�ed�

The length of a string is the number of characters that it
contains� This number is an exact� non�negative integer
that is �xed when the string is created� The valid indexes

of a string are the exact non�negative integers less than
the length of the string� The �rst character of a string has
index �� the second has index �� and so on�

In phrases such as �the characters of string beginning with
index start and ending with index end �� it is understood
that the index start is inclusive and the index end is ex�
clusive� Thus if start and end are the same index� a null
substring is referred to� and if start is zero and end is the
length of string � then the entire string is referred to�

Some of the procedures that operate on strings ignore the
di�erence between upper and lower case� The versions that
ignore case have ��ci� �for �case insensitive�� embedded
in their names�

�string
 obj� procedure

Returns t if obj is a string� otherwise returns f�

�make�string k� procedure
�make�string k char� procedure

Make�string returns a newly allocated string of length k�
If char is given� then all elements of the string are ini�
tialized to char � otherwise the contents of the string are
unspeci�ed�

�string char � � � � library procedure

Returns a newly allocated string composed of the argu�
ments�

�string�length string� procedure

Returns the number of characters in the given string �

�string�ref string k� procedure

k must be a valid index of string � String�ref returns
character k of string using zero�origin indexing�

�string�set� string k char� procedure

k must be a valid index of string � String�set� stores char
in element k of string and returns an unspeci�ed value�

�define �f� �make�string � �%���

�define �g� ��� �

�string�set� �f� � �%�� �� unspeci�ed

�string�set� �g� � �%�� �� error

�string�set� �symbol�	string �immutable�

�

�%�� �� error

�string
 string� string�� library procedure
�string�ci
 string� string�� library procedure

Returns t if the two strings are the same length and con�
tain the same characters in the same positions� otherwise
returns f� String�ci
 treats upper and lower case let�
ters as though they were the same character� but string

treats upper and lower case as distinct characters�

�string"
 string� string�� library procedure
�string�
 string� string�� library procedure
�string"
 string� string�� library procedure
�string�
 string� string�� library procedure
�string�ci"
 string� string�� library procedure
�string�ci�
 string� string�� library procedure
�string�ci"
 string� string�� library procedure
�string�ci�
 string� string�� library procedure

These procedures are the lexicographic extensions to
strings of the corresponding orderings on characters� For
example� string"
 is the lexicographic ordering on strings
induced by the ordering char"
 on characters� If two
strings di�er in length but are the same up to the length
of the shorter string� the shorter string is considered to be
lexicographically less than the longer string�

Implementations may generalize these and the string

and string�ci
 procedures to take more than two argu�
ments� as with the corresponding numerical predicates�

�substring string start end� library procedure

String must be a string� and start and end must be exact
integers satisfying

� � start � end � �string�length string��

Substring returns a newly allocated string formed from
the characters of string beginning with index start �inclu�
sive� and ending with index end �exclusive��

�string�append string � � � � library procedure

Returns a newly allocated string whose characters form the
concatenation of the given strings�

�string��list string� library procedure
�list��string list� library procedure

String��list returns a newly allocated list of the charac�
ters that make up the given string� List��string returns
a newly allocated string formed from the characters in the
list list � which must be a list of characters� String��list
and list��string are inverses so far as equal
 is con�
cerned�

�string�copy string� library procedure

Returns a newly allocated copy of the given string �

232

�� Standard procedures ��

�string�fill� string char� library procedure

Stores char in every element of the given string and returns
an unspeci�ed value�

������ Vectors

Vectors are heterogenous structures whose elements are in�
dexed by integers� A vector typically occupies less space
than a list of the same length� and the average time re�
quired to access a randomly chosen element is typically
less for the vector than for the list�

The length of a vector is the number of elements that it
contains� This number is a non�negative integer that is
�xed when the vector is created� The valid indexes of a
vector are the exact non�negative integers less than the
length of the vector� The �rst element in a vector is indexed
by zero� and the last element is indexed by one less than
the length of the vector�

Vectors are written using the notation �obj � � ��� For
example� a vector of length � containing the number zero
in element �� the list �� � � �� in element �� and the
string �Anna� in element � can be written as following�

��� �� � � �� Anna �

Note that this is the external representation of a vector� not
an expression evaluating to a vector� Like list constants�
vector constants must be quoted�

���� �� � � �� Anna �

�� ��� �� � � �� Anna �

�vector
 obj� procedure

Returns t if obj is a vector� otherwise returns f�

�make�vector k� procedure
�make�vector k �ll� procedure

Returns a newly allocated vector of k elements� If a second
argument is given� then each element is initialized to �ll �
Otherwise the initial contents of each element is unspeci�
�ed�

�vector obj � � � � library procedure

Returns a newly allocated vector whose elements contain
the given arguments� Analogous to list�

�vector �a �b �c� �� ��a b c�

�vector�length vector� procedure

Returns the number of elements in vector as an exact in�
teger�

�vector�ref vector k� procedure

k must be a valid index of vector � Vector�ref returns the
contents of element k of vector �

�vector�ref ���� � � � � � �� ���

��

�� �

�vector�ref ���� � � � � � �� ���

�let ��i �round �� � �acos �������

�if �inexact� i�

�inexact�	exact i�

i���

�� ��

�vector�set� vector k obj� procedure

k must be a valid index of vector � Vector�set� stores obj
in element k of vector � The value returned by vector�set�

is unspeci�ed�

�let ��vec �vector � ��� � � �� Anna ���

�vector�set� vec � �� Sue Sue ��

vec�

�� ��� � Sue Sue � Anna �

�vector�set� ���� � �� � doe �

�� error � constant vector

�vector��list vector� library procedure
�list��vector list� library procedure

Vector��list returns a newly allocated list of the objects
contained in the elements of vector � List��vector returns
a newly created vector initialized to the elements of the list
list �

�vector�	list ���dah dah didah��

�� �dah dah didah�

�list�	vector ��dididit dah��

�� ��dididit dah�

�vector�fill� vector �ll� library procedure

Stores �ll in every element of vector � The value returned
by vector�fill� is unspeci�ed�

��	� Control features

This chapter describes various primitive procedures which
control the �ow of program execution in special ways� The
procedure
 predicate is also described here�

�procedure
 obj� procedure

Returns t if obj is a procedure� otherwise returns f�

�procedure� car� �� �t

�procedure� �car� �� �f

�procedure� �lambda �x� �� x x���

�� �t

�procedure� ��lambda �x� �� x x���

�� �f

�call�with�current�continuation procedure��

�� �t

233

�� Revised� Scheme

�apply proc arg� � � � args� procedure

Proc must be a procedure and args must be a list� Calls
proc with the elements of the list �append �list arg�
� � � � args� as the actual arguments�

�apply
 �list � ��� �� �

�define compose

�lambda �f g�

�lambda args

�f �apply g args�����

��compose sqrt �� �� ��� �� ��

�map proc list� list� � � � � library procedure

The lists must be lists� and proc must be a procedure taking
as many arguments as there are lists and returning a single
value� If more than one list is given� then they must all
be the same length� Map applies proc element�wise to the
elements of the lists and returns a list of the results� in
order� The dynamic order in which proc is applied to the
elements of the lists is unspeci�ed�

�map cadr ���a b� �d e� �g h���

�� �b e h�

�map �lambda �n� �expt n n��

��� � � � ���

�� �� � �� ��" �����

�map
 ��� � �� ��� � "�� �� �� � !�

�let ��count ���

�map �lambda �ignored�

�set� count �
 count ���

count�

��a b��� �� �� �� or �� ��

�for�each proc list� list� � � � � library procedure

The arguments to for�each are like the arguments to map�
but for�each calls proc for its side e�ects rather than for
its values� Unlike map� for�each is guaranteed to call proc
on the elements of the lists in order from the �rst ele�
ment�s� to the last� and the value returned by for�each is
unspeci�ed�

�let ��v �make�vector ����

�for�each �lambda �i�

�vector�set� v i �� i i���

��� � � � ���

v� �� ��� � � ! �"�

�force promise� library procedure

Forces the value of promise �see delay� section 	���
�� If no
value has been computed for the promise� then a value is

computed and returned� The value of the promise is cached
�or �memoized�� so that if it is forced a second time� the
previously computed value is returned�

�force �delay �
 � ���� �� �

�let ��p �delay �
 � �����

�list �force p� �force p���

�� �� ��

�define a�stream

�letrec ��next

�lambda �n�

�cons n �delay �next �
 n ��������

�next ����

�define head car�

�define tail

�lambda �stream� �force �cdr stream����

�head �tail �tail a�stream���

�� �

Force and delay are mainly intended for programs written
in functional style� The following examples should not be
considered to illustrate good programming style� but they
illustrate the property that only one value is computed for
a promise� no matter how many times it is forced�

�define count ��

�define p

�delay �begin �set� count �
 count ���

�if �	 count x�

count

�force p�����

�define x ��

p �� a promise

�force p� �� "

p �� a promise� still

�begin �set� x ���

�force p�� �� "

Here is a possible implementation of delay and force�
Promises are implemented here as procedures of no argu�
ments� and force simply calls its argument�

�define force

�lambda �object�

�object���

We de�ne the expression

�delay hexpressioni�

to have the same meaning as the procedure call

�make�promise �lambda �� hexpressioni��

as follows

�define�syntax delay

�syntax�rules ��

��delay expression�

�make�promise �lambda �� expression�����$

234

�� Standard procedures ��

where make�promise is de�ned as follows�

�define make�promise

�lambda �proc�

�let ��result�ready� �f�

�result �f��

�lambda ��

�if result�ready�

result

�let ��x �proc���

�if result�ready�

result

�begin �set� result�ready� �t�

�set� result x�

result��������

Rationale� A promise may refer to its own value� as in the

last example above� Forcing such a promise may cause the

promise to be forced a second time before the value of the �rst

force has been computed� This complicates the de�nition of

make�promise�

Various extensions to this semantics of delay and force

are supported in some implementations�

� Calling force on an object that is not a promise may
simply return the object�

� It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value� That is� expressions like the following
may evaluate to either t or to f� depending on the
implementation�

�eqv� �delay �� �� �� unspeci�ed

�pair� �delay �cons � ���� �� unspeci�ed

� Some implementations may implement �implicit forc�
ing�� where the value of a promise is forced by primi�
tive procedures like cdr and �%

�
 �delay �� � ��� ��� �� ��

�call�with�current�continuation proc� procedure

Proc must be a procedure of one argument� The procedure
call�with�current�continuation packages up the cur�
rent continuation �see the rationale below� as an �escape
procedure� and passes it as an argument to proc� The es�
cape procedure is a Scheme procedure that� if it is later
called� will abandon whatever continuation is in e�ect at
that later time and will instead use the continuation that
was in e�ect when the escape procedure was created� Call�
ing the escape procedure may cause the invocation of before
and after thunks installed using dynamic�wind�

The escape procedure accepts the same number of ar�
guments as the continuation to the original call to

call�with�current�continuation� Except for continua�
tions created by the call�with�values procedure� all con�
tinuations take exactly one value� The e�ect of passing no
value or more than one value to continuations that were
not created by call�with�values is unspeci�ed�

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme� It may be
stored in variables or data structures and may be called as
many times as desired�

The following examples show only the most common ways
in which call�with�current�continuation is used� If
all real uses were as simple as these examples� there
would be no need for a procedure with the power of
call�with�current�continuation�

�call�with�current�continuation

�lambda �exit�

�for�each �lambda �x�

�if �negative� x�

�exit x���

���� � �� �� ��� �!��

�t�� �� ��

�define list�length

�lambda �obj�

�call�with�current�continuation

�lambda �return�

�letrec ��r

�lambda �obj�

�cond ��null� obj� ��

��pair� obj�

�
 �r �cdr obj�� ���

�else �return �f������

�r obj������

�list�length ��� � � ��� �� �

�list�length ��a b � c�� �� �f

Rationale�

A common use of call�with�current�continuation is for
structured� non�local exits from loops or procedure bodies� but
in fact call�with�current�continuation is extremely useful
for implementing a wide variety of advanced control structures�

Whenever a Scheme expression is evaluated there is a contin�

uation wanting the result of the expression� The continuation
represents an entire 	default
 future for the computation� If the
expression is evaluated at top level� for example� then the con�
tinuation might take the result� print it on the screen� prompt
for the next input� evaluate it� and so on forever� Most of the
time the continuation includes actions speci�ed by user code�
as in a continuation that will take the result� multiply it by the
value stored in a local variable� add seven� and give the answer
to the top level continuation to be printed� Normally these
ubiquitous continuations are hidden behind the scenes and pro�
grammers do not think much about them� On rare occasions�
however� a programmer may need to deal with continuations ex�
plicitly� Call�with�current�continuation allows Scheme pro�

235

�	 Revised� Scheme

grammers to do that by creating a procedure that acts just like
the current continuation�

Most programming languages incorporate one or more special�

purpose escape constructs with names like exit� return� or

even goto� In ���� however� Peter Landin ��� invented a

general purpose escape operator called the J�operator� John

Reynolds ���� described a simpler but equally powerful con�

struct in ����� The catch special form described by Sussman

and Steele in the ���� report on Scheme is exactly the same as

Reynolds�s construct� though its name came from a less general

construct in MacLisp� Several Scheme implementors noticed

that the full power of the catch construct could be provided by

a procedure instead of by a special syntactic construct� and the

name call�with�current�continuation was coined in �����

This name is descriptive� but opinions di�er on the merits of

such a long name� and some people use the name call�cc in�

stead�

�values obj � � �� procedure

Delivers all of its arguments to its continuation� Except
for continuations created by the call�with�values pro�
cedure� all continuations take exactly one value� Values
might be de�ned as follows�

�define �values � things�

�call�with�current�continuation

�lambda �cont� �apply cont things����

�call�with�values producer consumer� procedure

Calls its producer argument with no values and a contin�
uation that� when passed some values� calls the consumer

procedure with those values as arguments� The continua�
tion for the call to consumer is the continuation of the call
to call�with�values�

�call�with�values �lambda �� �values � ���

�lambda �a b� b��

�� �

�call�with�values � �� �� ��

�dynamic�wind before thunk after� procedure

Calls thunk without arguments� returning the result�s� of
this call� Before and after are called� also without ar�
guments� as required by the following rules �note that
in the absence of calls to continuations captured using
call�with�current�continuation the three arguments
are called once each� in order�� Before is called whenever
execution enters the dynamic extent of the call to thunk

and after is called whenever it exits that dynamic extent�
The dynamic extent of a procedure call is the period be�
tween when the call is initiated and when it returns� In

Scheme� because of call�with�current�continuation�
the dynamic extent of a call may not be a single� connected
time period� It is de�ned as follows�

� The dynamic extent is entered when execution of the
body of the called procedure begins�

� The dynamic extent is also entered when exe�
cution is not within the dynamic extent and a
continuation is invoked that was captured �using
call�with�current�continuation� during the dy�
namic extent�

� It is exited when the called procedure returns�

� It is also exited when execution is within the dynamic
extent and a continuation is invoked that was captured
while not within the dynamic extent�

If a second call to dynamic�wind occurs within the dynamic
extent of the call to thunk and then a continuation is in�
voked in such a way that the after s from these two invoca�
tions of dynamic�wind are both to be called� then the after
associated with the second �inner� call to dynamic�wind is
called �rst�

If a second call to dynamic�wind occurs within the dy�
namic extent of the call to thunk and then a continua�
tion is invoked in such a way that the befores from these
two invocations of dynamic�wind are both to be called�
then the before associated with the �rst �outer� call to
dynamic�wind is called �rst�

If invoking a continuation requires calling the before from
one call to dynamic�wind and the after from another� then
the after is called �rst�

The e�ect of using a captured continuation to enter or exit
the dynamic extent of a call to before or after is unde�ned�

�let ��path ����

�c �f��

�let ��add �lambda �s�

�set� path �cons s path�����

�dynamic�wind

�lambda �� �add �connect��

�lambda ��

�add �call�with�current�continuation

�lambda �c��

�set� c c��

�talk�����

�lambda �� �add �disconnect���

�if � �length path� ��

�c �talk��

�reverse path����

�� �connect talk� disconnect

connect talk� disconnect�

236

�� Standard procedures �

��
� Eval

�eval expression environment�speci�er� procedure

Evaluates expression in the speci�ed environment and re�
turns its value� Expression must be a valid Scheme expres�
sion represented as data� and environment�speci�er must
be a value returned by one of the three procedures de�
scribed below� Implementations may extend eval to allow
non�expression programs �de�nitions� as the �rst argument
and to allow other values as environments� with the re�
striction that eval is not allowed to create new bindings
in the environments associated with null�environment or
scheme�report�environment�

�eval ��� � �� �scheme�report�environment ���

�� ��

�let ��f �eval ��lambda �f x� �f x x��

�null�environment �����

�f
 ����

�� ��

�scheme�report�environment version� procedure
�null�environment version� procedure

Version must be the exact integer �� corresponding to this
revision of the Scheme report �the Revised� Report on
Scheme�� Scheme�report�environment returns a speci�er
for an environment that is empty except for all bindings de�
�ned in this report that are either required or both optional
and supported by the implementation� Null�environment
returns a speci�er for an environment that is empty except
for the �syntactic� bindings for all syntactic keywords de�
�ned in this report that are either required or both optional
and supported by the implementation�

Other values of version can be used to specify environments
matching past revisions of this report� but their support is
not required� An implementation will signal an error if
version is neither � nor another value supported by the
implementation�

The e�ect of assigning �through the use of eval� a vari�
able bound in a scheme�report�environment �for exam�
ple car� is unspeci�ed� Thus the environments speci�ed
by scheme�report�environment may be immutable�

�interaction�environment� optional procedure

This procedure returns a speci�er for the environment that
contains implementation�de�ned bindings� typically a su�
perset of those listed in the report� The intent is that this
procedure will return the environment in which the imple�
mentation would evaluate expressions dynamically typed
by the user�

���� Input and output

������ Ports

Ports represent input and output devices� To Scheme� an
input port is a Scheme object that can deliver characters
upon command� while an output port is a Scheme object
that can accept characters�

�call�with�input�file string proc� library procedure
�call�with�output�file string proc� library procedure

String should be a string naming a �le� and proc

should be a procedure that accepts one argument� For
call�with�input�file� the �le should already exist� for
call�with�output�file� the e�ect is unspeci�ed if the
�le already exists� These procedures call proc with one ar�
gument� the port obtained by opening the named �le for
input or output� If the �le cannot be opened� an error is
signalled� If proc returns� then the port is closed automati�
cally and the value�s� yielded by the proc is�are� returned�
If proc does not return� then the port will not be closed
automatically unless it is possible to prove that the port
will never again be used for a read or write operation�

Rationale� Because Scheme�s escape procedures have un�

limited extent� it is possible to escape from the current con�

tinuation but later to escape back in� If implementations

were permitted to close the port on any escape from the

current continuation� then it would be impossible to write

portable code using both call�with�current�continuation

and call�with�input�file or call�with�output�file�

�input�port
 obj� procedure
�output�port
 obj� procedure

Returns t if obj is an input port or output port respec�
tively� otherwise returns f�

�current�input�port� procedure
�current�output�port� procedure

Returns the current default input or output port�

�with�input�from�file string thunk�

optional procedure
�with�output�to�file string thunk�

optional procedure

String should be a string naming a �le� and proc should be
a procedure of no arguments� For with�input�from�file�
the �le should already exist� for with�output�to�file�
the e�ect is unspeci�ed if the �le already exists� The
�le is opened for input or output� an input or output
port connected to it is made the default value returned
by current�input�port or current�output�port �and is

237

�� Revised� Scheme

used by �read�� �write obj�� and so forth�� and the thunk
is called with no arguments� When the thunk returns�
the port is closed and the previous default is restored�
With�input�from�file and with�output�to�file re�
turn�s� the value�s� yielded by thunk � If an escape pro�
cedure is used to escape from the continuation of these
procedures� their behavior is implementation dependent�

�open�input�file �lename� procedure

Takes a string naming an existing �le and returns an input
port capable of delivering characters from the �le� If the
�le cannot be opened� an error is signalled�

�open�output�file �lename� procedure

Takes a string naming an output �le to be created and
returns an output port capable of writing characters to a
new �le by that name� If the �le cannot be opened� an
error is signalled� If a �le with the given name already
exists� the e�ect is unspeci�ed�

�close�input�port port� procedure
�close�output�port port� procedure

Closes the �le associated with port � rendering the port in�
capable of delivering or accepting characters� These rou�
tines have no e�ect if the �le has already been closed� The
value returned is unspeci�ed�

������ Input

�read� library procedure
�read port� library procedure

Read converts external representations of Scheme objects
into the objects themselves� That is� it is a parser for the
nonterminal hdatumi �see sections ����� and ������� Read

returns the next object parsable from the given input port �
updating port to point to the �rst character past the end
of the external representation of the object�

If an end of �le is encountered in the input before any char�
acters are found that can begin an object� then an end of
�le object is returned� The port remains open� and fur�
ther attempts to read will also return an end of �le object�
If an end of �le is encountered after the beginning of an
object�s external representation� but the external represen�
tation is incomplete and therefore not parsable� an error is
signalled�

The port argument may be omitted� in which case it de�
faults to the value returned by current�input�port� It is
an error to read from a closed port�

�read�char� procedure
�read�char port� procedure

Returns the next character available from the input port �
updating the port to point to the following character� If
no more characters are available� an end of �le object is
returned� Port may be omitted� in which case it defaults
to the value returned by current�input�port�

�peek�char� procedure
�peek�char port� procedure

Returns the next character available from the input port �
without updating the port to point to the following char�
acter� If no more characters are available� an end of �le
object is returned� Port may be omitted� in which case it
defaults to the value returned by current�input�port�

Note� The value returned by a call to peek�char is the same as

the value that would have been returned by a call to read�char

with the same port � The only di�erence is that the very next call

to read�char or peek�char on that port will return the value

returned by the preceding call to peek�char� In particular� a

call to peek�char on an interactive port will hang waiting for

input whenever a call to read�char would have hung�

�eof�object
 obj� procedure

Returns t if obj is an end of �le object� otherwise returns
f� The precise set of end of �le objects will vary among
implementations� but in any case no end of �le object will
ever be an object that can be read in using read�

�char�ready
� procedure
�char�ready
 port� procedure

Returns t if a character is ready on the input port and
returns f otherwise� If char�ready returns t then the
next read�char operation on the given port is guaranteed
not to hang� If the port is at end of �le then char�ready

returns t� Port may be omitted� in which case it defaults
to the value returned by current�input�port�

Rationale� Char�ready� exists to make it possible for a pro�

gram to accept characters from interactive ports without getting

stuck waiting for input� Any input editors associated with such

ports must ensure that characters whose existence has been as�

serted by char�ready� cannot be rubbed out� If char�ready�

were to return �f at end of �le� a port at end of �le would

be indistinguishable from an interactive port that has no ready

characters�

������ Output

238

�� Standard procedures ��

�write obj� library procedure
�write obj port� library procedure

Writes a written representation of obj to the given port �
Strings that appear in the written representation are en�
closed in doublequotes� and within those strings backslash
and doublequote characters are escaped by backslashes�
Character objects are written using the � notation� Write
returns an unspeci�ed value� The port argument may be
omitted� in which case it defaults to the value returned by
current�output�port�

�display obj� library procedure
�display obj port� library procedure

Writes a representation of obj to the given port � Strings
that appear in the written representation are not enclosed
in doublequotes� and no characters are escaped within
those strings� Character objects appear in the represen�
tation as if written by write�char instead of by write�
Display returns an unspeci�ed value� The port argument
may be omitted� in which case it defaults to the value re�
turned by current�output�port�

Rationale� Write is intended for producing machine�readable

output and display is for producing human�readable output�

Implementations that allow �slashi�cation� within symbols will

probably want write but not display to slashify funny charac�

ters in symbols�

�newline� library procedure
�newline port� library procedure

Writes an end of line to port � Exactly how this is done
di�ers from one operating system to another� Returns
an unspeci�ed value� The port argument may be omit�
ted� in which case it defaults to the value returned by
current�output�port�

�write�char char� procedure
�write�char char port� procedure

Writes the character char �not an external representa�
tion of the character� to the given port and returns an
unspeci�ed value� The port argument may be omit�
ted� in which case it defaults to the value returned by
current�output�port�

����
� System interface

Questions of system interface generally fall outside of the
domain of this report� However� the following operations
are important enough to deserve description here�

�load �lename� optional procedure

Filename should be a string naming an existing �le con�
taining Scheme source code� The load procedure reads ex�
pressions and de�nitions from the �le and evaluates them

sequentially� It is unspeci�ed whether the results of the
expressions are printed� The load procedure does not
a�ect the values returned by current�input�port and
current�output�port� Load returns an unspeci�ed value�

Rationale� For portability� load must operate on source �les�

Its operation on other kinds of �les necessarily varies among

implementations�

�transcript�on �lename� optional procedure
�transcript�off� optional procedure

Filename must be a string naming an output �le to be cre�
ated� The e�ect of transcript�on is to open the named
�le for output� and to cause a transcript of subsequent
interaction between the user and the Scheme system to
be written to the �le� The transcript is ended by a call
to transcript�off� which closes the transcript �le� Only
one transcript may be in progress at any time� though some
implementations may relax this restriction� The values re�
turned by these procedures are unspeci�ed�

239

�� Revised� Scheme

�� Formal syntax and semantics

This chapter provides formal descriptions of what has al�
ready been described informally in previous chapters of this
report�

���� Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF�

All spaces in the grammar are for legibility� Case is insignif�
icant� for example� x�A and X�a are equivalent� hemptyi
stands for the empty string�

The following extensions to BNF are used to make the de�
scription more concise� hthingi! means zero or more occur�
rences of hthingi� and hthingi� means at least one hthingi�

����� Lexical structure

This section describes how individual tokens �identi�ers�
numbers� etc�� are formed from sequences of characters�
The following sections describe how expressions and pro�
grams are formed from sequences of tokens�

hIntertoken spacei may occur on either side of any token�
but not within a token�

Tokens which require implicit termination �identi�ers�
numbers� characters� and dot� may be terminated by any
hdelimiteri� but not necessarily by anything else�

The following �ve characters are reserved for future exten�
sions to the language� � � � � �

htokeni �� hidenti�eri j hbooleani j hnumberi
j hcharacteri j hstringi
j � j � j � j � j � j � j �� j �

hdelimiteri �� hwhitespacei j � j � j � j �
hwhitespacei �� hspace or newlinei
hcommenti �� � hall subsequent characters up to a

line breaki
hatmospherei �� hwhitespacei j hcommenti
hintertoken spacei �� hatmospherei!

hidenti�eri �� hinitiali hsubsequenti!
j hpeculiar identi�eri

hinitiali �� hletteri j hspecial initiali
hletteri �� a j b j c j ��� j z

hspecial initiali �� � j & j ' j (j � j ! j % j " j

j � j
 j) j * j +
hsubsequenti �� hinitiali j hdigiti

j hspecial subsequenti
hdigiti �� 	 j � j � j � j � j � j � j # j � j $
hspecial subsequenti �� � j � j � j �
hpeculiar identi�eri �� � j � j ���

hsyntactic keywordi �� hexpression keywordi
j else j � j define
j unquote j unquote�splicing

hexpression keywordi �� quote j lambda j if

j set� j begin j cond j and j or j case

j let j let� j letrec j do j delay

j quasiquote

hvariablei �� hany hidenti�eri that isn�t
also a hsyntactic keywordii

hbooleani �� t j f

hcharacteri �� � hany characteri
j � hcharacter namei

hcharacter namei �� space j newline

hstringi �� � hstring elementi! �

hstring elementi �� hany character other than � or �i
j �� j ��

hnumberi �� hnum �ij hnum �i
j hnum ��ij hnum ��i

The following rules for hnum Ri� hcomplex Ri� hreal Ri�
hureal Ri� huinteger Ri� and hpre�x Ri should be repli�
cated for R � �� �� ��� and ��� There are no rules for
hdecimal �i� hdecimal �i� and hdecimal ��i� which means
that numbers containing decimal points or exponents must
be in decimal radix�

hnum Ri �� hpre�x Ri hcomplex Ri
hcomplex Ri �� hreal Ri j hreal Ri � hreal Ri

j hreal Ri � hureal Ri i j hreal Ri � hureal Ri i

j hreal Ri � i j hreal Ri � i

j � hureal Ri i j � hureal Ri i j � i j � i

hreal Ri �� hsigni hureal Ri
hureal Ri �� huinteger Ri

j huinteger Ri ! huinteger Ri
j hdecimal Ri

hdecimal ��i �� huinteger ��i hsu�xi
j � hdigit ��i� ! hsu�xi
j hdigit ��i� � hdigit ��i! ! hsu�xi
j hdigit ��i� � � ! hsu�xi

huinteger Ri �� hdigit Ri� !
hpre�x Ri �� hradix Ri hexactnessi

j hexactnessi hradix Ri

hsu�xi �� hemptyi
j hexponent markeri hsigni hdigit ��i�

hexponent markeri �� e j s j f j d j l

hsigni �� hemptyi j � j �

hexactnessi �� hemptyi j i j e

hradix �i �� b

hradix �i �� o

hradix ��i �� hemptyi j d

240

�� Formal syntax and semantics ��

hradix ��i �� x

hdigit �i �� 	 j �

hdigit �i �� 	 j � j � j � j � j � j � j #
hdigit ��i �� hdigiti
hdigit ��i �� hdigit ��i j a j b j c j d j e j f

����� External representations

hDatumi is what the read procedure �section ������ suc�
cessfully parses� Note that any string that parses as an
hexpressioni will also parse as a hdatumi�

hdatumi �� hsimple datumi j hcompound datumi
hsimple datumi �� hbooleani j hnumberi

j hcharacteri j hstringi j hsymboli
hsymboli �� hidenti�eri
hcompound datumi �� hlisti j hvectori
hlisti �� �hdatumi!� j �hdatumi� � hdatumi�

j habbreviationi
habbreviationi �� habbrev pre�xi hdatumi
habbrev pre�xi �� � j � j � j ��
hvectori �� �hdatumi!�

����� Expressions

hexpressioni �� hvariablei
j hliterali
j hprocedure calli
j hlambda expressioni
j hconditionali
j hassignmenti
j hderived expressioni
j hmacro usei
j hmacro blocki

hliterali �� hquotationi j hself�evaluatingi
hself�evaluatingi �� hbooleani j hnumberi

j hcharacteri j hstringi
hquotationi �� �hdatumi j �quote hdatumi�
hprocedure calli �� �hoperatori hoperandi!�
hoperatori �� hexpressioni
hoperandi �� hexpressioni

hlambda expressioni �� �lambda hformalsi hbodyi�
hformalsi �� �hvariablei!� j hvariablei

j �hvariablei� � hvariablei�
hbodyi �� hde�nitioni! hsequencei
hsequencei �� hcommandi! hexpressioni
hcommandi �� hexpressioni

hconditionali �� �if htesti hconsequenti halternatei�
htesti �� hexpressioni
hconsequenti �� hexpressioni
halternatei �� hexpressioni j hemptyi

hassignmenti �� �set� hvariablei hexpressioni�

hderived expressioni ��
�cond hcond clausei��

j �cond hcond clausei! �else hsequencei��
j �case hexpressioni

hcase clausei��
j �case hexpressioni

hcase clausei!
�else hsequencei��

j �and htesti!�
j �or htesti!�
j �let �hbinding speci!� hbodyi�
j �let hvariablei �hbinding speci!� hbodyi�
j �let� �hbinding speci!� hbodyi�
j �letrec �hbinding speci!� hbodyi�
j �begin hsequencei�
j �do �hiteration speci!�

�htesti hdo resulti�
hcommandi!�

j �delay hexpressioni�
j hquasiquotationi

hcond clausei �� �htesti hsequencei�
j �htesti�
j �htesti � hrecipienti�

hrecipienti �� hexpressioni
hcase clausei �� ��hdatumi!� hsequencei�
hbinding speci �� �hvariablei hexpressioni�
hiteration speci �� �hvariablei hiniti hstepi�

j �hvariablei hiniti�
hiniti �� hexpressioni
hstepi �� hexpressioni
hdo resulti �� hsequencei j hemptyi

hmacro usei �� �hkeywordi hdatumi!�
hkeywordi �� hidenti�eri

hmacro blocki ��
�let�syntax �hsyntax speci!� hbodyi�
j �letrec�syntax �hsyntax speci!� hbodyi�

hsyntax speci �� �hkeywordi htransformer speci�

���
� Quasiquotations

The following grammar for quasiquote expressions is not
context�free� It is presented as a recipe for generating an
in�nite number of production rules� Imagine a copy of the
following rules for D � �� �� �� � � �� D keeps track of the
nesting depth�

hquasiquotationi �� hquasiquotation �i
hqq template �i �� hexpressioni

241

	� Revised� Scheme

hquasiquotation Di �� �hqq template Di
j �quasiquote hqq template Di�

hqq template Di �� hsimple datumi
j hlist qq template Di
j hvector qq template Di
j hunquotation Di

hlist qq template Di �� �hqq template or splice Di!�
j �hqq template or splice Di� � hqq template Di�
j �hqq template Di
j hquasiquotation D # �i

hvector qq template Di �� �hqq template or splice Di!�
hunquotation Di �� �hqq template D � �i

j �unquote hqq template D � �i�
hqq template or splice Di �� hqq template Di

j hsplicing unquotation Di
hsplicing unquotation Di �� ��hqq template D � �i

j �unquote�splicing hqq template D � �i�

In hquasiquotationis� a hlist qq template Di can some�
times be confused with either an hunquotation Di or
a hsplicing unquotation Di� The interpretation as an
hunquotationi or hsplicing unquotation Di takes prece�
dence�

����� Transformers

htransformer speci ��
�syntax�rules �hidenti�eri!� hsyntax rulei!�

hsyntax rulei �� �hpatterni htemplatei�
hpatterni �� hpattern identi�eri

j �hpatterni!�
j �hpatterni� � hpatterni�
j �hpatterni! hpatterni hellipsisi�
j �hpatterni!�
j �hpatterni! hpatterni hellipsisi�
j hpattern datumi

hpattern datumi �� hstringi
j hcharacteri
j hbooleani
j hnumberi

htemplatei �� hpattern identi�eri
j �htemplate elementi!�
j �htemplate elementi� � htemplatei�
j �htemplate elementi!�
j htemplate datumi

htemplate elementi �� htemplatei
j htemplatei hellipsisi

htemplate datumi �� hpattern datumi
hpattern identi�eri �� hany identi�er except ���i
hellipsisi �� hthe identi�er ���i

����� Programs and de	nitions

hprogrami �� hcommand or de�nitioni!

hcommand or de�nitioni �� hcommandi
j hde�nitioni
j hsyntax de�nitioni
j �begin hcommand or de�nitioni��

hde�nitioni �� �define hvariablei hexpressioni�
j �define �hvariablei hdef formalsi� hbodyi�
j �begin hde�nitioni!�

hdef formalsi �� hvariablei!
j hvariablei! � hvariablei

hsyntax de�nitioni ��
�define�syntax hkeywordi htransformer speci�

���� Formal semantics

This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built�in
procedures� The concepts and notation used here are de�
scribed in ����� the notation is summarized below�

h � � � i sequence formation
s 	 k kth member of the sequence s ���based�
%s length of sequence s
s x t concatenation of sequences s and t
s y k drop the �rst k members of sequence s
t � a� b McCarthy conditional �if t then a else b�
��x�i� substitution �� with x for i�
x in D injection of x into domain D

x j D projection of x to domain D

The reason that expression continuations take sequences
of values instead of single values is to simplify the formal
treatment of procedure calls and multiple return values�

The boolean �ag associated with pairs� vectors� and strings
will be true for mutable objects and false for immutable
objects�

The order of evaluation within a call is unspeci�ed� We
mimic that here by applying arbitrary permutations per�

mute and unpermute� which must be inverses� to the argu�
ments in a call before and after they are evaluated� This is
not quite right since it suggests� incorrectly� that the order
of evaluation is constant throughout a program �for any
given number of arguments�� but it is a closer approxima�
tion to the intended semantics than a left�to�right evalua�
tion would be�

The storage allocator new is implementation�dependent�
but it must obey the following axiom� if new � � L� then
� �new � j L� 	 � � false �

The de�nition of K is omitted because an accurate de�ni�
tion of K would complicate the semantics without being
very interesting�

If P is a program in which all variables are de�ned before
being referenced or assigned� then the meaning of P is

E ����lambda �I!� P�� hunde�nedi � � � ���

242

�� Formal syntax and semantics 	�

where I! is the sequence of variables de�ned in P� P� is the
sequence of expressions obtained by replacing every de�ni�
tion in P by an assignment� hunde�nedi is an expression
that evaluates to unde�ned� and E is the semantic function
that assigns meaning to expressions�

����� Abstract syntax

K � Con constants� including quotations
I � Ide identi�ers �variables�

E � Exp expressions
& � Com � Exp commands

Exp �� K j I j �E� E!�
j �lambda �I!� &! E��

j �lambda �I! � I� &! E��

j �lambda I &! E��

j �if E� E� E�� j �if E� E��

j �set� I E�

����� Domain equations

� � L locations
	 � N natural numbers

T � ffalse� trueg booleans
Q symbols
H characters
R numbers
Ep � L
 L
 T pairs
Ev � L!
 T vectors
Es � L!
 T strings
M � ffalse� true� null� unde�ned� unspeci�edg

miscellaneous

 � F � L
 �E! � K� C� procedure values
� � E � Q # H # R # Ep # Ev # Es # M # F

expressed values
� � S � L� �E
 T� stores
� � U � Ide � L environments
� � C � S� A command continuations
 � K � E! � C expression continuations

A answers
X errors

����� Semantic functions

K � Con � E

E � Exp � U� K� C

E! � Exp! � U� K� C

C � Com! � U� C� C

De�nition of K deliberately omitted�

E��K�� � ��� � send 	K��K��
�

E��I�� � ��� � hold 	lookup � I

	single	�� � � � unde�ned �

wrong �unde�ned variable��
send � �

E���E� E���� �
��� � E�	permute	hE�i x E�

�
	��� � 		��� � applicate 	�� � �
 	�� y �
 �

	unpermute ��

E���lambda �I�� �� E���� �
��� � �� �

new � � L�
send 	hnew � j L�

����� � �� � I��
tievals	��� � 	��� � C��������	E��E����

���

	extends � I� ��

���
wrong �wrong number of arguments�i

in E

�
	update 	new � j L
 unspeci�ed �
�

wrong �out of memory� �

E���lambda �I� � I� �� E���� �
��� � �� �

new � � L�
send 	hnew � j L�

����� � �� � I��
tievalsrest

	��� � 	��� � C��������	E��E����
���

	extends � 	I� x hIi
 ��

��
	 I�
�

wrong �too few arguments�i in E

�
	update 	new � j L
 unspeci�ed �
�

wrong �out of memory� �

E���lambda I �� E���� � E���lambda �� I� �� E����

E���if E� E� E���� �
��� � E��E��� � 	single 	�� � truish �� E��E������

E��E�����

E���if E� E���� �
��� � E��E��� � 	single 	�� � truish �� E��E������

send unspeci�ed �

Here and elsewhere� any expressed value other than unde�ned

may be used in place of unspeci�ed�

E���set� I E��� �
��� � E��E�� � 	single	�� � assign 	lookup � I

�
	send unspeci�ed �

E��� �� � ��� � �h i

E���E� E��� �
��� � E��E��� � 	single	��� � E���E��� � 	��� � � 	h��i x ��

C�� �� � ��	 � 	

C���� ���� � ��	 � E������ � 	��� � C�������	

243

	� Revised� Scheme

���
� Auxiliary functions

lookup � U� Ide� L

lookup � ��I � �I

extends � U � Ide�� L�� U

extends �
��I��� � I� � �� ��

extends 	��	�� � �

	I� � �
�
 	I� y �
 	�� y �

wrong � X � C �implementation�dependent�

send � E � K� C

send � ��� � �h�i

single � 	E � C
� K

single �
���� � �� � �� �	�� � �
�

wrong �wrong number of return values�

new � S � 	L! ferrorg
 �implementation�dependent�

hold � L � K� C

hold � ���� � send 	�� � �
��

assign � L� E� C � C

assign � ���	� � 		update ���

update � L� E � S � S

update � ���� � ��h�� truei
��

tievals � 	L�� C
� E�� C

tievals �
����� � �� � �� �h i��

new � � L� tievals 	��� � �	hnew � j Li x ��

	�� y �

	update	new � j L
	�� � �
�
�

wrong �out of memory��

tievalsrest � 	L�� C
� E�� N� C

tievalsrest �
����� � list 	drop�rst ���

	single	�� � tievals � 		take�rst ���
 x h�i

drop�rst � �ln � n � �� l� drop�rst 	l y �
	n� �

take�rst � �ln � n � �� h i� hl � �i x 	take�rst 	l y �
	n� �

truish � E � T

truish � �� � � � false � false� true

permute � Exp�� Exp� �implementation�dependent�

unpermute � E�� E� �inverse of permute�

applicate � E � E�� K� C

applicate �
����� � � � F� 	� j F � �
����wrong �bad procedure�

onearg � 	E� K � C
� 	E�� K � C

onearg �
���� � �� � �� 	�� � �
��

wrong �wrong number of arguments�

twoarg � 	E� E � K� C
� 	E�� K � C

twoarg �
���� � �� � �� 	�� � �
	�� � �
��

wrong �wrong number of arguments�

list � E�� K � C

list �
���� � �� � �� send null ��

list 	�� y �
	single	�� � consh�� � �� �i�

cons � E�� K � C

cons �
twoarg 	������� � new � � L�

	��� � new �� � L �
send 	hnew � j L� new �� j L� truei

in E

�
	update	new �� j L
���

�
�
wrong �out of memory���

	update	new � j L
���
�
wrong �out of memory��

less � E�� K � C

less �
twoarg 	������ � 	�� � R � �� � R
�

send 	�� j R � �� j R� true� false
��
wrong �non�numeric argument to �

add � E�� K � C

add �
twoarg 	������ � 	�� � R � �� � R
�

send 		�� j R! �� j R
 in E
��
wrong �non�numeric argument to
�

car � E�� K � C

car �
onearg 	��� � � � Ep � hold 	� j Ep � �
��

wrong �non�pair argument to car�

cdr � E�� K � C �similar to car�

setcar � E�� K � C

setcar �
twoarg 	������ � �� � Ep �

	�� j Ep � �
� assign 	�� j Ep � �

��
	send unspeci�ed �
�

wrong �immutable argument to set�car���
wrong �non�pair argument to set�car��

eqv � E�� K � C

eqv �
twoarg 	������ � 	�� � M � �� � M
�

send 	�� j M � �� j M� true� false
��
	�� � Q � �� � Q
�

send 	�� j Q � �� j Q� true� false
��
	�� � H � �� � H
�

send 	�� j H � �� j H� true� false
��
	�� � R � �� � R
�

send 	�� j R � �� j R� true� false
��
	�� � Ep � �� � Ep
�

send 		�p�p� � 		p� � �
 � 	p� � �
�
	p� � �
 � 	p� � �

� true�

false

	�� j Ep

	�� j Ep

��

244

�� Formal syntax and semantics 	�

	�� � Ev � �� � Ev
� � � � �
	�� � Es � �� � Es
� � � � �
	�� � F � �� � F
�

send 		�� j F � �
 � 	�� j F � �
� true� false

��

send false �

apply � E�� K� C

apply �
twoarg 	������ � �� � F � valueslist h��i	��� � applicate �����
�

wrong �bad procedure argument to apply�

valueslist � E�� K � C

valueslist �
onearg 	��� � � � Ep �

cdrh�i
	��� � valueslist

��
	��� � carh�i	single	�� � �	h�i x ��

�

� � null � �h i�
wrong �non�list argument to values�list�

cwcc � E�� K � C �call�with�current�continuation�
cwcc �

onearg 	��� � � � F �
	�� � new � � L�

applicate �
hhnew � j L� ����� � ���i in Ei
�
	update 	new � j L

unspeci�ed

�
�
wrong �out of memory��
�

wrong �bad procedure argument�

values � E�� K � C

values � ���� � ���

cwv � E�� K� C �call�with�values�
cwv �

twoarg 	������ � applicate ��h i	��� � applicate �� ��

���� Derived expression types

This section gives macro de�nitions for the derived expres�
sion types in terms of the primitive expression types �lit�
eral� variable� call� lambda� if� set��� See section ��	 for
a possible de�nition of delay�

�define�syntax cond

�syntax�rules �else �	�

��cond �else result� result� �����

�begin result� result� �����

��cond �test �	 result��

�let ��temp test��

�if temp �result temp����

��cond �test �	 result� clause� clause� ����

�let ��temp test��

�if temp

�result temp�

�cond clause� clause� �������

��cond �test�� test�

��cond �test� clause� clause� ����

�let ��temp test��

�if temp

temp

�cond clause� clause� �������

��cond �test result� result� �����

�if test �begin result� result� ������

��cond �test result� result� ����

clause� clause� ����

�if test

�begin result� result� ����

�cond clause� clause� ��������

�define�syntax case

�syntax�rules �else�

��case �key ����

clauses ����

�let ��atom�key �key ������

�case atom�key clauses ������

��case key

�else result� result� �����

�begin result� result� �����

��case key

��atoms ���� result� result� �����

�if �memv key ��atoms �����

�begin result� result� ������

��case key

��atoms ���� result� result� ����

clause clauses ����

�if �memv key ��atoms �����

�begin result� result� ����

�case key clause clauses ��������

�define�syntax and

�syntax�rules ��

��and� �t�

��and test� test�

��and test� test� ����

�if test� �and test� ���� �f����

�define�syntax or

�syntax�rules ��

��or� �f�

��or test� test�

��or test� test� ����

�let ��x test���

�if x x �or test� ���������

�define�syntax let

�syntax�rules ��

��let ��name val� ���� body� body� ����

��lambda �name ���� body� body� ����

val �����

��let tag ��name val� ���� body� body� ����

��letrec ��tag �lambda �name ����

body� body� ������

tag�

245

		 Revised� Scheme

val �������

�define�syntax let�

�syntax�rules ��

��let� �� body� body� ����

�let �� body� body� �����

��let� ��name� val�� �name� val�� ����

body� body� ����

�let ��name� val���

�let� ��name� val�� ����

body� body� ��������

The following letrec macro uses the symbol "undefined�
in place of an expression which returns something that
when stored in a location makes it an error to try to ob�
tain the value stored in the location �no such expression is
de�ned in Scheme�� A trick is used to generate the tempo�
rary names needed to avoid specifying the order in which
the values are evaluated� This could also be accomplished
by using an auxiliary macro�

�define�syntax letrec

�syntax�rules ��

��letrec ��var� init�� ���� body ����

�letrec generate temp names

�var� ����

��

��var� init�� ����

body �����

��letrec generate temp names

��

�temp� ����

��var� init�� ����

body ����

�let ��var� undefined	� ����

�let ��temp� init�� ����

�set� var� temp��

���

body ������

��letrec generate temp names

�x y ����

�temp ����

��var� init�� ����

body ����

�letrec generate temp names

�y ����

�newtemp temp ����

��var� init�� ����

body �������

�define�syntax begin

�syntax�rules ��

��begin exp ����

��lambda �� exp ��������

The following alternative expansion for begin does not
make use of the ability to write more than one expression

in the body of a lambda expression� In any case� note that
these rules apply only if the body of the begin contains no
de�nitions�

�define�syntax begin

�syntax�rules ��

��begin exp�

exp�

��begin exp� exp� ����

�let ��x exp���

�begin exp� ��������

The following de�nition of do uses a trick to expand the
variable clauses� As with letrec above� an auxiliary macro
would also work� The expression �if f f� is used to
obtain an unspeci�c value�

�define�syntax do

�syntax�rules ��

��do ��var init step ���� ����

�test expr ����

command ����

�letrec

��loop

�lambda �var ����

�if test

�begin

�if �f �f�

expr ����

�begin

command

���

�loop �do step var step ����

���������

�loop init ������

��do step x�

x�

��do step x y�

y���

246

Example 	

NOTES

Language changes

This section enumerates the changes that have been made
to Scheme since the �Revised� report� ��� was published�

� The report is now a superset of the IEEE standard
for Scheme ����� implementations that conform to the
report will also conform to the standard� This required
the following changes�

� The empty list is now required to count as true�

� The classi�cation of features as essential or
inessential has been removed� There are now
three classes of built�in procedures� primitive� li�
brary� and optional� The optional procedures are
load� with�input�from�file� with�output�

to�file� transcript�on� transcript�off� and
interaction�environment� and � and ! with
more than two arguments� None of these are in
the IEEE standard�

� Programs are allowed to rede�ne built�in proce�
dures� Doing so will not change the behavior of
other built�in procedures�

� Port has been added to the list of disjoint types�

� The macro appendix has been removed� High�level
macros are now part of the main body of the report�
The rewrite rules for derived expressions have been
replaced with macro de�nitions� There are no reserved
identi�ers�

� Syntax�rules now allows vector patterns�

� Multiple�value returns� eval� and dynamic�wind have
been added�

� The calls that are required to be implemented in a
properly tail�recursive fashion are de�ned explicitly�

� �� can be used within identi�ers� �� is reserved for
possible future extensions�

ADDITIONAL MATERIAL

The Internet Scheme Repository at

http%!!www�cs�indiana�edu!scheme�repository!

contains an extensive Scheme bibliography� as well as pa�
pers� programs� implementations� and other material re�
lated to Scheme�

EXAMPLE

Integrate�system integrates the system

y�k � fk�y�� y�� � � � � yn�� k � �� � � � � n

of di�erential equations with the method of Runge�Kutta�

The parameter system�derivative is a function that
takes a system state �a vector of values for the state vari�
ables y�� � � � � yn� and produces a system derivative �the val�
ues y��� � � � � y

�

n�� The parameter initial�state provides
an initial system state� and h is an initial guess for the
length of the integration step�

The value returned by integrate�system is an in�nite
stream of system states�

�define integrate�system

�lambda �system�derivative initial�state h�

�let ��next �runge�kutta�� system�derivative h���

�letrec ��states

�cons initial�state

�delay �map�streams next

states�����

states����

Runge�Kutta�� takes a function� f� that produces a system
derivative from a system state� Runge�Kutta�� produces
a function that takes a system state and produces a new
system state�

�define runge�kutta��

�lambda �f h�

�let ���h �scale�vector h��

��� �scale�vector ���

����� �scale�vector �� � ����

����" �scale�vector �� � "����

�lambda �y�

�� y is a system state
�let� ��k� ��h �f y���

�k� ��h �f �add�vectors y ����� k������

�k� ��h �f �add�vectors y ����� k������

�k� ��h �f �add�vectors y k������

�add�vectors y

����" �add�vectors k�

��� k��

��� k��

k���������

�define elementwise

�lambda �f�

�lambda vectors

�generate�vector

�vector�length �car vectors��

�lambda �i�

�apply f

�map �lambda �v� �vector�ref v i��

vectors�������

�define generate�vector

�lambda �size proc�

247

	� Revised� Scheme

�let ��ans �make�vector size���

�letrec ��loop

�lambda �i�

�cond ��� i size� ans�

�else

�vector�set� ans i �proc i��

�loop �
 i ��������

�loop ������

�define add�vectors �elementwise
��

�define scale�vector

�lambda �s�

�elementwise �lambda �x� �� x s�����

Map�streams is analogous to map� it applies its �rst argu�
ment �a procedure� to all the elements of its second argu�
ment �a stream��

�define map�streams

�lambda �f s�

�cons �f �head s��

�delay �map�streams f �tail s������

In�nite streams are implemented as pairs whose car holds
the �rst element of the stream and whose cdr holds a
promise to deliver the rest of the stream�

�define head car�

�define tail

�lambda �stream� �force �cdr stream����

The following illustrates the use of integrate�system in
integrating the system

C
dvC
dt

� �iL �
vC
R

L
diL
dt

� vC

which models a damped oscillator�

�define damped�oscillator

�lambda �R L C�

�lambda �state�

�let ��Vc �vector�ref state ���

�Il �vector�ref state ����

�vector �� � �
 �� Vc �� R C�� �� Il C���

�� Vc L������

�define the�states

�integrate�system

�damped�oscillator ����� ���� �����

���� ��

�����

REFERENCES

��� Harold Abelson and Gerald Jay Sussman with Julie
Sussman� Structure and Interpretation of Computer

Programs� second edition� MIT Press� Cambridge�
�����

��� Alan Bawden and Jonathan Rees� Syntactic closures�
In Proceedings of the �	

 ACM Symposium on Lisp

and Functional Programming� pages ��'�
�

��� Robert G� Burger and R� Kent Dybvig� Printing
�oating�point numbers quickly and accurately� In
Proceedings of the ACM SIGPLAN �	� Conference

on Programming Language Design and Implementa�

tion� pages ���'����

�	� William Clinger� editor� The revised revised report
on Scheme� or an uncommon Lisp� MIT Arti�cial
Intelligence Memo �	�� August ���
� Also published
as Computer Science Department Technical Report
��	� Indiana University� June ���
�

�
� William Clinger� How to read �oating point numbers
accurately� In Proceedings of the ACM SIGPLAN

�	 Conference on Programming Language Design

and Implementation� pages ��'���� Proceedings pub�
lished as SIGPLAN Notices �
���� June �����

��� William Clinger and Jonathan Rees� editors� The
revised� report on the algorithmic language Scheme�
In ACM Lisp Pointers 	���� pages �'

� �����

��� William Clinger and Jonathan Rees� Macros that
work� In Proceedings of the �		� ACM Conference

on Principles of Programming Languages� pages �

'
����

��� William Clinger� Proper Tail Recursion and Space
E�ciency� To appear in Proceedings of the �		
 ACM

Conference on Programming Language Design and

Implementation� June �����

��� R� Kent Dybvig� Robert Hieb� and Carl Bruggeman�
Syntactic abstraction in Scheme� Lisp and Symbolic

Computation
�	����
'���� �����

���� Carol Fessenden� William Clinger� Daniel P� Fried�
man� and Christopher Haynes� Scheme ��� version 	
reference manual� Indiana University Computer Sci�
ence Technical Report ���� February ����� Super�
seded by �����

���� D� Friedman� C� Haynes� E� Kohlbecker� and
M� Wand� Scheme �	 interim reference manual� Indi�
ana University Computer Science Technical Report
�
�� January ���
�

248

References 	�

���� IEEE Standard �����	
�� IEEE Standard for Binary

Floating�Point Arithmetic� IEEE� New York� ���
�

���� IEEE Standard ���
��		� IEEE Standard for the

Scheme Programming Language� IEEE� New York�
�����

��	� Eugene E� Kohlbecker Jr� Syntactic Extensions in

the Programming Language Lisp� PhD thesis� Indi�
ana University� August �����

��
� Eugene E� Kohlbecker Jr�� Daniel P� Friedman�
Matthias Felleisen� and Bruce Duba� Hygienic macro
expansion� In Proceedings of the �	
� ACM Con�

ference on Lisp and Functional Programming� pages
�
�'����

���� Peter Landin� A correspondence between Algol ��
and Church�s lambda notation� Part I� Communica�

tions of the ACM �������'���� February ���
�

���� MIT Department of Electrical Engineering and Com�
puter Science� Scheme manual� seventh edition�
September ���	�

���� Peter Naur et al� Revised report on the algorith�
mic language Algol ��� Communications of the ACM

������'��� January �����

���� Paul Pen�eld� Jr� Principal values and branch cuts
in complex APL� In APL �
� Conference Proceed�

ings� pages �	�'�
�� ACM SIGAPL� San Fran�
cisco� September ����� Proceedings published as
APL Quote Quad ������ ACM� September �����

���� Kent M� Pitman� The revised MacLisp manual �Sat�
urday evening edition�� MIT Laboratory for Com�
puter Science Technical Report ��
� May �����

���� Jonathan A� Rees and Norman I� Adams IV� T� A
dialect of Lisp or� lambda� The ultimate software
tool� In Conference Record of the �	
� ACM Sym�

posium on Lisp and Functional Programming� pages
��	'����

���� Jonathan A� Rees� Norman I� Adams IV� and James
R� Meehan� The T manual� fourth edition� Yale
University Computer Science Department� January
���	�

���� Jonathan Rees and William Clinger� editors� The
revised� report on the algorithmic language Scheme�
In ACM SIGPLAN Notices ������� pages ��'��� De�
cember �����

��	� John Reynolds� De�nitional interpreters for higher
order programming languages� In ACM Conference

Proceedings� pages ���'�	�� ACM� �����

��
� Guy Lewis Steele Jr� and Gerald Jay Sussman� The
revised report on Scheme� a dialect of Lisp� MIT Ar�
ti�cial Intelligence Memo 	
�� January �����

���� Guy Lewis Steele Jr� Rabbit� a compiler for Scheme�
MIT Arti�cial Intelligence Laboratory Technical Re�
port 	�	� May �����

���� Guy Lewis Steele Jr� Common Lisp� The Language�

second edition� Digital Press� Burlington MA� �����

���� Gerald Jay Sussman and Guy Lewis Steele Jr�
Scheme� an interpreter for extended lambda calcu�
lus� MIT Arti�cial Intelligence Memo �	�� December
���
�

���� Joseph E� Stoy� Denotational Semantics� The Scott�

Strachey Approach to Programming Language The�

ory� MIT Press� Cambridge� �����

���� Texas Instruments� Inc� TI Scheme Language Ref�
erence Manual� Preliminary version ���� November
���
�

249

	� Revised� Scheme

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS�
KEYWORDS� AND PROCEDURES

The principal entry for each term� procedure� or keyword is
listed �rst� separated from the other entries by a semicolon�

�

� �� ��
� ��
� ���
� 	�
� ��� ��
�� ��
� ���

��

���
� �	
! ��
�

" ��� 	�
" ��
 ��� ��
 � ��
� ��
� ��

 	
, ��

abs ��� �	
acos ��
and ��� 	�
angle �	
append ��
apply ��� �� 	�
asin ��
assoc ��
assq ��
assv ��
atan ��

b ��� ��
backquote ��
begin ��� ��� 		
binding �
binding construct �
boolean
 �
� �
bound �

caar ��
cadr ��
call �
call by need ��
call�with�current�continuation ��� �� �	� 	�
call�with�input�file �

call�with�output�file �

call�with�values �	� �� 	�
call!cc �	
car ��� 	�

case ��� 	�
catch �	
cdddar ��
cddddr ��
cdr ��
ceiling ��
char��integer ��
char�alphabetic
 ��
char�ci"
 ��
char�ci"
 ��
char�ci
 ��
char�ci�
 ��
char�ci�
 ��
char�downcase ��
char�lower�case
 ��
char�numeric
 ��
char�ready
 ��
char�upcase ��
char�upper�case
 ��
char�whitespace
 ��
char"
 ��
char"
 ��
char
 ��
char�
 ��
char�
 ��
char
 ��� �
close�input�port ��
close�output�port ��
combination �
comma ��
comment
� ��
complex
 ��� ��
cond ��� �
� 	�
cons ��
constant �
continuation ��
cos ��
current�input�port �

current�output�port �

d ��
define ��� �	
define�syntax ��
de�nition ��
delay ��� ��
denominator ��
display ��
do ��� 		
dotted pair �

dynamic�wind �	� ��

e ��� ��

250

Index 	�

else ��
empty list �
� �� ��
eof�object
 ��
eq
 ��� ��
equal
 ��
equivalence predicate ��
eqv
 ��� �� ��� 	�
error 	
escape procedure ��
eval �
� �
even
 ��
exact ��
exact��inexact �	
exact
 ��
exactness ��
exp ��
expt �	

f �

false �� �

floor ��
for�each ��
force ��� ��

gcd ��

hygienic ��

i ��� ��
identi�er
� �� ��� ��
if ��� 	�
imag�part �	
immutable �
implementation restriction 	� ��
improper list ��
inexact ��
inexact��exact �	� ��
inexact
 ��
initial environment ��
input�port
 �

integer��char ��
integer
 ��� ��
interaction�environment �

internal de�nition ��

keyword ��� ��

lambda �� ��� 	�
lazy evaluation ��
lcm ��
length ��� ��
let ��� ��� �
� ��� 	�
let� ��� ��� 		
let�syntax �	� ��
letrec ��� ��� 		
letrec�syntax �	� ��

library �
library procedure ��
list ��
list��string ��
list��vector ��
list�ref ��
list�tail ��
list
 ��
load ��
location �
log ��

macro ��
macro keyword ��
macro transformer ��
macro use ��
magnitude �	
make�polar �	
make�rectangular �	
make�string ��
make�vector ��
map ��
max ��
member ��
memq ��
memv ��
min ��
modulo ��
mutable �

negative
 ��
newline ��
nil �

not �

null�environment �

null
 ��
number ��
number��string �	
number
 ��� �� ��
numerator ��
numerical types ��

o ��� ��
object �
odd
 ��
open�input�file ��
open�output�file ��
optional �
or ��� 	�
output�port
 �

pair �

pair
 ��� �
peek�char ��
port �

port
 �

251

� Revised� Scheme

positive
 ��
predicate ��
procedure call �
procedure
 ��� �
promise ��� ��
proper tail recursion �

quasiquote ��� ��
quote �� ��
quotient ��

rational
 ��� ��
rationalize ��
read ��� ��� ��
read�char ��
real�part �	
real
 ��� ��
referentially transparent ��
region �� ��� ��� ��
remainder ��
reverse ��
round ��

scheme�report�environment �

set� ��� ��� 	�
set�car� ��
set�cdr� ��
setcar 	�
simplest rational ��
sin ��
sqrt �	
string ��
string��list ��
string��number �	
string��symbol ��
string�append ��
string�ci"
 ��
string�ci"
 ��
string�ci
 ��
string�ci�
 ��
string�ci�
 ��
string�copy ��
string�fill� ��
string�length ��� ��
string�ref ��
string�set� ��� ��
string"
 ��
string"
 ��
string
 ��
string�
 ��
string�
 ��
string
 ��� �
substring ��
symbol��string ��� �
symbol
 ��� �
syntactic keyword ��
� ��� ��

syntax de�nition ��
syntax�rules �	� ��

t �

tail call �
tan ��
token ��
top level environment ��� �
transcript�off ��
transcript�on ��
true �� ��� �

truncate ��
type �

unbound �� �� ��
unquote ��� ��
unquote�splicing ��� ��
unspeci�ed 	

valid indexes ��� ��
values �	� �
variable ��
� �� ��
vector ��
vector��list ��
vector�fill� ��
vector�length ��� ��
vector�ref ��
vector�set� ��
vector
 ��� �

whitespace

with�input�from�file �

with�output�to�file �

write ��� ��
write�char ��

x ��� ��

zero
 ��

252

� �������	��
� ���������	��������� ��������������� �"!

#%$'&)(+*-,/.102.43652&
78&:9;02.4<=3=9?>@*A5CB�DE$'3=F)9G&IH'>652&

J KIL�M)NPORQTS%UVMPWXO�L
YPZ@[]\PZXZ@^`_=ab^bZ�cedgfih�j=^lk _gj6^+alj=monRcedgfip+q1jsrXt�uwvbab[oZ@myxGrXt�^z[ym{t�|}|~ZXk�m�j=k4��j=[y�~t�^w[o�bZ@myx
j6v+n%u�j�r{�b�}^lZ�q�rXj=|�|�ZXk%[o�lZ"���lZ@m{j�r�x��gh1q�u�j��o������Z@|�n%te��Z@m{k4tg�oZ@k����}��v�ZXt�vb|�Z��R���lZX�yZ
j=rXr@��kbZ@^z[o�V�lje��Z���Z@Z@^RkbZX�yr@mo�}��Z@k�j���[o�lZ�\Pt�m{��[���^�[y�lZ��ih�xGn�Z�j=m��4�~�y[ot�mon�t���u�Z@k4�~rXj=|
j=rXrXZ�|~Z�m�j=[ot�m{��� �6 ?�
¡ kbZ@[{j=��|�ZXk¢j=rXr@��kbZ@^z["�}^z�gZX��[o��£ij=[o��t�^Cq�k1m�j�\�^¢��m{t=u v4ab�b|���r@|}n�je�=j=�}|�j=�4|~Z�kbt+r@a4x

u�Z@^z[o�Xq:r�j=^¤��Z"�¥t�ab^lk¦��^�§CZ��gZX�yt�^¨j6^lk��2abmy^lZ@m©� ª� ?�¦���lZ"�¥t�|}|~te\���^b£8j�rXr@t�ab^z[«�~�
[{j=¬gZ�^«��m{t�u[y�b�~��m{Z@v�t�my[Ij=^lk��}^lr@|}alkbZ@�®��t�[o��[y�lZ��;j�r�[{t�mo�®�}^+��t�|���ZXk��}^�[o�lZPte�gZ@mokbtg�yZX�
[y�lZ@u��oZ�|���ZX�/j6^lk`[o�bZ	j=[y[{Z�u�vb[o�¯�zn [o�bZsal�yZ@m{�@q�u�j=^zab�;j�r�[oabmoZ@m{�@q�j6^lk`£gte��Z@mo^4u�Z�^+[o�
[ot©kbZXj=|P\��}[o��[o�lZ�u`�`Y�ZXrXj=al�oZ�[o�b����j�r@r@�~k4Z@^z[\�j��	^lZ��gZ�m�t�°wr@��j6|�|�nR��^z�gZ@�y[y�~£ij=[oZXk'q
�yt�u�ZV�}^b�¥t�myu"j=[y�~t�^�t=^�[y�lZ±���bZ@m�j=r�x���h��yt���[]\�j6m{Z±k4Z@�gZ�|~t�v4u�Z�^+[Xq+u�j=^²j=£gZ@u�Z@^z[�q+j=^bk
³ a²j6|���[]n�rXt�^z[omot�|Vvbm{t+rXZ@k4abmoZX��j=moZ�^bt�["j��=j=�}|�j=�b|�Z��¤´¨�²j=[w�~�«��^br@|�abkbZXk���Z�|~te\µ�²j=���ZXZ�^"£�|�Z�j=^bZXk���m{t�u¶|~je\·�yab�}[{�Pj=^lkwkbZ@v�tg����[o��t�^l�@q+£�t���Z@my^bu�Z�^z[PmoZXrXt=m{kb�@qbj=^lk�rXt�v4�~ZX�
t=�'rXt=mom{Z@�yv�t�^lkbZ�^lrXZ±j=^lk�t�[o�lZ�m)u"j=[oZ@my��j=|lt=�b[�j=�}^lZXk«��mot�u¸[o�bZ±¹��»º��+¼lt+t1kwj=^lk�½±moab£
¡ k4uw��^b���y[om{j=[o��t�^%¾?¼�½ ¡/¿ q4\��4�~r{��m{ZX£=ab|�j=[oZX��[y�lZX�yZskbZ��z�~rXZ@�X�

À ÁÃÂ«U�Ä�Å�NPO"S�L%Q
Æ�ZXk4��r�j=|l|}��^lZXj=m)j�r@rXZ@|�Z@m{j=[{t�mo�¯¾;|��}^²j�r@� ¿ j�r@rXZ@|�Z@m{j=[{ZVZ@|�ZXr�[om{t=^l�:[ot�r@m{ZXj=[{ZV�b��£��4x]Z�^lZ@mo£�n
��Z�j6u���[y�²j=[�r�j=^ÇkbZ@�y[ym{ten¢[oa4u�t�mo��\��}[o�¨uw��^b�}u"j=|���uwv²j�r@[�t�^¨[o�bZ©�yabmym{t�a4^lk4��^b£
È�ÉCÊ�ËÍÌlÎ@Ï�Ï6ÐoÑ�ÒeËÔÓ:Ë»ÌbÕ?Î�Ö�ÐyÑ:×ÙØ;ÚXÛ©Ü®Î@Ñ�Ý�Þ)ß1Ð�à@ÐyÌ?Ú@Ñiá�âiã¥ä�å�æçã�è?åoé'â�ê{ëGì�å�í%âgã;ä�å�ì�ê:ã�îgï�ð²ñ�í®ò=óeì�å�èGëGáô Ò�ÒeË»Ì?Ú@Ñ�õ~ösÐoÌ;÷ÍÐ�Þ@áiøyù@ù@úeû²ü�Ú@ÏXÞeØ?ËÔýXÊ@Õ�øyù@ù@ú�û ô ÷Ô÷+Ø?ËÍý@ÊXÕ?ÌCØ?ÐyÌ?ÐyØ?à�ÐoÒiû

c

253

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�

�bZ�j=|}[o�zn�[y�~�y�yalZ=�+*VZ@|~j=[o�}�gZ�|�nw�y�²j6|�|~te\¨[y�~�o��alZ/�~�:[omoZ�j=[oZXk�\���[y��[o�lZ�j=rXrXZ�|~Z�m�j=[oZXk Z@|�ZXr�x
[ym{t�^b��,1[ot	m{ZXj�r{� kbZ@Z@v�Z@m�[o���o��alZ�q+[o�lZ/Z�|~Z@r@[omot�^"��Z�j=u ����rXt=^+��Z@my[{ZXk��}^+[ot.-�x m�j�n�vb�lt=x
[ot�^l�@�

/G^¤[o�bZ�Z�j=my|�n cedip10��@q ¡ [{t�uw�~r32I^bZ@m{£=n¦t��54�j=^²j�kbj8§C�}u��}[{Z@k¨¾ ¡ 2+4�§ ¿�6 j6^lk�j
¼bmoZ@^lr{�`rXt�uwv²j=^zn r�j6|�|~Z@k7498:* \PZ@^z[±�}^z[{t��bal�y�}^lZX�y��[otg£gZ@[y�lZ@mV�ba4��|~k1��^l£�|}��^lZXj=m¯j�r�x
r@Z@|�Z@m�j6[{t�mo�X� ���lZ�v4m{t+k4alr@[o� t��	[y�b�~��r@t1t�v�Z@m{j=[o��t�^Ç\�Z�m{Z ¾yc ¿ [y�lZ����lZ@m{j�r�x]�4q�j��
uw��|}|���t�^�Z@|~Z@r@[ym{t�^Ç�gt=|�[%¾ ÆRZ<; ¿ j�rXr@Z@|~Z�m�j=[ot�m r�j6v²j=�b|�Z©t���vbm{t+k4alr���^l£=-¯xGm{jen+��t�^4|�n
j6^lkA|~j=[{Z�m%¾G� ¿ [y�lZ����lZ@m{j�r�x��104q±j·�10�ÆRZ;�q�k4alj=|}x u�t+kbZ¦¾>-�xGm{j�n1� t�m Z�|~Z@r@[omot�^l� ¿
j=rXrXZ�|~Z�m�j=[ot�m��8YPt�[o��\PZ@moZ"�gZ�m{�y��t�^l�«t��Vt=|~kbZ�m?498@* u�j�r{�b�}^lZX�@q�[o�lZBA¯Z@vb[yab^lZ j=^bk
º1j�£���[y[�j=�}m{Z=q4m{Z@�yv�ZXr@[y����Z@|�n�qç\��4�~r{�`\PZ@moZ�j=ab£�u�Z�^z[{ZXk�\���[y�`r@t�u�v4ab[{Z�m±r@t�^z[om{t=|�ab�y��^b£
js½C2D4FE)½CE�x{cgc�uw��^4�~rXt=u�vba4[{Z@mX��´�Z�¬z^lte\¨[y�²j=[P�ot�u�Z�t=�'[o�lZ¯t�|�k"���lZ�m�j�r x��s�yt���[yx
\�j=moZ�mot�ab[o�}^lZX��\PZ@m{Z�m{Z�al�oZ@k·��^�[o�lZR���lZ�m�j�r x��10�j=^lk�[o�²j=[3498@*EkbZ@��Z@|~t=v�Z@k [o�bZ
�}^b��[y��j=|��ot=��[]\�j=moZ��
º1t=��[]\�j=moZI��ab^lr@[y�~t�^lj=|��}[]n¯\�j��'|}��uw��[{Z@k��}^���t�[y��u"j�r{�4��^lZ@��G2���lZIr@t�u�v4ab[{Z�mCu�Z�m{Z@|}n

j=kbkbZXk`rXt�^z�gZ�^b�~Z�^lrXZ�[ot�[o�bZ	Z��+���y[o�}^l£��lj=m{k4\�j=moZ�q�\��4�~r{�8\�j��±rXj=v²j=�b|�Z	t����y[�j6^lk4��^b£
j6|~t�^lZ=�9/G^lk4al��[omynzxG�y[{j=^lklj=mok©�²j=mok4\�j6m{Z	�oj=�¥Z@[]n �¥ZXj=[oabmoZX�±j=^lkR�}^z[{Z@my|~t+r{¬+����^�[o�bZsab^4x
k4Z@mo|}nz��^l£«u�j�r{�b��^bZX��\PZ@m{Z�m{Z�[�j=�}^lZXk��
���lZ%�bal����^lZ@�o� m{Z�|�j=[y�~t�^l���b��v¨��Z@[]\PZXZ�^ ¡ 2D4�§¸j6^lkH498@* �;j=|}[{Z@moZXkAj=��[oZ@m�[o�bZ

���bZ@m�j=r�x��I0RZ<J�t�my[��74P��[y��^l£�rXt�uwv�Z@[o�}[o�}�gZ«vbm{Z@�o��abm{Z@�XqI[o�lZ�[]\Pt©rXt�uwv²j=^4�~ZX��k4��k�^lt�[
moZ@^lZ�\-[o�bZ@��mVr@t1t=v�Z�m�j=[y���gZ�j=£�m{Z@Z@u�Z@^z[V\��lZ@^`�or{�lZ@k4ab|~Z@kR�}^�c�dgf4cg�

/G^"[y�lZVu���k1x�cedgp10��Xq ¡ 2D4�§8�lj�k�kbZ��gZ�|~t�v�ZXk�j�m�j�k1�~r�j6|l^lZ@\LKyk4t�ab�b|�Z¯v²j=�o�!M	rXt�^4x
r@Z@vb[��¥t�m�Z�|~Z@r@[omot�^Çj�r@rXZ�|~Z@m{j=[o��t�^C� ¡ k4t�ab�b|�Z�xGvlj��o��j�rXr@Z@|~Z�m�j=[ot�m�^bZXZXk4��u�alr{�¢|�ZX�y�
��v²j�r@Z�[otwk4Z@�gZ�|~t�v`rXt�uwv²j=m{j=�b|�Z/Z@^lZ�m{£�n�|�Z@��Z@|~����ZXrXj=al�oZ���[��¥t=|~kb��[y�lZ�|~t�^l£«vb�zn+�y��r�j=|
u�ZXr{�lj=^b�~��u m{Z ³ ab�}m{Z@k�[{t	j�rXr@Z@|~Z�m�j=[oZ�[y�lZ±Z�|~ZXr�[omot�^l�Xq4j=^lk��}[)�~�)u�t�moZ�Z@rXt�^bt�u���r�j=|²[otv4m{t+k4alrXZ=�«¹�����^l£"[y�b�~��k4t�ab�b|�Z�xGvlj��o��r@t�^lrXZ�vb[�q ¡ 2+4�§�kbZX���~£�^bZXk%[o�lZ����lZ�m�j�r x��gh+q2j
k1a²j=|}x u�t+kbZ�|}��^lZXj=m�j�rXr@Z@|�Z@m�j6[{t�m�[o�²j6[srXj=^¦kbZ�|��}�gZ@m�Z���[o�bZ@m�vb�lt�[ot�^l�sj=[«��hRÆRZ;�t�m
Z�|~Z@r@[omot�^l�¯j=[��=j=my�~t�al��Z�^lZ@mo£�n�|~Z��gZ�|~�X�

4�t�uwv²j=moZXk©\��}[o�8[o�bZ«���lZ@m{j�r�x��104q�[y�lZ����lZ�m�j�r x��gh�����^lt�[{j=�b|}nRu�t�m{ZsrXt�uwv²j�r�[�q
u�t�moZ��gZ@mo�{j=[y��|�Z�q=j=^lksj=m{£�alj=�b|�n±Z�j����~Z�m�[ot¯ab�oZ������lZ)�b�~£��bZ@m2Z@^bZ@m{£=n�[�j=¬�ZX��j=k4�=j=^z[�j�£gZ
t=��[o�bZ�v4�lZ@^lt=u�Z�^lt�^©t=�ON)P'QSRUTVN)W�X�PG ¡ �¯[y�lZ�Z@^lZ�m{£�n��}^lr@moZ�j��yZX�Xq²[o�bZskbZ�vb[o�R��^ [o�bZ
��t+k4n�j=[w\��b�~r{�¢u�j6�+��u	abu kbtg�yZR�ba4��|~k+xGabv·t1r@r@abmo�"j=|��ot%��^lr�m{Z�j=�oZX�@qV�yv²j=my��^l£%[o�bZ
[y�~�y�yalZPj=��t���ZP[y�lZ:[{j=m{£�Z@[�j=m{ZXj4�Y2Ir@t�^lt�uw�~r:j�k4�=j=^z[{j�£gZX��j=|~�yt�r@t�u�Z)�}^z[{tVvb|�j�n��¥t�m2[o�bZ
r�al�y[ot�u�Z@m�q��y��^brXZ	t=^b|�n�t�^lZsu"j�r{�4��^lZ��~��moZ ³ ab�}m{ZXk©�¥t=m±��t�[o�8[ym{Z�j6[ou�Z@^z[±u�t1kbj=|��}[o�~Z@�
Z ô�[ü�ß@\'Î�ÌlÎ@Ñ�Î�Ø Û�Ì;õ~÷ÔÐoÑeý�Õ Ê:ÐoÑ@Õ?ËÔÕ�Þ@áXÝyÎ ÷Í÷ÔÐoÒ�ÎIÝ�Ø?Ú%\2ÑPÝ�Ú@Ø Ï6ÚXØ?Î�Õ;ËÍÚ@Ñiá Ú�×�Õ ÊeÐ�ü�Î@Ñ�Î�ÒeË»Î�ÑPý�Ú�à@ÐyØ Ñ�õÛPÐoÑXÕ�ûY]XË»Ñ�Ý�Ð)Õ?ÊeÐPÕ;Ë»Û�Ð:Ú ×²Õ ÊeÐ)Ë»Ñ�Ý�Ë»ÒeÐoÑ@Õ Ì®Ø?Ð�÷»Î Õ?ÐyÒ/Ë»Ñ�Õ?Ê�ËÍÌ®Ï�Î�Ï=ÐyØyá ô�[ü�ß?^�ÐyÒeË»Ý�Î�÷}ágÎVÒeËÍà�ËÍÌ?ËÔÚXÑ/Ú ×ô_[ü�ß�á`\�Î@Ì®Ï�Ø?ËÍà{Î�Õ;Ëba�ÐoÒ�Î�Ñ6Ò�Ë»Ì®ÑeÚ%\�Ý�Î ÷Í÷ÍÐyÒ�ÉCÊ�ÐyØ Î Õ?Ø?Ú@Ñ�ËÍÝyÌ_c¥ÑXÕ;ÐoØ?Ñ�Î�Õ;ËÍÚ@Ñ�Î�÷}ágß1Õ?ÒiûPü�d�Ø Ø?ÐyÑXÕ;÷ÍÞ�ágÕ?Ê�ÐÏ�Ø;Ë»Û�Î�Ø?ÞOefd�Ì?ËÍÑ�ÐyÌ ÌCÚ × ô_[ü�ß�Ë»ÌCÕ?Ê�Ð)ÒeÐyÌ?ËÔýXÑ�Î@Ñ�Ò�ËÍÑ�Ì?Õ?Î�÷Ô÷»Î Õ?ËÔÚXÑ¯Ú�×bÑ�d�Ý�÷ÔÐoÎ�ØCØ?ÐyÎ@Ý�Õ;ÚXØ?Ìyû

254

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�

¾;Z@|�ZXr@[ym{t�^b��j6^lk�v4�lt�[{t=^l� ¿ �
º1Z��gZ�m�j=|��¥Z�j6[oabmoZX��t��s[y�lZ����lZ@m{j�r�x��gh¦j=m{Z8��uwv�t�mo[{j=^z["��^Çab^lk4Z@m{��[�j=^bk4��^l£¤[o�bZ

j=rXr@��kbZ@^z[o�X��¼���m{��[�q4|}��¬�Z/[o�lZ����lZ�m�j�r x���j6^lk�[y�lZ����lZ@m{j�r�x��104qb[y�lZ����lZ@m{j�r�x��gh«���VrXt�^4x
[ym{t�|}|~Z@k·�zn¨jgE)½CE�x�cgc8r@t�u�v4ab[{Z�m��ih�te\PZ@�gZ�m�q ¡ 2+4�§ kbZX���~£�^bZXk¨[o�lZ%���bZ@m�j=r�x���h
[ot�[{j=¬gZ�j�k4�=j=^z[�j=£gZ�t=��rXt=u�vba4[{Z@msrXt=^+[ym{t�|)��mot�u [o�lZwt�ab[o�oZ�[�,�[y�lZ@n�k4��k�^lt=[s�ba4��|~k
t=^%j��y[{j=^lk1x]j=|~t=^lZsu�j�r{�b�}^lZ��±���lZ����lZ@m{j�r�x]��j=^lk8���bZ@m�j=r�x��I0��²j�k©��ZXZ�^%kbZX���~£�^lZ@k
j6m{t�ab^bk"u"j�r{�4��^lZ@�P[o�lj=[Vj=|}m{Z�j=k4n��²j�k"�b���y[{t=mo�~Z@��t��2r�|��}^b�~rXj=|²al�oZ/\��}[o�lt�a4[�rXt=u�vba4[{Z@m
r@t�^z[omot�|G�

/G^ j=kbk4��[y�~t�^'qg[o�lZ±���lZ@m{j�r�x��gh��yt���[]\�j6m{Z��lj��Pu�t�m{Z�moZX�yv�t�^l�����b�}|��}[]n��¥t�m:u"j=�}^z[�j=�}^4x
�}^l£��{j=�¥Z�[]n�[y�²j=^�[y�lZw�ot���[]\�j=m{Z���^�[o�lZwvbm{Z��+��t�al��u"j=r{�b��^lZ@�X�����lZ����lZ@m{j�r�x��10��²j=�
�}^lkbZ�v�Z�^lkbZ@^z[wvbm{t=[{ZXr�[o�}�gZ r@�}m{r@a4��[{�«�¥t�m«u�t�^b�}[{t�my��^l£R[o�lZ Z@|�ZXr�[om{t=^4xG��Z�j=u��or�j6^b^b��^b£
v4|�al��u�ZXr{�lj=^b�~rXj=|��}^z[{Z@my|~t+r{¬+�P�¥t�m�v�t�|}�~r@�}^l£�[o�lZ±u�j�r{�b�}^lZ�j=^bk�Z@^l��abmo�}^l£«�{j=�¥Z�t=v�Z�m�j6x
[y�~t�^'�I���lZ����lZ�m�j�r x��gh�m{Z@|}�~Z@�:u�t�m{Z�t�^��yt���[]\�j6m{Z±�¥t�m:[o�bZX�oZ/��a4^lr@[y�~t�^l�@� ¡ 2D4�§8[{t+t�¬
j=k4�=j=^z[�j�£gZ�t���[y�lZ�r@t�uwvbab[{Z�m�j ��j=�4��|��}[o��ZX�/[{tRrXt�^z[ym{t�|�j=^lkTu�t�^b�}[{t�m�[y�lZ��lj=m{k4\�j=moZ
j6^lk k4ZXr@��kbZXk�^lt�[«[ot�k4a4vb|���r�j=[oZ j=|�|�[y�lZ Z��+�~��[o�}^l£8�²j=m{k1\�j=moZR�oj=�¥Z@[]n¦u�ZXr{�lj=^b�~��u��
j6^lk��}^z[{Z@my|~t+r{¬+�X�
º1t=u�Z"�yt���[]\�j=m{Z"�¥t�ms[o�lZ�u"j�r{�4��^lZ@�	\�j=����^z[{Z�mom{Z�|�j=[oZXk¦t�msm{Z�al�oZ@k'�k/G^ jR|�Z@[y[{Z@m

[ot"j����lZ@m{j�r�x��gh�al�yZ@mXq�[o�bZ ¡ 2+4�§ ³ a²j=|}��[]n�j��y�yabm{j=^lr@Z	u"j6^²j�£gZ�m��oj=�~k�qlKy���lZ	�oj=u�Z���bZ@m�j=r�x��	vlj�r{¬=j�£gZ/\�j���al�oZ@k��+n�[o�lZ ¡ 2D4�§��ot=��[]\�j=moZ/v�Z@t�vb|�Z±\��lZ@^ [y�lZ@n��y[�j6mo[{Z@k
[y�lZ����lZ@m{j�r�x��gh©�ot���[]\�j=moZ������lZR���lZ@m{j�r�x��10%j=^lk ���lZ@m{j�r�x��gh©�ot���[]\�j=m{Z vbmotg£�m�j6u��
\PZ@moZ kbt�^lZ"�}^lkbZ@v�Z@^bkbZ@^z[o|}n���[�j=my[o��^b£`��m{t�u j©rXt=u�u�t�^��²j=�oZ�M¢� ª� ?�T���lZ�moZ@al�yZ�t��
���bZ@m�j=r�x��©k4ZX�y��£�^¦�¥Z�j6[oabmoZX��t�m	u�t+k4ab|�ZX��u"j�n�Z��+vb|�j6��^¦�yt�u�Z�t��V[o�lZ�vbm{t��4|~Z@u�j=[y�~r
j=�yv�ZXr@[o��t=�¯[y�lZ����lZ@m{j�r�x��gh8�ot���[]\�j=m{Z kbZ@�y��£�^C�¤���lZ ³ a²j=|}��[]n¦j=�o�ya4m�j=^lr@Z�u�j=^²j=£gZ@m\�j��¯j=vbvlj=m{Z�^+[y|�n�ab^²j�\�j6m{Z�[o�²j6[V�ot�u�Z����lZ@m{j�r�x��10�m{t�a4[o��^bZX��\PZ@m{Zsj=|��ot�al�yZXk ��^�[o�bZ
���bZ@m�j=r�x���hm,®[y�b�~��\�j��sk1�~�or@te�gZ@moZXk¦j6��[{Z@msj��bal£�m{Z@|~j=[{Z@k�[otRt=^lZ�t���[y�lZ����bZ@m�j=r�x���h
j=rXr@��kbZ@^z[o�V\�j��V�¥t�ab^lk ��^�[y�lZ����lZ@m{j�r�x��10��ot���[]\�j=m{Z=�
¡ 2+4�§�vbmot1k1alrXZ@kR[o�bZ:nbmo�y[¯�²j=mok4\���moZXkRv4m{t�[ot�[]nzv�Z�t���[y�lZs���lZ@m{j�r�x��gh��}^Tcedgp��4q

j6^lk"[o�lZ�r@t�uwvb|~Z�[{Z@|}nwrXt�uwvbab[oZ@myxGrXt�^z[ym{t�|}|~ZXk�rXt�uwu�Z@m{r���j=|²��Z@m{���~t�^ \�j��Vj��=j=��|~j=�b|~ZV��^
|~j=[{Z«c�dgfi�1�

olp�q�rSs�tvuYw>xzy�{}|�~>s�~�{}r�~�r_�_� ���bZs���bZ@m�j=r�x���hs[oabmy^+[{j=�b|�Z/kbZX���~£�^�v4|�j�n+�Vj=^���uwv�t=myx
[{j=^z[�m{t=|~Z��}^�[o�lZ j=rXr@��kbZ@^z[o�X�����lZ"abvbv�Z@m«[yabmo^z[�j6�b|~Z8¾;�oZ@ZR¼��~£�abmoZ`c ¿ m{t�[{j=[{Z@�«j�r�x
r@ZX�y�ot�myn¦Z ³ ab�}vbu�Z�^z[���^z[{tR[o�lZ���Z�j6u v²j6[o�¦[{tRvbm{t+k4alr@Z"[]\�t©[y�lZ@m{j=v�Z�ab[o��r�u�t1kbZ@��GZ�|~Z@r@[omot�^¨u�t1kbZ©j=^lk¢vb�lt=[{t�^¨u�t1k4Z�� ¡ [o�b�}m{k·v�tg����[o��t�^¾;r�j=|}|~ZXk [o�lZVnbZ@|~k¢|}�~£��z[
v�tg����[o��t�^ ¿ �}^z�gt�|}�gZX��^lt���Z�j=u j6[±j6|�|Gq+�bab[Vm�j6[o�lZ�m��~��al�oZ@kR[ot��;j=r@��|}��[{j=[{Z�rXt�mym{ZXr�[�v�t=x
����[y�~t�^b�}^l£�t��P[o�lZ�v²j=[y�~Z@^z[X�"Y�Z@r�j=al�yZ�[y�lZ�j=rXrXZ@�o�yt�mo��ZX��j6vbvbm{t=vbmo�~j=[{Z«[{t�Z�j=r{�Tu�t1kbZ

255

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ª

Mirror

Turntable

Plunger

Flattener

Counterweight

X-ray mode
target

scan magnet
Electron mode

actuators
Microswitch

microswitch assembly

¼®�~£�a4m{Z«c`G)¹Vvbv�Z�mV[oabmy^+[{j=�b|�Z�j��o�yZ@u��b|}ng�

256

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(h

j6m{Zsv4�+n+���~r�j6|�|�nRj=[y[�j�r{�bZXk©[{t�[o�lZ	[yabmo^z[{j=�b|~Z=q�vbmot�v�Z@m�t�v�Z@m{j=[o��t�^©t=�I[o�lZ«���bZ@m�j=r�x���h
�����lZ�j��z��|}n�kbZ@v�Z@^bkbZ@^z[�t�^�[o�bZ�[yabmo^z[�j6�b|~Z�v�t��y��[y�~t�^'q4\��b�~r{�R�~��u�t�^b��[ot�m{Z@k��+n [y�bm{Z@Z
uw�~r�m{tg��\���[or{�lZX�@�
���lZ8m{je\�q¯�b�~£=�b|�n rXt�^brXZ@^z[ym�j=[oZXk-j=rXrXZ�|~Z�m�j=[ot�m���ZXj=u ����klj=^l£�Z@m{t=al�"[{t¦|��}�z��^l£

[y�~�y�yalZ=�5/G^%Z@|�ZXr�[om{t=^©[o�lZ�m�j=vzn�q�[o�lZsrXt�uwvbab[oZ@m±rXt�^z[omot�|~�¯[o�lZs��ZXj=uÃZ@^lZ�m{£�nT¾;��mot�u h
[ot��gh�ÆRZ<; ¿ j=^lk�r�abmomoZ@^z[�qg\��4��|~Z:�orXj=^b^b�}^l£±u�j�£�^lZ�[{�®j=m{Z:al�oZ@k«[{t±��vbm{ZXj�k�[o�bZP��Z�j=u
[ot�j"�{j=�¥Z=q2[y�lZ@m{j=v�Z@ab[y�~r«rXt=^lrXZ�^+[ym�j=[y�~t�^'�����lZ@�oZw�or�j6^b^b��^b£ u�j�£�^bZ@[{��j6m{Z�u�t�ab^z[{Z@k
t=^�[y�lZ¯[yabmo^z[{j=�b|~Z¯j=^bkwu�te�gZXkw��^z[{t�vbmot�v�Z�m)v�tg����[y�~t�^��zn«[o�lZ¯rXt=u�vba4[{Z@mX�)º+�}u��}|�j=my|�ngq
j6^���t�^�r{�²j=u���Z@m�[ot�u�ZXj��yabmoZ�Z@|~Z@r@[ym{t�^l�����±u�t=ab^z[{ZXk�t�^%[o�bZ�[yabmo^z[{j=�b|~Z�j6^lkTj6|~�ot
u�te�gZ@k��}^+[ot�v�tg����[y�~t�^��zn�[o�bZ:r@t�uwvbab[{Z�m���/G^�j�k4k4��[y�~t�^Cqet=v�Z�m�j=[ot�myx u�t�a4^+[oZXk�Z@|�ZXr�[om{t=^
[ymo�}u�u�Z@mo��r�j=^���Z/al�oZ@kR[{t����²j=v�Z�[y�lZ���ZXj=uµ�}�®^lZ@rXZ@�o�{j6mong�
¼lt�m�-�x m�j�n�¾?t�m®vb�lt�[ot�^ ¿ [y�lZ@m{j=vzngqgt=^b|�n�t�^lZPZ@^lZ�m{£�n�|~Z��gZ�|4�~�®j��=j=��|~j=�b|~ZIG2�gh/Æ�Z<;��

Æ alr{�¤£�m{ZXj=[{Z�m�Z�|~ZXr�[omot�^4xG��Z�j6u r@abmym{Z@^z[����smoZ ³ ab��moZXkT�¥t=m�-¯xGm�j�n%u�t1kbZR¾?�yt�u�ZRc�010[y��u�ZX�:£�m{ZXj=[{Z�m�[o�lj=^"[o�lj=[��¥t�m�Z@|�ZXr@[ym{t�^�[o�lZ�m�j=vzn ¿ � �= �[otsvbmot1k4abrXZ/r@t�u�vlj=m�j=�4|~Z¯t�ab[yx
v4ab[��:º+abr{�`j��b�~£��"kbtg�oZ xGm{j=[{Z/rXj=v²j=�4��|��}[]n��~�:m{Z ³ a4��m{Z@k���Z@r�j=al�yZ�j�K���Z�j=u��²j6[o[{Z�^lZ@m!M
����al�oZ@k�[{t�vbmot1k1alrXZ�j�a4^b���¥t�myu [ym{Z�j6[ou�Z@^z[�nlZ@|�k'�I���b�����lj=[o[oZ@^lZ�m�qi\��b�~r{��m{Z@�oZ@u	�b|~Z@�
j6^R�}^+��Z@my[{ZXkR�~rXZ�r�m{Z�j6u r@t�^lZ=q²���¯jw�gZ�mon�Z@°wr��~Z@^z[±j=[o[oZ@^za²j=[ot�m�,l[y�+ab�Xq²[{tw£gZ@[±j�moZ�j6x
�yt�^²j=�4|~Z/[omoZ�j=[yu�Z�^z[Vkbtg�oZ/m{j=[{Z�t=ab[Vt���[o�lZ��²j6[o[{Z�^lZ@mXq²j��gZ@myn"�b��£�����^bv4ab[Vkbtg�yZ�m{j=[{Z
����moZ ³ ab�}m{ZXk��7/G��[y�lZ�u�j�r{�b�}^lZw�y�lt�a4|~k�v4m{t+k4alrXZ�j�vb�bt�[{t�^T��ZXj=u \���[o��[o�lZ���Z�j=u
�lj=[o[oZ@^lZ�m�^bt�[���^8v�tg�y�}[o��t�^CqCj"�b��£��%t�ab[yvbab[�kbtg�yZ«[{t�[o�lZ�vlj=[o��Z@^z[�m{Z@�yab|}[{�X�����4�~�/�~�
[y�lZ��²j����~r"�²j1�Xj=m{k¤t���k4a²j6|}xGu�t+kbZ�u�j�r{�b�}^lZX�<GB/G��[y�lZ�[oabmy^+[{j=�b|�Z"�~����^¦[y�lZ�\�m{t�^b£
v�tg����[o��t�^Cq+[o�lZ���Z�j=u��lj=[o[oZ@^lZ�m¯\��}|�|�^lt�[V��Z/�}^ vb|�j�r@Z��

/G^�[o�lZ:���lZ�m�j�r x��gh+q�[y�lZ)rXt�uwvbab[oZ@m2�~��m{ZX��v�t=^l�y�}�b|~ZI�¥t�m'v�tg����[o��t�^b�}^l£�[o�bZ)[yabmo^z[{j=�b|~Z
¾?j=^lk��¥t�m�r{�lZXr{¬z��^b£©[o�lZ�[oabmy^z[�j=�b|�Zwv�tg����[o��t�^ ¿ �ytR[o�lj=[�j [�j=mo£gZ@[Xq��lj=[o[oZ@^b�}^l£�n4|�[{Z�m�q
j6^lkk-¯xGm�j�n%�~t=^Tr{�²j6u���Z�m«j=moZ�k4�}m{Z@r@[o|}n©��^�[o�lZw��ZXj=u v²j=[y�C��´¨��[o��[o�lZ�[�j6m{£gZ�[��^
v4|�j�r@Z�q�Z�|~Z@r@[omot�^T��t�u��lj=m{k4u�Z@^z[�vbm{t+k4alr@ZX�:-�xGm{j�n1�@�`���bZ�-�x m�j�n8��Z�j=u �~���y�lj=v�Z@k
�zn"[y�lZC�²j=[y[{Z@^4��^l£�nb|}[{Z@m¯j6^lk�u�Z�j=�yabmoZXk �+n�[y�lZC-�x m�j�n���t�^�r{�²j=u���Z@mX�

A¯t«j�rXr@Z@|�Z@m�j6[{t�m:��ZXj=u �~�PZ��+v�Z@r@[oZXk"��^�[o�lZ¯[o�b�}m{k�t�mlnlZ�|~kw|��~£=�+[)[yabmo^z[�j6�b|~Z¯v�tg���}x
[y�~t�^'� ¡ ��[�j=�}^b|~Z@�o����[{ZXZ�|lu��}momot�m®����vb|~j�rXZ@k���^«[o�bZ���ZXj=u vlj=[o��j=^lk�j±|}�~£��z[��y��u	ab|�j=[oZX�
[y�lZV��ZXj=u`�����b�~�)|~Z�[{�)[o�lZ¯t�v�Z@m{j=[{t�m:�yZXZVvbm{Z@r@�~�yZ@|}n«\��lZ@moZ�[o�bZ¯��Z�j=u¶\��}|�|l��[omy��¬gZV[o�bZ
vlj=[o��Z@^z[)j=^lk�u�j=¬�Z�^lZXr@ZX�o�oj=monwj=kI��al�y[yu�Z�^z[{����Z@�¥t�moZ�[omoZ�j=[yu�Z�^+[��y[�j6mo[{�@�I���lZ�m{Z��~��^bt
��t�^�r{�²j=u���Z@m��}^ vb|�j�r@Z�j=[�[o�b����[oabmy^z[�j=�b|�Z/v�t��y��[y�~t�^'q4�y�}^lrXZ�^lt���Z�j=u�����Z��+v�ZXr@[oZXk'�
�Cm�j�k1��[o��t�^²j=|}|�n�qgZ@|�ZXr@[ym{t�u�ZXr{�lj=^b�~rXj=|²��^z[{Z�mo|�t1r{¬+�P�lje��Z���ZXZ�^�al�oZ@k"t�^"[y�lZX�yZ�[]nzv�Z@�

t=�lZ ³ ab�}vbu�Z�^z[�[{t�Z@^l��abm{Z��oj=�¥Z@[]nC� �}^	[y�b�~�®r�j��yZ�q�[ot/Z@^l��abm{ZP[o�²j=[®[o�lZ:[oabmy^z[�j=�b|�Z�j=^bk
j6[o[�j=r{�lZXk�Z ³ ab��v4u�Z�^+[�j=moZV�}^�[y�lZ¯rXt�mym{ZXr�[Pv�tg����[o��t�^�\��lZ@^�[omoZ�j=[yu�Z�^+[:�~�)��[�j=my[{ZXk���/G^[y�lZ����bZ@m�j=r�x���h1q��yt���[]\�j=m{Zsr{�lZXr{¬+��\�Z�m{Zs�yab�l��[o�}[oab[oZXk©�¥t�m¯u"j6^+n t=��[o�lZ�[om{j�k4��[y�~t�^lj=|
�lj=m{k4\�j=moZ��}^z[{Z@my|~t+r{¬+�X�

257

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�

359.2
VERIFIED
VERIFIED
VERIFIED
VERIFIED
VERIFIED
VERIFIED

0.0

14.2

0
1

27.2

TREATMENT MODE : FIX BEAM TYPE: X

50 50
UNIT RATE/MINUTE
MONITOR UNITS
TIME (MIN) 0.27

0
ACTUAL

ENERGY (MeV): 25

PRESCRIBED
200
200

1.00

0

0
1

27.3
14.3
359

PATIENT NAME : TEST

DATE
TIME
OPR ID

: 84-OCT-26
: 12:55: 8
: T25V02-R03

SYSTEM
TREAT
REASON

: BEAM READY
: TREAT PAUSE
: OPERATOR

OP. MODE : TREAT AUTO

COMMAND:
X-RAY 173777

GANTRY ROTATION (DEG)
COLLIMATOR ROTATION (DEG)
COLLIMATOR X (CM)
COLLIMATOR Y (CM)
WEDGE NUMBER
ACCESSORY NUMBER

¼®��£�abmoZ��mGD�±v�Z�m�j=[ot�m���^z[{Z�mo�;j�r@Z��or�m{ZXZ�^©|�j�n�t�ab[��

o���x=�?��x#qftvs�{�q���r}s�x#q���t��`x�� ���lZ	k4ZX�or�mo�}vb[o��t�^8t���[y�lZ�t�v�Z@m{j=[{t=m��}^+[oZ@my�;j�rXZ��lZ@moZ
j6vbvb|���ZX�	[ot©[o�lZ"��Z@mo�y�~t=^ t=�¯[y�lZ��ot=��[]\�j=moZ"al�oZ@k k1abmo�}^l£`[o�bZ j�rXr��~kbZ�^+[o�X��4P�lj=^l£gZ@�
u�j�kbZ�j=��j�moZX�ya4|�[¯t���j=^R¼�½ ¡ moZXrXj=|�|2j6m{Z�kbZX�yr@my����ZXk |�j=[oZ@m��
���lZ����lZ�m�j�r x��gh¦t�v�Z@m�j6[{t�m r@t�^z[om{t=|~��[o�lZ8u�j�r{�b�}^lZ©[o�bmot�al£�� j�½C2+4�;��/c�010

[oZ@myu��}^²j=|G��/G^A[o�bZ�£gZ�^lZ@m{j=|�r�j��yZ�q/[y�lZ%t�v�Z�m�j=[ot�m v�t��y��[y�~t�^b�"[o�lZ8v²j=[y�~Z�^+[�t�^A[o�bZ
[ym{ZXj=[ou�Z@^z[�[{j=�b|�Z�q1u�j=^za²j=|}|�n«�yZ@[o��[o�lZ¯[om{ZXj=[ou�Z@^z[�nbZ@|~k��y���@ZX��j6^lk�£ij=^z[omyn�m{t�[{j=[o��t�^Cq
j6^lk�j=[y[�j�r{�bZX�sj�rXr@ZX�o�yt�mo��ZX�	[ot�[y�lZ�u"j�r{�4��^lZ=�"§CZ�j��z��^l£�[o�lZ�[omoZ�j=[yu�Z�^z[smot1t�uRq'[o�bZ
t=v�Z�m�j=[ot�m�moZ@[oa4mo^l��[ot	[o�lZ±rXt�^l�yt�|~Z�[{t«Z@^z[oZ@m�[y�lZ/v²j=[y�~Z@^z[P�~kbZ�^+[y��nlrXj=[o��t�^Cqz[omoZ�j=[yu�Z�^+[
v4m{ZX�yr@my��vb[y�~t�^-¾;��^br@|�abk4��^l£%u�t1kbZ�t�mw��ZXj=u []nzv�Z=q¯Z�^lZ@mo£�n�|~Z@��Z@| q�kbtg�oZ=q�kbtg�yZ`m�j=[oZ�q
j6^lkw[y��u�Z ¿ q1nlZ@|�k��y������^l£4qi£ij=^z[omyn�m{t�[{j=[o��t�^Cqij6^lkwj�rXr@ZX�o�yt�monwklj6[�j4�����lZ���n+�y[{Z�u¶[o�lZ�^
r@t�uwv²j=m{Z@��[o�lZ�u"j6^+alj=|�|}n��yZ@[¯��j6|�alZ@�V\��}[o��[o�lt��oZ�Z@^z[{Z�m{ZXk`j=[V[o�lZ�rXt=^l�ot�|�Z��D/G��[y�lZ@n
u�j=[or{�Cq�j��1P�" ¡�P!N«u�ZX�y�{j�£gZw�~��k4���yvb|~jen�ZXkTj=^lk�[ym{ZXj=[ou�Z@^z[��~��v�Z�mouw��[y[{ZXk��3/G��[y�lZ@n
k4tT^lt�[wu"j6[{r{�Cq�[ym{Z�j6[ou�Z@^z[����w^lt=[�j=|}|~te\�Z@k [ot�vbmot1r@ZXZXk¢a4^+[y��|¯[o�lZ�u����yu�j=[{r{���~�
r@t�momoZXr�[{ZXk���¼®��£�abmoZ����y�lte\V��[y�lZ��or�m{ZXZ�^`|~jen�t�ab[X�
´¨�lZ�^�[y�lZ��yn+�y[oZ@u \�j��Cnbm{��[��bab��|}[�q�t�v�Z�m�j=[ot�m{��r@t�uwvb|�j=�}^lZXk©[y�²j=[��}[/[{t+t�¬`[ot1t

258

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(p

|�t�^l£�[{t�Z@^z[{Z�m±[o�bZs[omoZ�j=[yu�Z�^z[�vb|~j=^C�9/G^©moZX��v�t�^b�oZ�q ¡ 2D4�§�u�t+k4�¢nlZXk [o�lZs�ot���[]\�j=moZ
��Z@�¥t=m{Z8[o�lZ£nbmo�y[ab^b�}[�\�j=� �}^l�y[{j=|�|�ZXk¤G¥/G^l�y[oZ�j�k t��smoZXZ�^+[oZ@my��^l£¤[o�lZ%klj6[�j¤j=[�[o�bZ
¬�Z@nz��tij=m{k�q+t=v�Z�m�j=[ot�m{��r@t�ab|�k«�y��uwvb|}n�ab�oZVj/r�j6momo�~j�£gZ�moZ@[yabmo^�[{t�r@t�vzn	[y�lZ�[omoZ�j=[yu�Z�^+[
����[oZ�klj6[�j"� h6 ?� ¡ ³ ab�~r{¬w�oZ�mo��ZX�:t��Cr�j6momo�~j�£gZ�moZ@[oa4mo^l�:\�t�a4|~k�[y�zal��r@t�u�v4|~Z@[oZ�[o�lZ¯klj=[{jZ�^z[omon��:���b�~��u�t1k4�¢nlr�j6[o�~t=^"\�j=�¯[ot?nb£�abm{Z��}^R�yZ@��Z@m�j6|®t=�®[y�lZ�j�rXr��~kbZ�^+[o�X�
���lZ ���bZ@m�j=r�x���h8r@t�ab|�k¦�y�zab[�kbte\�^¤��^¦[]\Pt8\�j�n+�wj=��[{Z�m���[kbZ@[oZXr@[oZXk j=^¤Z@mym{t�m

r@t�^lk4�}[o��t�^C���±^lZ¯\�j=��j�R���P!¦1R�§3P¨�R�X©#X'Q�P¨}N�qi\��b��r{�"m{Z ³ a4��m{Z@k�jsr@t�uwvb|~Z�[{Z�u"j=r{�b��^lZmoZX�yZ@[:[{t�m{ZX��[�j=my[��)���lZ¯t�[y�lZ@mXqz^bt�[��yts�yZ@my�~t�al�@q+\�j��Pj�R���P!¦1R�§3P¨�R�Qª¦1©#X�P�qi\��b��r{�"t�^4|�n
moZ ³ ab�}m{ZXk`jw����^l£=|~Z�¬gZ�nRr@t�uwu"j=^bk [otwmoZX��[�j=my[�[y�lZ�u�j�r{�b�}^lZ��+/G�IjzR���P!¦1R�§3P¨�R_Qª¦1©	X�Pt+rXr�abmomoZXk'q6[o�lZ:t�v�Z@m{j=[{t�m2r@t�ab|�k�vbmoZX�y�®[o�bZ¬«® ¬gZ�n�[{t3K�vbmot1r@ZXZXkvM/j=^lk�m{Z@�yabu�Z)[om{ZXj=[yx
u�Z@^z[³ ab�~r{¬z|�nsj=^bk	rXt=^+��Z@^b��Z@^z[o|}ng�I���bZPvbmoZ@�z�~t�ab�®[omoZ�j=[yu�Z�^z[®v²j6m�j=u�Z@[oZ@m{��m{Z�u"j=�}^lZXk�}^�Z<J�ZXr@[Xq�j6^lk�^bt�moZX�oZ�[�\�j���m{Z ³ ab��moZXk'�����b�~���¥ZXj=[oabmoZ�rXt�ab|�k8��Z«��^z��t�¬gZ@k�j�u"j6�zx�}u�abu t��lnb�gZ"[y��u�ZX����Z��¥t�m{Z�[o�lZ�u"j�r{�4��^lZ�j=ab[ot�u"j6[o�~rXj=|�|}n©��al�yv�Z@^lk4ZXk¦[omoZ�j=[yu�Z�^+[
j6^lk�moZ ³ ab�}m{ZXk [o�bZ�t=v�Z�m�j=[ot�m�[{t«v�Z@mo�¥t=mouEj��yn+��[{Z@uEmoZX�yZ@[��

2�momot�m/u�ZX�y�{j�£gZ@�/vbm{te�z�~k4ZXk8[{t"[y�lZ�t�v�Z@m{j=[{t�m±\�Z�m{Z�r@myn+v4[o�~r=qCj=^lk8�yt�u�Z	u�Z�m{Z�|�n
r@t�^l���~�y[oZXk¨t���[y�lZ`\Pt�m{k°¯²±�³#´mµ�¶_·�¸�¹>ºY¶�¥t=|�|~te\PZXk·�zn·jT^zabu���Z@m"��mot�u c`[{t¦�=ª
k4Z@^lt�[y��^l£`j=^¤j=^lj=|~tg£	»=k4�~£=��[�j6|�r{�²j=^4^lZ@|P^+a4u���Z�m�� ¡ r@rXt�mok4��^l£�[{t8j6^¦¼�½ ¡ u�Z@u�t=x
m{j=^lk4a4u�\�mo�}[o[{Z�^Rj=��[{Z�m�t=^lZ�j�rXr��~kbZ�^+[�G

���lZ"t�v�Z@m{j=[{t�m�jÔ��u"j6^+alj=|���abvbvb|}�~Z@kT\���[y��[o�lZwu"j=r{�b��^lZ�kbt+ZX�	^lt=[�Z��zx
vb|�j=�}^¤^lt�mwZ@��Z@^Çj�k4k4m{Z@�o��[y�lZ u"j=|}��ab^lr�[o�~t=^¤rXt+kbZX�@�¨���lZ8ÆRj=��^z[�j6^lrXZ
� ���~r@)Æ`j=^za²j=|)|����y[o�±[o�lZ«�=j=my�~t�al�/u�j=|}��ab^lr@[y�~t�^8^zabu	��Z�m{���bab[�£��}�gZX��^lt
Z��+vb|�j6^²j=[o��t�^C�����lZ�u�j=[oZ@mo�~j=|~�'v4m{te�z�~kbZ@k	£��}�gZ)^lt ��^bk4�~rXj=[o��t�^�[o�²j=[�[o�bZX�oZ
u"j=|}��ab^lr�[o�~t=^l��rXt=ab|~k�vb|~j�rXZ�j�v²j=[y�~Z�^+[�j=[�my�~��¬��
���bZVv4m{tg£�m{j=u¶kbt+ZX��^bt�[Pj�k4�z�~�yZ�[o�lZVt�v�Z@m{j=[{t�mI�}��j�����[ya²j=[o��t�^�Z��+���y[{�

\��lZ@moZ@��^%[y�lZ��~t�^©r{�²j=u���Z@mo�/al�oZ@k�[ot"u�t�^4��[{t=m±[o�bZ	v²j=[y�~Z@^z[�j=moZ��{j6[oa4x
m�j=[oZXk'qg[y�+ab�Pj6m{Z���Z@ngt=^lk«[o�lZ�u�Z�j���abm{Z�u�Z�^+[I|}��uw��[o��t=��[y�lZ���^l��[omyabu�Z�^z[��
���b�~�)�ot=��[]\�j=moZ�v²j�r{¬=j�£gZVkbt+ZX�I^lt�[Pj=v4v�ZXj=mI[{t�rXt�^z[{j=��^�j��{j=�¥Z�[]n��yn+�y[oZ@u
[{t"vbmoZ@�gZ�^z[�vlj=m�j=u�Z@[oZ@mo�±��Z���^l£�Z@^z[{Z�m{ZXk�j=^lk8�}^+[oZ@myu��Ù�4Z@k`[o�lj=[/\Pt�ab|~k
m{ZX��ab|�[��}^�Z��1rXZ@�o�y�}�gZ�m�j�k4�~j=[o��t�^"��Z@�}^l£«kbZ@|}����Z@m{Z@k�[ot«[o�lZ�v²j=[y�~Z�^+[�a4^lkbZ@m
[om{ZXj=[ou�Z@^z[X�

¡ ^«t�v�Z@m�j6[{t�m®��^z�gt�|}�gZ@k	��^	t�^lZ�t��4[o�lZ�j=rXr@��kbZ@^z[o��[{Z@�y[o�¢nlZXks[o�²j=[��y�lZP�²j�k	��ZXr@t�u�Z
�}^l�oZ�^l�y�}[o�}�gZ�[ot`u"j=r{�b��^lZwu"j6|���ab^lr�[o��t�^l�X�©Æ`j=|}��ab^lr@[y�~t�^�u�Z@�o�oj�£gZX��\PZ@moZ�rXt�uwu�t�^4x
v4|�j�r@Z	j=^bkRu�tg�y[�k4�~k�^lt�[¯��^z�gt=|��gZ�v²j=[y�~Z@^z[��{j=�¥Z�[]ng��º1Z�mo�z�~r@Zs[{Z@r{�b^b��r@��j6^l��\Pt�ab|�k7n4�
[y�lZsv4m{t��b|�Z@u��±t�m¯[o�bZ	�ltg��vb��[{j=|®v4�+n+���~r@���y[�\�t�a4|~k`moZ�j=|}�~£�^�[o�lZsu"j�r{�4��^lZsj=^lk©u�j=¬gZ
�}[�t�v�Z@m{j=�b|~Z�j=£ij=��^'�)º+�lZ��{j=��k'q

259

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(f

K¼/G['\�j��C^lt�[2t�ab['t��z[o�lZ)t�mok4��^²j6mon¯�¥t�mC�ot=u�Z�[o�b�}^l£�[{t���[{t�v�[o�bZ�u"j�r{�4��^lZI½�½�½X�
/G[�\Pt�ab|�k©t���[{Z�^©£��}�gZsjw|�t�\-kbtg�oZsm�j=[oZ��}^`\��b��r{�`ngt=a8\�t�a4|~kR[yabmo^R[o�lZ
u"j�r{�4��^lZ¯�²j�r{¬"t=^C�9½�½�½o���lZ@n"\Pt�ab|�k�£�����Z±u�ZX�o�oj�£gZ@��t��C|~te\Akbtg�yZ/m�j=[oZ�q
;�xG[y��|}[�q�h�xG[o�}|�[Xqlj=^lkRt�[o�lZ�m�[y�b��^b£g��,�/�rXj=^�j [�moZ@u�Z@u���Z@m±j=|�|C[y�lZ�m{Z�j=�ot�^l�
��[�\Pt�ab|�kR��[{t�vCqb�4ab[V[o�lZ�m{Z�\�j=�±j�|~t=[�t���[o�lZ�u`�¾M

¡ m�j�k1��j=[y�~t�^ [o�bZ@m�j6vb�~��[/j=[±j=^lt=[o�lZ�m/r@|}��^b��r/m{Z�v�t�my[{Z@k`[o�²j6[�j=^©je��Z@m{j�£gZ	t=�Iª	0�k4tg�oZ x
m{j=[{Z/u�j=|}��ab^lr@[y�~t�^b�Xqbj6[o[omy���ba4[{ZXk�[otwab^bkbZ@mokbtg�oZ@�Xq²t+rXr@a4mom{Z@k`t�^��yt�u�Z�klj�n+�X�
���lZ�t�v�Z�m�j=[ot�m���abmo[y�lZ@m�[{Z@�y[o�¢nlZXks[o�²j=[�k4abmy��^l£¯��^l��[omoabr@[o��t�^s�y�lZ��lj�ks��ZXZ�^«[�j=al£=�+[

[y�²j=[«[y�lZ@moZ \PZ@moZ¿K��ot8u"j6^+nT�{j=�¥Z�[]n¦u�Z@r{�²j=^b���yu��!M©[y�²j=[w�y�lZ�ab^bkbZ@mo�y[{t+t+k��}[�\�j=�
�z�}mo[oalj=|�|}n��}u�v�tg�o�����b|�Z�[otwte��Z@m{k4tg�oZ	j«vlj=[o��Z@^z[��

À tªÁ	tªq�ÂÄÃBr_t�wUÅ_|�~�|1� /G^%Æ`j=m{r{��ced�fg�4q ¡ 2D4�§¤v�Z@my�¥t�mou�ZXk©j��{j=�¥Z�[]n©j6^²j=|�n+���~�±t=^
[y�lZs���lZ@m{j�r�x��gh1�V���b���±j=^lj=|�n+�y����\�j��¯��^�[o�lZ��¥t�myu t��Ij��;j=ab|�[�[ym{Z@Z�j=^lk`j=vbv²j6m{Z@^z[y|�n
Z �1r@|�abkbZXkA[o�lZ��ot���[]\�j=moZ�� ¡ rXrXt=m{k4�}^l£�[ot�[y�lZ�nb^²j=|�m{Z�v�t=mo[�q�[o�lZ�j=^²j=|}n+�y�~�"u�j�kbZ
�yZ@��Z@m�j6|�j=�o�ya4u�vb[y�~t�^b��j6��t�a4[�[o�lZ�rXt=u�vba4[{Z@m¯j6^lk��}[{���yt���[]\�j6m{Z1G

cg�OE�m{tg£�m{j=uwu��}^l£%Z@momot�m{���²j��gZ���Z@Z@^¢moZXk4abrXZXk¢�zn�Z��+[oZ@^l�����gZR[{ZX��[yx
��^l£�t�^Tj �lj=m{k4\�j=moZ�����u�ab|~j=[{t=m�j=^lk%ab^lkbZ�m�nlZ�|~k�rXt�^lk1��[o��t�^l��t�^
[{Z�|~Z@[y�lZ@m{j=vzn%ab^b��[o�X� ¡ ^zn�moZX���~k4a²j6|P�yt���[]\�j=m{Z�Z@momot�m{�sj=moZ�^bt�[s�}^4x
r@|}alkbZXk ��^ [y�lZ�j=^²j=|}n1���~�@�

�1�OE�m{tg£�m{j=u��yt���[]\�j=m{Z�kbt+ZX��^lt�[Vk4ZX£�m{j�kbZ�k4alZ�[{t«\PZ�j=mXqb�;j=[o��£�alZ=q4t�m
m{Z�vbm{t+k4alr�[o�~t=^Rvbmot1r@ZX�y�X�

�4�¬4�t�uwvbab[{Z�m�Z �1ZXr@a4[o�~t=^¢Z@mym{t�mo��j6m{Z�r�j=al�yZXk·�zn¦�;j=a4|�[]n��²j6m{k4\�j=m{Z
rXt�uwv�t�^lZ@^z[o�)j=^lk��zn£K��ot���[!M�¾;m�j6^lkbt�u ¿ Z�mom{t=m{���}^lk4alr@ZXk��zn«j=|}vb�²j
v²j=my[o�~r�|~Z@�Vj=^lk�Z@|~Z@r@[ym{t�u�j�£�^lZ�[o��r±^lt����oZ��

���lZw�;j=ab|}[�[ym{Z@Z�m{Z@�yab|}[o�}^l£���mot�u [o�4�~�sj=^²j=|}n1���~��kbt+ZX�sj=vbv�Z�j=m�[{t���^lr�|�alkbZwrXt=uwx
v4ab[{Z�m®�;j=�}|�abmoZ�q�j=|}[o�lt=al£��sj=vbv²j6m{Z@^z[y|�ngq%��alkb£=��^l£���m{t=u-[o�lZ)�²j����~r:j��y�yabuwvb[o��t�^l��j=��te�gZ�q
�}[¯rXt�^l���~kbZ�m{�¯�²j=m{k1\�j=moZs�;j=�}|�abmoZX�Vt�^b|}ng��¼lt�m�Z��4j=uwvb|�Z�ql��^Rt�^lZÆ�@*£ij6[{Z�|~ZXj�k4��^b£w[ot
[y�lZ©Z��gZ@^z[�t���£gZ�[o[y��^l£�[o�lZ`\�mot�^l£¦Z�^lZ@mo£�ngq�j���te�¢rXt�^z[{j=��^l�=K�4�t�uwvbab[oZ@m��yZ@|~Z@r@[o�
\�mot�^l£¦Z�^lZ@mo£�ngq¾M·j6^lkÇjTvbm{t=�²j=�b�}|���[]n�t��wc�0#Ç 6®6 ����j��y�y�~£=^lZXk¢[ot�[o�b����Z@�gZ�^z[��¶¼lt�m
K!4�t�u�v4ab[{Z�m��yZ@|�ZXr@[o��\�mot�^l£�u�t+kbZ�q¾MTj8vbmot��²j=�b�}|��}[]n�t��±ªÉÈÇc�0)Ç)Ê�����£�����Z@^C�¨���bZ
moZ@v�t�mo[�v4m{te�z�~kbZ@�¯^lt���al��[o�¢nlr�j=[y�~t�^ t=��Z@�}[o�lZ�m�^zabu���Z@m��

260

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(d

Ë ÌÎÍ�ÏsL"M�Ð
2�|�Z@�gZ�^«���lZ�m�j�r x��gh6�2\PZ@moZ:�}^l�y[{j=|�|�ZXk¤GSnb�gZ)��^�[o�bZ�¹V^b��[oZXksº+[�j6[{ZX�®j=^lk��y�Ù�/�}^�4�j=^lj�klj4�
ºz�}�wj�r@r@��kbZ@^z[{�)t+rXr�abmomoZXk���Z@[]\PZXZ�^8cedgfgh�j6^lkRc�dgfip1qg\��lZ�^�[y�lZ¯u�j�r{�b�}^lZ�\�j��Dn4^²j=|�|}n
moZXrXj=|�|�ZXk¤[{t%u"j=¬�ZRZ �+[{Z@^b�y����Z`kbZ@�y��£�^¢r{�²j6^l£gZX�@�Ç���lZX�yZ©r{�²j=^b£gZX����^lr�|�alk4Z`j�k4k4��^l£
�lj=m{k4\�j=moZ��oj=�¥ZX£=a²j=m{k4�±j�£gj=��^l��[��ot=��[]\�j=moZsZ�momot�m{�@�

*VZ@|~j=[{Z@k�vbmot��b|~Z�u���\PZ@m{Z��¥t�ab^lkT�}^T[y�lZ"���lZ�m�j�r x��10R�ot���[]\�j=m{Z=q��bab[s[o�lZ�n�\PZ@moZ
^bt�["m{Z@rXtg£=^b���@ZXk¢ab^z[o�}|�j=��[oZ@m"[y�lZ8���lZ�m�j�r x��gh�j=rXr@��kbZ@^z[o�"��Z@r�j=al�yZ©[o�lZ%���bZ@m�j=r�x��I0
�}^lr@|}alkbZ@���²j=m{k1\�j=moZs�oj=�¥Z@[]n���^z[{Z�mo|~t+r{¬+�X�:���zal�Xql^lt���^I��abmo��ZX��moZX�ya4|�[{Z@k'�

ÑOÒ�Ó ÔÖÕY×:×CÕYØmÙªÚ9×CÕgÛÜÕYÝ9ÞßÚ9×Càlá²â¿×@ã_Ú�á¼Ú�ÝläÎågÕ�×9ÙªÕYæ�çDè²é:×CÕêÓ�ë�ì9í
½/Z�[�j=�}|~��t��s[y�b�~� j=rXr@��kbZ@^z[��^ ÆRj=mo��Z@[o[{j4q58�Z@t�m{£��~j4q¯j=m{Z%��¬gZ@[or{�znA��ZXrXj=al�yZ��}["\�j=�
^bZ@�gZ�m	�}^+��ZX��[o�~£gj=[{Z@k'�����bZ@m{Z�\�j��s^ltRj�k4uw�~�y�y��t�^8[o�²j6[�[y�lZ���^1��abmyn`\�j���r�j=al�yZXkT�zn
[y�lZ����bZ@m�j=r�x���hwab^z[o�}|�|�t�^l£�j=��[{Z�m±[y�lZ	t+rXr�abmomoZ@^lr@Z�q'kbZ@�yvb�}[{Zsr@|�j6��u����+n�[o�bZsv²j=[y�~Z�^+[
[y�²j=[��y�bZ��²j�k���Z@Z@^���^1��abmoZXk�k4abmo�}^l£ [om{ZXj=[ou�Z@^z[Xq�[y�lZ�t=�+�z��t�al�sj=^lkT�yZ@��Z@m{Z�m�j�k4�~j6x
[y�~t�^��4abmo^l��[y�lZ�v²j=[o��Z@^z[V�yavJ�Z�m{ZXk�q²j=^lk [o�lZ���al�yvb��r@��t�^l�Vt���[o�lZ/m{j�k4��j6[o�~t=^"vb�zn+�y�~r��~��[
�}^z�gt�|}�gZXk��
¡ ��[{Z@m�a4^lkbZ@mo£gt��}^l£ j"|�abuwv�Z@r@[ot�u�n [{t�m{Z�u�te��Z�j�u�j=|}�~£�^²j6^+[¯�bmoZ�j���[�[oabu�t�m�q'j

�1c@xGn�Z�j=m�x]t�|�k \Pt�u"j6^¢\�j=�"m{ZXr@Z@�}�+�}^l£T�¥t�|}|~te\�xGa4v·m�j=k4��j=[y�~t�^ [omoZ�j=[yu�Z�^+[�[{t�^lZXj=mo�zn
|}nzu�vb�¦^bt1kbZ@��t�^¢j%���lZ�m�j�r x��gh8j=[«[y�lZzî�Z@^b^bZX�y[ot�^lZ �;j�r@�}|��}[]n��}^ Æ`j=mo��Z@[y[�j4�¦���bZ
���bZ@m�j=r�x���h©�lj�k���ZXZ�^·t=v�Z�m�j=[y��^l£%j=[�î�Z@^4^lZX��[{t�^lZ �¥t�mwj=��t�ab[����}�Tu�t�^z[y�l��,�t�[y�lZ@m
���bZ@m�j=r�x���h=���²j�k ��Z@Z@^Rt�v�Z�m�j=[y��^l£4qbj=vbvlj=m{Z�^+[y|�n"\��}[o�lt=ab[���^lr��~kbZ�^z[�ql�y�}^lrXZ�ced�fg�4�

�±^�_=ab^bZ��4qçcedgfih1qi[y�lZ±v²j=[y�~Z�^+[:\�j����oZ�[�abv��¥t�m�jwc�0�ÆRZ;Z@|�ZXr�[om{t=^"[omoZ�j=[yu�Z�^+[
[ot�[y�lZwr@|�j��z�~r�|~Zwj=moZ�j4�w´¨�lZ@^�[o�lZ�u"j=r{�b��^lZ«[yabmo^lZ@k�t�^Cq��y�bZw�¥Z�|�[sjFK�[om{Z�u�Z�^lkbt�ab�
�¥t=m{rXZ�t����lZXj=[�½�½�½y[o�4�~�smoZXk1x �lt�[�oZ@^b�{j=[y�~t�^C�¾M�´¨�lZ�^�[o�lZ�[{ZXr{�4^b�~r���j=^¦rXj=u�Z���^'q��y�bZ
�oj=�~k�qÆKðï:t=a��4abmo^lZ@k�u�Z��¾M ���lZ�[oZXr{�b^4�~r@�~j=^¤m{Z�vb|���ZXk¦[o�²j6[«[o�²j=[«\�j�����uwv�t��o�y�}�b|~Z=�
¡ |�[y�lt�al£���[y�lZ@moZV\PZ@moZ¯^bt�u�j=my¬1�It=^�[y�lZ�v²j=[y�~Z@^z[Pj=[I[y�lZ�[o��u�Z�q=[o�lZ�[omoZ�j=[yu�Z�^z[:j=m{ZXj
�¥Z�|�[�K�\�j=myu�[{t«[o�bZ�[ot�alr{�C�¾M

/G[¯�~�Vab^lr�|~Z�j6m±Z �bj=r@[o|}n \��lZ@^ ¡ 2D4�§¦|�Z�j=my^lZXk`j=��t�ab[¯[o�b���V�}^lr@��kbZ@^z[X�V����u º+[y��|�| q
[y�lZ²î�Z�^b^lZ@�y[{t=^lZ¯v4�+n+���~r@���y[Xq1�oj=�~k�[o�²j6[:�bZ¯r@t�^z[�j�r�[{Z@k ¡ 2D4�§`[{tsj���¬«���ç[o�lZ¯���lZ�m�j�r x
��h�rXt=ab|~k¢t=v�Z�m�j=[oZ��}^¢Z@|�ZXr�[om{t=^¢u�t+kbZ \���[y�lt�ab[��orXj=^b^b�}^l£T[{tT�yvbmoZ�j�k·[y�lZR��Z�j6u`�
���4m{ZXZ�klj�n+��|�j=[oZ@m�[y�lZ�Z@^l£=��^lZ@Z@m{�Vj6[¡ 2D4�§�rXj=|�|�ZXk"[o�bZ�v4�+n+���~r@���y[��²j=r{¬"[{t�Z��+vb|~j=��^
[y�²j=[��}u�vbmot�v�Z@m��yr�j=^b^4��^l£�\�j=�V^bt�[Vv�tg�y�y�}�b|~Z=�

/G^`j=^ ¡ al£=al�y[�ced1q'cedgfg�	|�Z@[y[{Z@m���mot�u ¡ 2D4�§�[{t«[o�bZ�¼�½ ¡ q4[o�bZ ¡ 2D4�§ ³ a²j=|}��[]nj=�o�ya4m�j=^lr@Z�u�j=^²j�£gZ�m��{j=��k'q�K¼/G^«Æ`j=mor{�«t��Cced�fg� ¡ 2+4�§"moZXrXZ�����ZXk�j¯|~j�\V�yab�}[���mot�u[o�bZ
vlj=[o��Z@^z[���^z�gt=|��gZ@k¤½�½�½{���b�~����^br@�~k4Z@^z[�\�j=��^lZ��gZ�msmoZ@v�t�mo[oZXk%[{t ¡ 2D4�§ vbmy�~t�m�[ot [y�b�~�

261

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c�0

kbj=[{Z=q�j=|}[o�lt=al£��R�ot�u�Z�m{j=[o�bZ@m/t+kbk ³ abZX�y[y�~t�^b���²j�kR��Z@Z@^©v�tg�oZ@k`�znR����u º+[y��|�| q4[o�bZ�btg�yvb�}[�j=|4vb�zn1���~r��~�y[X�ñM����lZVvb�zn+�y��r@�~��[Pj=[:j/�ltg�yv4��[�j6|b��^��In+|�Z@mXq1�2Z��4j��@q+\��bZ@m{Z¯j�|�j=[oZ@m
j=rXr@��kbZ@^z[st1r@r@abmym{Z@k'q®moZ@v�t�mo[oZXk'q5K ¡ r@rXt�mok4��^b£�[ot©����u º+[o�}|�|Gq�[o�lZ�v²j=[y�~Z@^z[:nb|~Z@k���ab��[
�}^��/r@[ot���Z�m�ced�fihw|����y[y��^l£�[o�lZs�ltg�yv4��[�j6|Gq²u"j=^zab�;j=r@[oa4m{Z@m�j=^lk8�oZ�mo�z�~r@Z�t�mo£ij=^b����j=[y�~t�^
moZX��v�t�^b�y���4|~Z��¥t�mI[y�lZ¯u�j�r{�b�}^lZ�� ¡ 2D4�§R\�j��)^lt�[o�¢nlZXk«�}^b�¥t�mou�j=|}|�n�j=��t�ab[I[y�lZ���ab��[I�zn
[y�lZI�ltg��vb��[{j=|Gq�j=^bk ¡ 2+4�§wm{ZXr@Z@�}�gZXkst�°wr@�~j=|g^lt�[y��nlrXj=[o��t�^�t��4j�|�j�\���ab��[C�}^.A¯te�gZ@u	��Z�m
c�dgfih1�¾M
Y�Z@r�j=ab�oZ�t��I[o�bZ	|�j�\V�ya4��[«¾>nb|~Z@k�A�te�gZ�u���Z@m�ce�4q®cedgfih ¿ q��yt�u�Z ¡ 2D4�§ j�k4uw��^b����x

[ym�j=[ot�m{��u	al�y[��²j���Z�¬z^lte\�^©j=��t=ab[�[o�bZ	ÆRj=mo��Z@[o[{j«j�rXr��~kbZ�^z[ß�Aj6|�[o�bt�al£���^lt«�}^+��ZX��[o�}x
£gj=[o��t�^ t1r@r@abmym{Z@k`j=[V[y�b�~��[y��u�Z��I¼�½ ¡ u�Z@u�tg��v�t=��^z[�[{t«[o�bZ�|~j�r{¬�t���j�u�Z@r{�²j=^b���yu
�}^ ¡ 2D4�§�[{t«�¥t�|}|~te\Çabv�m{Z@v�t�my[{�Vt��®�yal��v�Z@r@[{Z@k8j�r@r@�~k4Z@^z[{��� ª� �
���lZ�v²j=[o��Z@^z[:\�Z�^+[��lt�u�Z�qz�bab[����lt�my[o|�n�j=��[oZ@my\�j=mok"�y�bZ±kbZ��gZ@|�t�v�ZXk j�moZXkbk4Z@^b�}^l£

j6^lk`��\�Z�|�|��}^l£���^`[y�lZ	r@Z@^z[{Z�m/t���[o�lZ�[om{ZXj=[ou�Z@^z[±j=m{ZXj4�¬h�Z�m�v²j6��^`�lj�kR�}^lr@moZ�j��yZXk`[ot
[y�lZ�v�t��}^z[s[y�²j=[��lZ@m	�y�lt=ab|~kbZ�m£K���m{t`�@Z�q¾M%j=^lkT���lZ�Z �+v�Z�mo�~Z�^lrXZ@k��yvlj��yu��X�Rº+�lZw\�j=�
j=k4u��}[o[oZXk"[{t�j��lt��yvb�}[�j=|���^ ¡ [o|~j=^z[�j4q1�bab[��lZ�mVt�^lrXt=|~tg£����y[o��rXt�^z[y��^zalZXk [{t«�yZ@^lk �lZ�m
[ot�î�Z�^b^lZ@�y[{t=^lZ��¥t=m����bZ@m�j=r�x���h©[ym{ZXj=[ou�Z@^z[{�@�ò4P|���^4�~r�j6|�Z��+vb|~j=^²j=[y�~t�^¤\�j����ot�ab£��z[
�¥t=m¯[y�lZsmoZXkbk4Z@^b�}^l£�t��®[o�lZ��y¬z�}^Cqç\��4�~r{�8j6[²nbmo�y[¯�lZ@m�t�^lr@t�|~t�£��~��[¯j=[o[ymo���4ab[{Z@kR[{t��lZ�m
k1�~�oZXj��oZ�t�m�[otw^bt�mou�j=|�[ym{ZXj=[ou�Z@^z[Vm{ZXj�r@[y�~t�^C�
¡ ��t�a4[:[]\Pts\PZXZ�¬+�P|�j6[{Z@mXqg[o�lZ¬î�Z@^4^lZX��[{t�^lZ¯vb�zn+�y�~r��~��[:^bt�[o��rXZXk�[o�lj=[)[o�lZ�v²j=[y�~Z�^+[

�lj�kÇjTu"j6[{r{�b�}^l£Tm{Z@kbkbZ�^b��^l£¦t=^¨�lZ@m��²j=r{¬¨j���[y�lt�al£=�AjT�babmo^¨�lj�k¨£gt�^lZ©my�~£��z[
[y�bm{t=al£����lZ@m���t1k4n�q�j6^lk�[y�lZ �y\Pt�|�|�Z@^ j=moZ�j©�²j�k¤��Z@£�ab^�[{t��y|�t�al£���t1J¢|~j�ngZ@mo��t��
��¬z��^C�:h�Z�m��y�lt=ab|~kbZ�m/\�j��/��uwu�t=�b��|�Z�q²j=^lk8���lZ�\�j���j=vbv²j6m{Z@^z[y|�n���^%£�moZ�j=[�v²j=��^'�:/G[
\�j��«^lte\�t=�+�z��t�al��[o�lj=[��y�lZ��²j=k j`m{j�k4�~j=[o��t�^��babmy^Cq)�bab[«[o�bZ �btg�yvb�}[�j=|�j=^lk¦�lZ�m
k4t1r�[{t�mo�¯r@t�ab|�k v4m{te�z�~kbZ�^lt��{j6[o�~���;j�r@[ot�mon�Z��+vb|~j=^²j=[y�~t�^C�
���lZ3î�Z@^b^lZ@�y[ot�^lZ�vb�zn+�y��r@���y[�|�j=[oZ@m�ZX��[o��u�j=[oZXk%[o�²j=[�[o�bZ�v²j=[y�~Z�^+[�moZXrXZ�����ZXk�t�^bZ

t=mw[]\PtTk4tg�oZ@��t���m�j�k4�~j=[o��t�^¦��^�[o�bZ�c�h+qb0`0108[ot��I04qb010`0%m{j�k ¾;m�j=k4��j=[y�~t�^�j6�l�ot�my��Z@k
k4tg�oZ ¿ m�j6^l£gZ��zh¯Z�k1�~k�^bt�[s��Z@|}�~Z��gZ��lZ@m���^1��a4mon%rXt=ab|~k��²j��gZ���ZXZ�^¦r�j6al�oZ@kT�zn�|�ZX�y�
[y�²j=^Rf4qñ0`0`0	m{j�kb�X�:�2t«ab^lkbZ�m{�y[{j=^lk [o�lZ�u�j�£�^b�}[oalk4Z/t��2[o�b���Xqbr@t�^l���~kbZ�m¯[y�²j=[�[]nzvb��r�j=|
����^l£=|~Z«[o�lZ�m�j=v�Z@a4[o�~r�kbt��oZX�	j=m{Z���^�[o�bZ"�1010 m{j�k�m{j=^l£gZ=��½/tg�oZ@�st=�/cgqñ0`0`0�m�j�k4�srXj=^
��ZR�;j6[�j=|V���/kbZ@|}���gZ�m{Z@k¢[{t�[y�lZ`\��lt=|~Z ��t+k4n},±��^ �;j�r@[Xq¯h10`0%m�j�kb�w�~�w[o�lZ`j�rXr@Z@vb[oZXk
nb£�abm{Z"�¥t=m«\��lt�|~Z xG��t1k1n�m{j�k4��j6[o�~t=^�[o�²j6[«\���|�|Pr�j6al�oZ kbZXj=[o����^ h10©v�Z@morXZ@^z[wt��V[o�bZ
rXj��oZ@�X�)���lZ¯rXt=^l�oZ ³ abZ@^lr@ZX��t��'j=^�te��Z@m{k4tg�oZ¯[{t�j���u"j6|�|~Z�m�v²j=my[:t���[y�lZ���t+k4n�kbZ�v�Z�^lkt=^¦[o�lZ"[y�~�o��alZ1j ��m�j=k4�~t=xG�oZ�^l�y�}[o���z�}[]ng�8���lZ�k1��m{Z@r@[ot�m«t���m{j�k4��j6[o�~t=^�t�^lr@t�|~t�£�n�j6[[o�bZ
î�Z�^b^lZX��[{t�^bZP�;j�r���|��}[]n/Z �1v4|�j=�}^lZXk�[o�lZ���m�rXt=^b��al�y��t�^	j=��t=ab[2[o�lZPj�rXr��~kbZ�^z[�j���k4alZ)[{tV[o�bZ
�;j=r@[:[o�²j=[:[o�bZ@n��²j�k�^bZ@�gZ�m��oZ@Z@^�j=^�te�gZ@my[omoZ�j=[yu�Z�^+[�t��'[y�²j=[:u"j�£=^b��[yalkbZ���Z��¥t�m{Z�� p� �

2��gZ�^z[oa²j=|}|�n�q²[y�lZ�v²j=[y�~Z@^z[�jÔ�V�bm{ZXj��y[V�²j=k�[otw��Z�m{Z@u�te�gZ@kR��ZXr�j6al�oZst��®[y�lZ�m�j�k4�~j6x
[y�~t�^`�babmo^b�X�:h�Z�m��y�lt=ab|~kbZ�m�j=^lk%j6mouÃ\�Z�m{Z�v²j=m{j=|�n)�@ZXk'q�j=^lk8�y�bZ�\�j��/�}^8rXt=^l�y[{j=^z[

262

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c�c

vlj=��^C�«º+�lZ«�²j�k%�yavJ�Z�m{ZXkTj��oZ@my�~t�ab��m{j�k4�~j=[o��t�^©�babmy^CqC�bab[�[o�bZ�u"j=^zab�;j=r@[oa4m{Z@msj=^bk
t=v�Z�m�j=[ot�m{�It��²[y�lZ�u"j�r{�4��^lZ�moZ@��al�yZXkw[{t/��Z@|���Z@��Z�[o�²j=[I�}[IrXt=ab|~k��²j���Z¯��ZXZ�^�rXj=al�oZ@kw�zn
[y�lZ����lZ�m�j�r x��gh1�)���bZ�[ym{ZXj=[ou�Z@^z[�vbmoZX�yr@mo�}vb[o��t�^�vbmy��^z[{t�a4[��¥Z�j=[yabm{Z�t=��[y�lZ�rXt=u�vba4[{Z@m
\�j���k1�~�{j6�b|~Z@k¦j=[[y�lZ�[y��u�Z�t���[y�lZ�j�r@r@��kbZ@^z[�qI�yt`[o�bZ@m{Z�\�j���^bt`�²j=mokbrXt�vzn�t���[o�bZ
[ym{ZXj=[ou�Z@^z[Vklj=[{j4�:���lZ�|�j�\V�ya4��[�\�j��VZ@�gZ�^z[oa²j=|}|�n �yZ@[o[y|~Z@k�t=ab[¯t���r@t�abmy[��
¼bm{t=u \��²j6[�\�Z�r�j6^ kbZ@[oZ@mouw��^bZ�q4[y�lZ�j�rXr��~kbZ�^z[�\�j���^bt�[�m{Z�v�t=mo[{Z@k�[{t�[o�bZ�¼�½ ¡

a4^+[y��|5¦¼ó"R®P����a4mo[o�bZ@m	j�rXr��~kbZ�^+[o�	��^ cedgf��4�����lZ�moZ@v�t�mo[y��^l£ m{Z ³ a4��m{Z�u�Z�^z[{�	�¥t�m�u�ZXk1x��r�j=|�kbZ@�z��rXZ«��^lr��~kbZ�^z[{��j=[�[y�²j=[/[y��u�Z«j=vbv4|��~Z@k©t�^b|}n`[ot�Z ³ ab��v4u�Z�^+[�u�j=^zab�;j�r�[oabmoZ@mo�j6^lk`��uwv�t�mo[oZ@m{�@qç^bt�[/al�yZ@m{�@�����lZ�m{Z@£�ab|~j=[o��t�^l�Vm{Z ³ ab�}m{Z@k©[o�²j=[�u"j6^+a4�;j�r@[yabm{Z�m{��j=^bk�}u�v�t�my[{Z@mo��m{Z@v�t�my[kbZXj=[o�b�Xq��yZ@mo��t�al����^1��a4mo�~Z@�Xq®t�m�u"j=|}��ab^lr�[o�~t=^l��[o�²j=[srXt=ab|~k�m{ZX��ab|�[
�}^·[y�ltg�oZ`rXt�^l�yZ ³ alZ�^lrXZ@�Xq±�ba4["�lZ�j6|�[o�1x]r�j6m{Z vbm{t��¥Z@�o���~t�^²j6|~�"j6^lk·��^b�y[o�}[oab[y�~t�^b��\PZ@moZ^bt�[�m{Z ³ a4��m{Z@kA[ot¦m{Z@v�t�my[���^lr��~kbZ�^+[o�"[{t¦u�j=^zab�;j�r@[yabm{Z�m{�@� ���lZ%rXt�uwvb[omot�|�|�Z@m�£gZ@^4xZ�m�j=|®t��I[y�lZ«¹s�Íº��¤8�te�gZ�mo^bu�Z@^z[¡ rXr@t�ab^z[o�}^l£��±°�r@Z�¾'8 ¡ � ¿ q²��^©[oZX��[o��u�t�^zn ��Z��¥t�m{Z
4�t=^l£�m{Z@�o�/t=^�A�te�gZ�u���Z@m��4q�cedgf�d4q�Z �+vbm{Z@�o�oZ@k�£=m{Z�j6[±r@t�^lrXZ�mo^�j=��t�ab[�[o�lZ��z��j=�b�}|��}[]n
t=�ç[y�lZ���^br@�~k4Z@^z[yx m{Z@v�t�my[o��^b£±m{Z@£�ab|�j6[o�~t=^l�®�}^«vbm{Z��gZ@^z[y��^l£�t�mI��v�t�[y[o�}^l£/u�Z@k4�~rXj=|bk4Z@�z�~r@Z
v4m{t��b|�Z@u��X� ¡ rXr@t�m{k1��^l£`[ot8jTced�d`0£8 ¡ �E��[oalk1ngq�[o�bZ�¼�½ ¡ ¬z^lZ@\ t���|�ZX�o�s[o�²j=^¢c
v�Z@morXZ�^+[�t��®kbZ�j6[o�l�@ql�oZ@my�~t�ab�V�}^1��abmy�~ZX�@qbt�mVZ ³ a4��vbu�Z@^z[Vu"j6|���ab^lr�[o��t�^l��[y�²j=[Vt+rXr@a4mom{Z@k�}^��ltg��vb��[{j=|~�V� �� �����lZ�|�j�\¦\�j��)j=u�Z@^lkbZ@k«��^�ced�d`0�[{t�m{Z ³ ab�}m{Z��bZ�j=|}[o�4xGr�j=moZ��;j�r@�}|��}[o�~Z@�[ot«m{Z@v�t�my[¯�}^lr@��kbZ@^z[o��[{t«[o�lZ�u�j=^zab�;j�r�[oabmoZ@m�j=^lk [{t«[o�bZs¼�½ ¡ �
¡ [:[o�b���:v�t��}^+[Xqi[o�lZ¯t�[o�bZ@m����lZ@m{j�r�x��gh�al�yZ@mo�P\PZ@m{Z±j=|~�yt�a4^²j�\�j=moZ�[y�²j=[�j=^zn+[y�b��^b£

a4^+[ote\�j=mok`�²j�k�t+rXr@a4mom{Z@k©j=^bk`k4��k�^lt=[¯|�Z�j=my^©j6��t�a4[±j6^+n�v4m{t��b|�Z@u���\���[y�R[y�lZ�u�j6x
r{�4��^lZ/ab^z[y��|2j=��[oZ@m���ab�l�yZ ³ alZ@^z[/j�rXr��~kbZ�^+[o�X�+2��gZ@^�[o�bZ@^Cqbu�tg�y[�t��®[y�lZ@�}m���^4�¥t�mou�j=[o��t�^rXj=u�Z/[o�bmot�al£���v�Z�m{�yt�^²j=|2r@t�u�u	ab^b�~rXj=[o��t�^ j=u�t�^l£�[y�lZ@u��oZ�|���ZX�X�

ÑOÒßô âê×9Ùªà+æSÞßÚõågàl×@ã�Õ�æ°ö@Ú9é@×:÷Cà�Ù�ÞßÚ9×�ç.è²é:áðä Ó�ë�ì�í
���bZ«�oZXr@t�^lk%��^©[y�b�~�±�oZ@my�~Z@��t��Pj�rXr��~kbZ�^+[o��t1r@r@abmym{Z@k�j6��t�a4[��oZ��gZ@^�\�Z@Z@¬+��j=��[{Z�m/[o�bZ
î�Z�^b^lZX��[{t�^bZ	v²j=[y�~Z@^z[¯\�j=�/te�gZ@mokbtg�yZXk'� ¡ [±[o�lj=[�[y��u�Z�ql[o�bZ����lZ�m�j�r x��ghwj=[�[y�lZ��±^4x
[{j=mo��t�4�j=^lr@Z@m�¼lt�ab^lkbj=[o��t�^���^øh�j=uw��|�[ot�^Cq��/^z[{j=mo��t¤¾'4�j=^²j=klj ¿ qI�²j=k���Z@Z@^���^¦al�yZ
�¥t=m/u�t=m{Zs[y�²j=^��y�Ù�`u�t�^z[o�b�X�.�/^�_=a4|�n©���4q�ced�fih1qCj��¥t�my[]nixGngZXj=myxGt�|~kRv²j=[o��Z@^z[�rXj=u�Z
[ot�[o�lZ�r�|���^4�~r��¥t=m��lZ@m�[]\PZ@^z[]nixG�¥t=abmo[y�8���lZ�m�j�r x��gh	[omoZ�j=[yu�Z�^z[��¥t�mVr�j6m{r@�}^lt�u�j	t��2[o�bZ
r@Z@my�+�Ù���)���lZ/t�v�Z@m{j=[{t�m�j�r@[y���=j=[oZXk�[y�lZ±u�j�r{�b�}^lZ�qz�bab[P[o�lZ����bZ@m�j=r/�y�zab[�k4t�\�^�j6��[{Z@m
n4�gZ��oZ@rXt�^lk4��\��}[o��j=^¥ù�¸¤¹>³�¸¦Z�mom{t=m�u�Z@�o�{j=£gZ��	���lZ����lZ@m{j�r�x��ghmj ��rXt�^l�yt�|~Z	k4�~��vb|�j�n
moZ�j�kV¶_ºûú�º�ü�ý�j=^lk ��^lk1�~r�j6[{ZXk j�¸�þ�ý�±ª¸�¯5ý}¶�¸øÿ1±�µ_üfý'�
º+�}^lrXZs[o�lZ	u�j�r{�b�}^lZ�k4�~k`^bt�[/��al�yv�Z@^lk�j=^bk©[o�lZ�r@t�^z[omot�|�k1�~�yv4|�j�n ��^lk4��r�j=[oZXk`^bt

k4tg�oZ"\�j���kbZ@|}����Z@m{Z@k¦[{t©[o�bZ vlj=[o��Z@^z[�q�[y�lZ t�v�Z�m�j=[ot�m�\PZ@^z[�j=�lZXj�k¦\���[o��j©�yZXr@t�^lk
j6[o[{Z�u�v4[«j=[s[om{ZXj=[ou�Z@^z[s�+n�vbmoZX�o����^l£©[y�lZ7«' ¬gZ�n¨¾;[y�lZ�QS��W��%P%P!N�r@t�u�u�j=^lk ¿ q�Z �zx

263

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ce�

v�ZXr�[o�}^l£	[o�bZ±u"j=r{�b��^lZ¯[{t«kbZ�|��}�gZ@mP[o�lZ�vbm{t�v�Z@m�kbtg�oZ�[o�b���P[o�}u�Z=�I���b����\�j=���y[{j=^lklj=mok
t=v�Z�m�j=[y��^l£8vbmot1r@ZXk4abmoZ�q�j6^lk·���bZ@m�j=r�x���h�t�v�Z@m{j=[{t�mo�«�²j�k¤��Z@rXt�u�Z�j�rXr�al�y[ot�u�Z@k [ot
��moZ ³ alZ�^+[�u�j=|���a4^lr@[y�~t�^l��[o�lj=[��²j�k�^bt©ab^z[{te\�j6m{k¤rXt�^b�oZ ³ alZ�^lrXZ@���¥t�ms[o�lZ"vlj=[o��Z@^z[��¡ £ij=�}^Cql[o�lZ�u"j�r{�4��^lZs�y�zab[/k4t�\�^8�}^`[y�lZ	�oj=u�Z�u"j6^b^lZ@mX�¯���lZ�t�v�Z@m{j=[{t�m¯m{Z�v�ZXj=[{Z@k
[y�b�~��vbmot1r@ZX�y�s�¥t�abm�[y��u�ZX��j=��[oZ@m�[o�lZwt�mo��£���^lj=|Ij=[y[{Z�u�vb[ð�¨[y�lZ�k4�~��vb|�j�n8���lte\���^l£V¶_º
ú�ºYüfýÇkbZ@|}���gZ�m{Z@kÇ[ot¦[o�lZ©v²j6[o�~Z�^z[Z�j�r{�A[o�}u�Z=� ¡ ��[{Z@m�[y�lZ£nb��[o�Çv²j6al�oZ=q±[o�lZ©u�j6x
r{�4��^lZ�\�Z�^+[��}^z[{t�[ym{ZXj=[ou�Z@^z["��al�yv�Z@^bk'q±j6^lk¨j��lt��yvb�}[�j=|¯�oZ�mo�z�~r@Z`[{Z@r{�b^b��r@��j6^¢\�j=�
rXj=|�|�ZXk'�����lZ±[oZXr{�b^b��r@�~j=^"�¥t�ab^bk�^lt�[y�b��^b£s\�m{t=^l£	\���[y��[y�lZ±u�j�r{�b��^bZ�� ¡ rXrXt=m{k4�}^l£s[ot
j����lZ�m�j�r x��gh«t�v�Z@m{j=[{t�mXq4[o�4�~���or@Z@^²j6mo�~t�j=|��ot�\�j��¯^bt�[�ab^zal�yalj=|G�
¡ ��[{Z@m±[o�lZ�[ym{Z�j6[ou�Z@^z[�q�[y�lZ	v²j6[o�~Z�^z[�rXt�uwvb|~j=��^lZ@k©t��:j��ba4mo^b�}^l£"�oZ�^l�{j6[o�~t=^CqCkbZ�x

�yr@my����ZXk©j=�±j=^¿KyZ�|~ZXr�[omy�~r�[o�}^l£�|��}^l£«�y�bt1r{¬)M�[otw[y�lZ�[ym{ZXj=[ou�Z@^z[±j=m{ZXjw��^��lZ�m��b�}vC��ºz�}�
t=[o�lZ�m±v²j=[y�~Z�^+[o�¯\PZ@moZ	[omoZ�j=[oZXk`|~j=[{Z�m�[y�²j=[�klj�nR\��}[o�lt=ab[��}^lr@��kbZ@^z[X�±ºz�lZ	rXj=u�Z��²j�r{¬
�¥t=m/��abmo[y�lZ@m�[ym{ZXj=[ou�Z@^z[�t�^T_=ab|}n8��d j=^bk8rXt�uwvb|�j6��^lZ@k8t��)�babmo^4��^l£bq��b��v8v²j6��^Cq2j=^bk
Z �1rXZX�y�y�}�gZ���\�Z�|�|}��^l£"�}^�[y�lZ«m{Z@£��~t�^�t��:[omoZ�j=[yu�Z�^z[������lZ�v²j=[y�~Z@^z[�\�j����ltg��vb��[{j=|����XZXk
�¥t=m�[o�lZ�rXt=^lk4��[y�~t�^ t=^8_=ab|}n��`01qlj=^lk [o�lZ�u�j�r{�b�}^lZ/\�j=�V[{j=¬gZ�^©t�a4[Vt����yZ@mo�z��rXZ��
¡ 2+4�§¤\�j=�/��^b�¥t�myu�Z@k©t��)[o�bZ«j=vbv²j6m{Z@^z[�m{j�k4��j6[o�~t=^`��^I��abmonRj=^lk%�yZ@^z[�j"�oZ�mo�z�~r@Z

Z�^l£��}^lZXZ�m�[ot���^z�gZ@�y[o��£ij=[oZ��w���lZ�¹s�Íº��2¼�½ ¡ q�[y�lZ«[o�lZ�^�4�j=^²j=k4��j=^k*¯j�k4�~j=[o��t�^�E�m{t=x
[oZXr�[o�~t=^8YPabmoZ�j=a�¾�*¬E)Y ¿ q��/j=^lkRal�oZ�m{��\PZ@moZ	��^4�¥t�mou�ZXk [o�²j6[�[y�lZ@moZs\�j��/j�vbm{t��4|~Z@uRq
j6|�[o�bt�al£���[o�bZ¯al�yZ@mo��r@|~j=��u [o�²j=[)[y�lZ@n�\PZ@m{Z¯^lZ@��Z@mP��^b�¥t�myu�Z@k«[o�²j=[Pj�v²j=[o��Z@^z[)��^1��a4mon
�lj�k©t+rXr@a4mom{Z@k'�¯¹��yZ@m{��\�Z�m{Z	[ot�|~k�[o�²j=[¯[o�bZ@n��y�lt=ab|~k`�z���ya²j=|}|�n�r@t�^ªnbmyu [o�lZ�vbm{t�v�Z@m
[yabmo^z[{j=�b|~Z�j=|���£�^bu�Z@^z[�ab^z[y��|4��a4mo[o�bZ@mI^lt�[y�~r@Z�¾;\��b��r{�wt1r@r@abmym{ZXk«[y�bm{Z@Z�u�t�^z[y�l��|�j=[oZ@m ¿ �
���lZsv²j=[o��Z@^z[/k1�~ZXk`t�^�A�te��Z@u���Z@m��1q�cedgfgh1q�t=�:j=^8Z��+[ym{Z@u�Z@|}n �+�}moab|�Z@^z[/rXj=^lr@Z@m��

¡ ^Rj=ab[{t=vl�yn"moZ@��Z�j=|�ZXk�[o�lZ�rXj=al�yZ�t=��kbZXj=[o�Rj���[y�lZ�r�j6^lrXZ�m�qb�bab[��}[�\�j���^lt�[{Z@k�[o�²j=[
�lj�k��y�bZ�^lt�[k4�~Z@k'qIjR[ot�[�j=|:�b�}vTm{Z�vb|�j=rXZ@u�Z@^z[�\Pt�ab|�kT�²j��gZ���Z@Z@^¦^lZ@rXZX�y�{j=myn¤j��	j
moZX��ab|�[t���[o�lZwm�j�k1��j=[y�~t�^�te�gZ@moZ��+v�tg�yabmoZ�� ¡ ^ ¡ 2D4�§¢[{ZXr{�4^b�~r���j=^�|~j=[{Z�m	Z@�y[y��u�j=[{Z@k
[y�lZ�v²j=[y�~Z@^z[��²j=k�moZXrXZ�����ZXkR��Z@[]\PZXZ�^¦ce�4qñ0`0`0«j6^lk�cep1qb010`0	m�j�k4�X�

� ���S��� 	 t�r¤p_�'t��1sfp_qfx#q�
 |� x)|���{}r�|�x
¡ 2D4�§�r@t�ab|~k�^lt�[®m{Z@v4m{t+k4alrXZP[o�lZ:u"j=|}��ab^lr�[o�~t=^s[y�²j=[��lj�k�t+rXr@a4mom{Z@k'q��ba4[I�yal��v�Z@r@[oZXk
jw[om�j6^l�y��Z@^z[±�;j=�}|�abmoZ��}^`[y�lZ	uw�~r@motg�y\��}[{r{�©ab�oZXk©[ot"kbZ�[{Z@myu��}^lZs[y�lZ	[yabmo^z[�j6�b|~Z�v�tg���}x
[y�~t�^'�%½±abmo�}^l£R[y�lZ"��^z�gZ@�y[y�~£ij=[y�~t�^�t���[o�lZ j=rXr@��kbZ@^z[Xq ¡ 2D4�§A�²j6m{k4\��}m{ZXk�[y�lZ�Z@mym{t�m
r@t�^lk4�}[o��t�^l�I[o�lZ�n�j��o��abu�Z@k�\PZ@m{Z�^lZXr@ZX�o�oj=monw�¥t�m:[o�lZVu�j=|���ab^br@[o��t�^�j=^lk'q1j���j�m{Z@�yab|}[�q
�¥t=ab^lk��ot�u�ZI[oabmy^+[{j=�b|�Z)v�tg����[o��t�^b�}^l£�kbZ@�y�~£=^s\PZ�j=¬z^lZ@�o�yZX�)j=^lk�v�t�[{Z�^+[y��j=|�u�Z@r{�²j=^b��r�j=|
v4m{t��b|�Z@u��X�

��� Ñ ô Ï6Ø;ËÍ÷iø�á�øoù�����á{Õ?ÊeÐ���Î@ÒeË»Î Õ;ËÍÚ@Ñ���Ø?Ú�Õ?ÐyÝ�Õ;ËÍÚ@Ñ���d�Ø?ÐyÎ<d:Î�Ñ6Ò:Õ ÊeÐ��¤d6Ø;ÐoÎd)Ú�×I^�ÐoÒeË»Ý�Î ÷���Ð�à�Ë»Ý�ÐoÌ
\�ÐoØ;ÐIÛ�ÐyØ?ý�ÐoÒVÕ;Ú�× ÚXØ?Û¤Õ?ÊeÐ���d�Ø?ÐyÎ<d¯Ú�×���Î@ÒeËÍÎ�Õ;ËÍÚ@Ñ±Î�Ñ�Ò5^�ÐoÒeË»Ý�Î ÷���Ð�à�Ë»Ý�ÐoÌ�� ���_^!�#"Gû

264

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c��

���lZwrXt=u�vba4[{Z@m��yZ@^l�yZX��j6^lk%rXt�^z[omot�|~��[yabmo^z[�j6�b|~Z�v�tg�y�}[o��t�^8�zn8m{Z�j=k4��^l£�j �6x �b��[
���~£�^lj=|Vj=��t�ab[�[o�bZ���[�j=[yal�wt��±[y�bm{Z@Z�uw�~r�m{tg��\���[{r{�bZX�«��^¤[o�bZ [yabmo^z[{j=�b|~Z ��\���[{r{�¢j���x
�yZ@u��4|�ng�+2I�o�yZ@^z[o�~j=|�|}ngq ¡ 2D4�§�kbZ�[{Z�mouw��^lZ@k�[y�²j=[�j�c�xG�b�}[VZ@momot�mV��^ [o�bZ�uw�~r�m{tg��\���[{r{�
r@t1k4ZX��¾;\��b��r{�·r@t�ab|�k¤��Z r�j=ab�oZXk��zn¤j�����^l£=|~Z"t�v�Z@^1x]r@�}m{r�ab��[��;j6ab|�[�t�^¤[y�lZ �y\���[or{�
|}��^lZ@� ¿ r@t�ab|�k©vbm{t+k4alr@Z�j6^Tj6u��b�~£=alt�al�¯v�tg����[y�~t�^©u�ZX�y�{j�£�Z�[ot"[o�lZ«r@t�uwvbab[{Z�m��«���bZ
v4m{t��b|�Z@u \�j��"Z �bj=rXZ@my�²j=[oZXk¢�zn [y�lZ`k4ZX�y��£�^¨t��±[o�lZ�u�Z@r{�²j=^b���yu [o�²j6[�Z �1[oZ@^lk4� j
v4|�ab^l£�Z@m�[ot�|�t1r{¬�[o�bZV[yabmo^z[{j=�b|~ZP\��lZ@^w��[�������^wt�^bZ�t��²[o�lZ�[y�bm{Z@Z¯rXj=m{k1��^²j=|1v�t��y��[y�~t�^b��G
���bZ�v4|�ab^l£�Z@mVrXt=ab|~k"��Z�Z��+[{Z�^lkbZ@kR\��lZ�^`[o�bZ/[oabmy^+[{j=�b|�Z/\�j���\�j�n�t�ab[Vt��2v�tg�y�}[o��t�^Cq
[y�zal�	£��}�z��^l£�j �oZXr@t�^lk��;j=|��oZ«v�tg�y�}[o�~t=^��}^lk4��r�j=[y�~t�^C� ¡ 2D4�§¢kbZ��z�~�oZ@k¦j�u�Z@[y�lt+k�[ot
�}^lk4��r�j=[oZP[oa4mo^z[�j=�4|~Z�v�tg�y�}[o��t�^	[y�²j=[�[ot�|~Z�m�j=[oZXk�j	c�xG�b�}[�Z@mym{t�m��ot�[o�lj=[�[y�lZ�rXt+kbZ�\Pt�ab|�k
��[o�}|�|lab^²j6u��b�~£=alt�al��|�n«m{Z��gZXj=|'r@t�momoZXr@[�v�tg����[y�~t�^w\���[y� j=^znwt�^lZ�uw�~r�m{tg��\���[or{���;j=�}|�abmoZ��

/G^Çj=kbk4��[y�~t�^'q ¡ 2D4�§j=|}[{Z@moZXk�[o�lZ��ot���[]\�j=moZ©�ot�[o�²j=[�[o�lZ�rXt=u�vba4[{Z@m�r{�lZXr{¬�ZXk
�¥t=m=K���^�[om�j6^l�y�}[�M��y[�j6[oal�wt��/[y�lZR��\���[or{�lZX�w[{t�¬�ZXZ�v¢��abmo[y�lZ@mw[om{j�r{¬�t��±[y�lZ��y\���[or{�
t=v�Z�m�j=[y�~t�^�j=^lk%[oa4mo^z[�j=�4|~Z�v�tg����[y�~t�^�j=^bk�[{t�£��}�gZwj�kbk4�}[o��t�^²j=|�j��o��abm�j=^brXZ�[y�²j=[�[o�bZ
��\���[or{�lZX�V\�Z�m{Z�\�t=mo¬z��^l£�j=^lk�[y�lZ�[oabmy^+[{j=�b|�Z�\�j���u�t��z�}^l£b�
¡ ��j/m{Z@�yab|}[:t���[y�lZX�yZ¯�}u�v4m{te�gZ�u�Z�^+[o�Xq ¡ 2D4�§©r�|�j=�}u�Z@k	��^���[o�Im{Z@v�t�my[:j=^lkwrXt�mym{Z�x

��v�t=^lkbZ@^brXZ�\��}[o���ltg�yv4��[�j6|~�C[o�²j6[CKoj6^²j=|�n+���~�2t��4[y�lZP�lj1��j=moksm{j=[{Z:t��4[y�lZ)^lZ@\¤�yt�|�ab[y�~t�^
�}^lk4��r�j=[oZX��j=^%��uwvbmot���Z@u�Z@^z[�te�gZ�m�[y�lZ�t�|~k8��n+�y[{Z�u �zn%j=[�|~ZXj��y[%$£W��!N)P��X WðóÆ§�¦�&('
¨� UR�©vN)P�� Z�u�v4�²j��y���±j=kbkbZXk1 �¾MFh¯te\�Z��gZ@mXq���^���[o�9nb^²j=|���^lr��~kbZ�^z[¯moZ@v�t�mo[¯[{tw[o�lZs¼�½ ¡ q
¡ 2D4�§ r@t�^lr�|�alkbZ@k	[o�lj=[®[y�lZ@nVKyrXj=^b^lt=[®��ZDn4mou t�^	[y�lZ�Z �4j�r@[�r�j=al�yZ�t��4[o�lZPj�rXr��~kbZ�^z[
�4ab[Ir�j6^�t=^b|�ns�yal��v�Z@r@[¬½�½�½@qñM�\��b��r{��ab^lkbZ�m{�or@t�m{Z@kw[y�lZ@�}m���^lj=�b��|}��[]n/[ot�kbZ@[oZ@myu��}^lZ�[o�bZ
rXj=al�yZ�t��C[o�lZ/j�rXr��~kbZ�^+[�\��}[o� j6^+n�rXZ�mo[�j6��^z[]ng�)���lZ ¡ 2D4�§ ³ a²j=|}��[]n�j��o��abm�j6^lrXZ/u�j=^4xj=£gZ@m:[{Z@�y[o�¢nlZXk�[o�²j=[:[o�bZ@nwrXt�a4|~k�^bt�[PmoZ@vbmot1k1alrXZ¯[o�lZ��y\���[or{�"u�j=|���ab^br@[o��t�^�j=^lkw[o�²j=[
[oZX��[o��^b£�t=��[o�bZ�uw�~r�m{tg��\���[or{��\�j��7K��}^lrXt�^br@|�ab�y����Z��¾M¸���lZw�y�}u��}|�j=my��[]n t��:[o�bZwZ�mom{j=^z[
��Z@�lje�z��t�m�j=^bk"[o�lZ/v²j6[o�~Z�^z[���^I��abmo��ZX�P�}^"[o�4�~��j�r@r@��kbZ@^z[Vj=^bk js|�j=[oZ@m�t�^lZ±�}^3ïPj=¬z��u�j4q
´Tj����b��^l£=[{t�^Cq+vbm{te�z�~k4Z/£gt+t1k�moZ�j��yt�^�[{t���Z@|}�~Z��gZ±[y�²j=[�[y�lZ@h±j6u��}|�[{t=^�te�gZ�m{kbt��oZ�\�j=�
v4m{t��²j6�b|�n�m{Z@|~j=[{Z@k�[{t��ot���[]\�j=moZsZ�mom{t=m¯m{j=[o�bZ@m�[o�lj=^R[otwj«uw�~r�m{tg��\���[or{���;j6��|�a4m{Z��

� ���S���)B{�*}x)q�r,+¥x)rSs�t�r�Â.-�|�x#q%� x)|���{}r�|�x
���bZ¥h�j=u��}|�[ot�^Çj�r@r@�~k4Z@^z[RmoZX��ab|�[oZXkÇ��^ j¤��t�|�a4^+[{j=mon¨moZXrXj=|�|/�zn ¡ 2+4�§Iq¯j=^lkÇ[o�bZ
¼�½ ¡ [{Z�mou�ZXk���[sjÉ4P|~j��o�:/!/±moZXrXj=|�| �z4P|�j��y��/¼/±u�Z�j=^l�VKoj �y�}[oa²j=[y�~t�^���^�\��b��r{�T[o�bZ
ab�oZ¯t���qit�m:Z��+v�tg�yabmoZ¯[otbq+j��z��t�|�j=[y����Z�vbm{t+k4alr�[)u"j�n«rXj=al�oZV[{Z�u�v�t�m{j=mon	t�m)u�Z@k4�~rXj=|�|}n
moZ@��Z@m{�����b|�Z`j=k4�gZ�m{�oZR�lZ�j=|}[o�·rXt�^l�yZ ³ alZ�^lrXZ@��t�m�\��bZ@m{Z�[o�lZ vbmot��²j=�b�}|��}[]n�t��±�oZ@my�~t�ab�j=k4�gZ�m{�oZ��lZ�j=|}[o��rXt�^b�oZ ³ alZ�^lrXZ@���~��m{Z�u�t�[oZ��¾M ���lZ�¼�½ ¡ j=alk4�}[{Z@k ¡ 2+4�§�j ���ya4�l�oZ x
³ alZ�^z[�u�t+k4��nbr�j=[y�~t�^l�@q�j6^lk%j=��[{Z�m/[o�bZ	u�t+k4�¢nlr�j=[y�~t�^b�¯\PZ@moZ�u"j�k4Z�q�[y�lZ	al�yZ@m{�/\PZ@moZ[ot�|~k"[y�lZ@n r@t�ab|�k moZ@[yabmo^�[{t«^lt�myu"j6|Ct�v�Z@m�j6[o��^b£�vbm{t+rXZ@k4abm{Z@�X�

265

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(cXª

¡ �Pj/moZX�ya4|�[)t��²[o�bZ²h�j=uw��|�[ot�^«j=rXr@��kbZ@^z[Xqz[y�lZ��lZXj�k�t=��j=k4�=j=^lrXZ@k�-¯xGm{jen	�yn+�y[oZ@u��
�}^%[o�lZ�4�j=^²j=k4��j=^k*¬E)Y±q�8�t=m{kbt�^Tº+nzu�t�^lkb�@qC\�m{t�[oZ�j�m{Z�v�t=mo[�[o�lj=[sj=^²j=|}nm�@ZXk8[o�bZ
k4ZX�y��£�^8j6^lk`v�Z@mo�¥t=mou�j=^lrXZ�r{�²j=m{j�r@[oZ@my�~�y[y�~r@�±t���[y�lZ����bZ@m�j=r�x���hw\���[y�`m{Z@�yv�ZXr�[±[{t�m�j6x
k1��j=[y�~t�^��oj=�¥Z@[]n��)Y�ZX���~kbZ@�Pr���[o�}^l£/[o�bZ¬�²j�\PZXkwu���r@m{t��y\���[or{�Cqg[o�bZ¯moZ@v�t�mo[)�;j=ab|}[{Z@k���t�[y�
�lj=m{k4\�j=moZVj=^lk«�ot=��[]\�j=moZVrXt�uwv�t=^lZ@^z[{��t��²[o�lZV���lZ�m�j�rIjÔ�)kbZ@�y��£�^C�Y/G[�rXt�^lr�|�alk4ZXk«\���[y�
j"|}�~�y[�t=�P�¥t�a4m�u�t+k4��nbr�j=[y�~t�^l��[{t�[o�lZ����lZ�m�j�r x��gh"^lZXr@ZX�y�{j=myn��¥t=m�rXt�uwvb|��~j=^lr@Z	\���[y�
4�j6^²j�kljvj �Æ*¯j�k4�~j=[o��t�^k2�u��}[o[o�}^l£�½/Z@�z�~r@ZX��¾�*¬2:½ ¿�¡ r�[������lZ3*²2)½ |~je\�q®Z@^²j=r@[{Z@k
�}^·c�dip1cgq�£�����ZX�s£gte�gZ@my^bu�Z@^z[�t�°wr���j=|���v�te\�Z�m	[ot`Z@^b�yabmoZ�[o�bZ��{j6�¥Z@[]n�t���m{j�k4�~j=[o��t�^4x
Z�u��}[o[y��^l£�k4Z@�z�~r@ZX�X�
���lZ�u�t1k4�¢nlr�j6[o�~t=^l�±��v�Z@r@��nbZXk%��^%[o�lZwºzn+u�t�^lk4��moZ@v�t�mo[��}^lr@|}alkbZ@k%moZXkbZ@�y��£�^b��^b£

[y�lZ�u���r@motg�y\��}[{r{��j=^lk�r{�²j=^b£���^l£8[y�lZ�\�j�n�[y�lZ rXt�uwvbab[oZ@m��²j=^lk1|~ZXk¦u�j=|���a4^lr@[y�~t�^
r@t�^lk4�}[o��t�^l�X�k/G^¤v²j=mo[y�~r�ab|�j=mXq�[omoZ�j=[yu�Z�^+[«\�j��«[{t8��Z"[{Z�mouw��^²j=[oZXk��}^�[y�lZ�Z@��Z@^z[�t��
j"k4tg�oZ xGm�j6[{Z�u�j=|���ab^br@[o��t�^Cqç£����z�}^l£�j�[omoZ�j=[yu�Z�^z[�Ky�yab�yv�Z@^lk'�¾M ���b�~�±r{�²j=^l£gZ«\Pt�ab|�k
�lje��Z�m{Z@u�te�gZ@k [o�bZ�t�vb[o��t�^¦[{t8vbmot1r@ZXZ@k ����uwvb|�n��zn�vbm{Z@�o����^l£%[o�lZÉ«' ¬�Z@n�� ���bZ
moZ@v�t�mo[�j=|~�ytsu�j�kbZVm{Z@rXt�uwu�Z�^lklj=[y�~t�^b�:moZX£ij=mok4��^b£	rXt=|�|��}u"j6[{t�m�[oZX��[�vbmot1r@ZXk4abmoZX�Vj=^bk
u�ZX�y�{j�£�Z�j=^bk�r@t�u�u�j=^lk8�¥t�myu"j6[{�X� ¡ A�te�gZ�u���Z@m	f4q)cedgfih"|~Z�[o[{Z�m�q2�y��£�^lZ@k��zn8[o�bZ
k1��m{Z@r@[ot�m2t��z[o�lZ+4�j=^lj�k4��j6^.*¬E)Y±qej���¬gZ@ks[o�lj=[¡ 2D4�§�u�j=¬gZIr{�lj=^l£gZ@��[otV[y�lZ)���lZ�m�j�r x
��h��lj��oZ@k`t�^ [o�bZ	ºzn+u�t�^lk�jÔ��m{Z�v�t=mo[3K�[{t«��Z/��^�rXt=u�vb|}��j=^brXZ±\��}[o� [o�lZ:*¬2)½ j�r�[��¾M
¡ |�[o�bt�al£��Cq/j���^lt�[{Z@k-j=��te�gZ=q ¡ 2D4�§¶k4�~k¨u�j=¬gZ%[o�lZ%uw�~r@motg�y\��}[{r{�Ar{�²j=^b£gZX�@q

[y�lZ@n¢k4�~k¨^lt�[�r@t�u�v4|�n�\���[o�A[o�bZ8k4��moZXr@[y����Z%[ot¤r{�²j=^l£gZ%[o�bZ%u�j=|}��ab^lr@[y�~t�^·v²j=al�yZ
��Z@�lje�z��t�m)��^z[{t�[omoZ�j=[yu�Z�^+[:��al�yv�Z@^lk4�Xq1�}^l�y[oZ�j�k�m{Z@k4alr���^l£�[o�lZVu"j��1�}u�abu ^+a4u���Z�m:t��
moZ@[ymo�~Z@����mot�uõnb��Z�[{t�[o�bmoZXZ=� ¡ rXr@t�m{k4�}^l£ [{t8ºzn+u�t�^lk4�Xq®[y�lZ�k4Z<nlr��~Z@^br@�~Z@�	t�a4[o|��}^lZXk
�}^`[y�lZÆ*¬E)YA|~Z�[o[oZ@m�t���A�te��Z@u���Z@m�f�\�Z�m{Z���[o�}|�|Cv�Z@^lk4�}^l£�\��bZ@^8[o�bZs^lZ �1[/j�rXr��~kbZ�^z[
�lj=vbv�Z@^lZ@k7nb��Z�u�t�^z[o�b�V|~j=[{Z�m��

/Guwu�Z@k4��j6[{Z@|}n�j=��[{Z�m�[o�bZ9h±j=uw��|}[{t�^	j�r@r@�~k4Z@^z[�qg[y�lZO�±^z[�j=my�~tC4�j6^lrXZ�m:¼²t=ab^lklj=[y�~t�^
�4��m{Z@k«j=^«�}^lkbZ@v�Z@^bkbZ@^z[Ir@t�^l�ya4|�[�j6^+[�[{t±�}^+��ZX��[o�~£gj=[{Z=��h�Z�rXt�^lr�|�alk4ZXk���^«j�º1Z@v4[{Z@u	��Z�m
c�dgfihVmoZ@v�t�mo[®[o�²j6[Ij=^��}^lkbZ�v�Z�^lkbZ@^z[)��n1��[{Z�uE¾;��ZX���~kbZ:[o�lZ�rXt�uwvbab[oZ@m ¿ \�j=��^lZXZ@kbZXk«[ot
��Z@my����n�[o�bZ�[yabmo^z[{j=�b|~Z�v�tg�y�}[o��t�^Rj=^lk��yal£g£�ZX�y[oZXk`[y�lZ�al�oZst���j�v�t�[{Z�^z[o�~t=u�Z�[{Z@mX�����bZ
*¬E)YT\�m{t�[oZ�j�|�Z@[o[oZ@m®[{t ¡ 2+4�§ ��^?A¯te�gZ@u	��Z�m�cedgfihVm{Z ³ alZ@�y[y��^l£/[y�²j=[¡ 2+4�§���^b�y[�j6|�|��alr{� j=^¨��^lk4Z@v�Z@^lkbZ�^z[���^z[{Z�mo|~t+r{¬ t�^¨[o�lZ%���bZ@m�j=r�x���h1� ¡ |~�ytbq���^ _gj=^za²j=myn-ced�fg�4q
¡ 2D4�§¤moZXrXZ�����ZXk�j�|~Z�[o[oZ@m±��mot�uÃ[o�lZ«j6[o[{t=mo^lZ�n�moZ@vbmoZX�yZ@^z[o�}^l£�[o�lZ�h�j=uw��|�[ot�^Rr@|��}^b�~r=�
���bZ�|�Z@[y[{Z@m��{j=��k"[o�²j=[�[y�lZ@moZ/�²j�k���ZXZ@^�r@t�^z[o��^zab�}^l£�vbmot��b|~Z�u��P\���[o� [y�lZ/[oabmy^z[�j=�b|�Z�q
�}^lr@|}alk4�}^l£©�¥t�abm���^br@�~k4Z@^z[{�wj=[�h�j=u��}|�[ot�^Cq)j=^lk¤m{Z ³ alZX��[{ZXk¢[y�lZ���^l��[�j=|}|�j=[y�~t�^Tt���j6^�}^lkbZ�v�Z�^lkbZ@^z[¯�yn+��[{Z@u ¾;v�t�[{Z�^+[y�~t�u�Z@[oZ@m ¿ [{t���Z@mo�}��n�[y�lZ/[oabmy^z[�j=�b|�Z/v�t��y��[y�~t�^'� ¡ 2D4�§
k1�~k¦^lt�[wrXt=u�vb|}n}GzA�t%��^lkbZ�v�Z�^lkbZ�^+[w��^z[oZ@mo|�t1r{¬�\�j=�w�}^l�y[{j=|�|�ZXk��zn ¡ 2D4�§-t�^¤[o�bZ
���bZ@m�j=r�x���h=�«j=[s[o�b����[y��u�Z��©���bZBh±j=uw��|}[{t�^¥4P|}��^b��r�q®�bt�\PZ@��Z@mXq:k4ZXr@��kbZXk�[ot`��^b�y[�j6|�|
t=^lZ�[o�lZ�u��yZ@|���ZX�¯t�^ [o�lZ���m�u�j�r{�b�}^lZ��

266

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ceh

ÑOÒðÑ /gà�05Þ21�à43¥àlá¼á¼Õ�ä65 Õ�1�Ú9æ}Þ¼à+á#7ÖÚ9Ø98@ÞðÙªà+á<ç;: ÕYã�Õ�1=<ÆÕ�æ�Ó�ë�ì9í
/G^¤[y�b�~�«j=rXr@��kbZ@^z[XqPj=�	��^¦[y�lZzî�Z@^b^lZ@�y[ot�^lZ�te�gZ�m{kbtg�yZ�q:u"j�r{�4��^lZ�u�j=|}��ab^lr@[y�~t�^�\�j=�
^bt�[¯j�r{¬z^lte\�|~Z@kb£gZXk�ab^z[o�}|�j=��[{Z�m�|�j=[oZ@m¯j�r@r@�~k4Z@^z[{��\PZ@m{Z�ab^lk4Z@m{��[{t+t1k��
���lZ����lZ@m{j�r�x��gh�j=[¬ïPj=¬z��u�j4ql´�j����b��^b£�[{t�^'q��²j�kR��Z@Z@^8u�t1k4�¢nlZXk��zn ¡ 2+4�§¦��^

º+Z@vb[oZ@u���Z@m�cedgfgh��}^ m{ZX��v�t=^l�oZ�[{t«[o�bZ�te��Z@m{k4tg�oZ	j=[¬h±j=uw��|}[{t�^'��½±abmy��^l£�½/Z@rXZ@u	��Z�m
c�dgfih1q)j`\Pt�u�j=^¦[omoZ�j=[oZXk¦\���[y�¦[o�lZ ���lZ�m�j�r x��gh©kbZ��gZ�|~t�v�ZXk¤Z@mynz[o�lZ�u"j¤¾?Z �1rXZX�y�y�}�gZ
moZXkbk4Z@^b�}^l£�t��2[o�lZ/��¬z��^ ¿ �}^�j	v²j=m�j6|�|~Z�|���[omy��v�ZXk"v²j=[y[{Z�mo^�t�^��lZ�m�mo�~£=�+[P�b��v'�)½/ZX�yv4��[{Z
[y�b�~�@q��y�lZ)rXt=^+[y��^zalZ@k�[otV��ZI[omoZ�j=[oZXk��zn/[o�lZ:���lZ�m�j�r x��gh+q�j��'[y�lZ)r�j=ab�oZ)t��+�lZ@mCmoZ�j�r�[o�~t=^
\�j��¯^lt�[/k4Z@[{Z�mouw��^lZ@kR[ot���Zsj=�b^bt�mou�j=|2ab^z[o�}|�_gj6^+alj=mon�cedgfg�1�¬�/^%_gj=^za²j=monR�4q²�lZ�m
[ym{ZXj=[ou�Z@^z[{��\PZ@moZsr@t�u�v4|~Z@[oZXk'�
���lZ��y[{jIJ©u�t�^b�}[{t�moZXk�[o�lZ���¬+�}^ m{Z�j=r@[o��t�^�r@|�tg�oZ�|�n j=^bkRj6[o[{Z�u�v4[{ZXk [{t�nb^bk�v�tg��x

�����b|�Z"r�j6al�oZ@�X�����lZ t�v�Z@^ �y|~t=[{����^¦[y�lZ��b|~t+r{¬z��^l£©[ym�j�n+�«��^¦[o�bZR���bZ@m�j=r�x���h8r@t�ab|�k
�lje��Z/vbm{t+k4alr@ZXk �yabr{�`j���[omy��v�ZXk"v²j=[y[{Z�mo^Cq+�bab[��zn�[y�lZ/[o�}u�ZV[o�bZ/�y¬z��^ moZ�j�r�[o�~t=^"\�j=�
k4Z@[{Z�mouw��^lZ@k�[otR��Z"j=�b^bt�mou�j=|GqC[y�lZ��b|�t1r{¬z�}^l£R[ym�j�n+�s�²j�k���Z@Z@^¦k4���orXj=m{kbZ@k'q��ytR[o�bZ
�4|~t+r{¬+�}^l£sj=mom{j=^l£gZ�u�Z�^+[Pj=^bk�[om{j�n���[omy��vb�}^l£�t�mo��Z@^z[�j=[y�~t�^wr@t�ab|~kw^lt�[)��Z¯moZ@vbmot1k4abrXZXk��
¡ m{ZXj�r@[y�~t�^�[{t�r{�lZ�u�t�[y�lZ@m{j=vzn¤\�j��wmoab|�ZXk�t�ab[w��Z@r�j=ab�oZR[y�²j=[��y�lt=ab|~k¤�²j��gZ�vbm{t=x
k1alrXZ@kTm{ZXj�r@[y�~t�^l��j=[�[y�lZ�t=[o�lZ�ms[ym{Z�j6[ou�Z@^z[����[oZX��j=^lk�\�t�a4|~k�^bt�[��²j��gZ�v4m{t+k4alrXZ@k
��[omy��v�ZX�X�s´¨�lZ@^�[o�lZ«k4t1r�[{t�mo��k4�~�yrXte�gZ�m{ZXk�[o�²j6[/[o�lZ«\Pt�u�j=^%�y|�Z@vb[�\��}[o��j��lZ�j6[o��^b£
vlj�k'q²[o�lZ�nR[y�lt�al£��z[¯u"j�nz��Zs[o�bZs�babmy^©v²j=[y[{Z�mo^`�lj�k`��ZXZ@^©r�j=al�yZXk©�zn�[o�lZ�v²j=m{j=|�|�Z@|
\��}m{Z@�¯[y�²j=[�kbZ@|}���gZ�m�[y�lZ��lZ�j=[���^R�yalr{�`v²j�kb�@�����bZ	�y[{jIJ�-�x m�j�ngZ@k`[o�lZ��lZXj=[o�}^l£�v²j=k
�4ab[�k1�~�or@te�gZ@moZXk¨[o�lj=[�[y�lZ \���m{Z v²j=[y[{Z�mo^¨k4��k ^lt=[�r@t�momoZX�yv�t�^lk [{t�[y�lZ�Z@monz[y�lZ@u�j
vlj=[o[oZ@mo^Rt�^ [o�bZ�vlj=[o��Z@^z[�j ���b��vC�
���lZ��ltg�yv4��[�j6|���[�jIJ �oZ�^+[«jR|~Z�[o[{Z�m	[ot ¡ 2D4�§Çt�^�_gj=^za²j6monT�4cgqIj=^bkT[o�lZ�n�j6|~�ot

��v�t=¬gZ/t�^�[o�lZ¯vb�lt�^bZ±\���[y��[o�bZ ¡ 2D4�§©[{Z@r{�b^b��r�j=|��yabv4v�t�my[���abv�Z�mo�z�~�yt�m��D�±^ ¼lZ��bmoa4x
j6mon��=ªbqg[o�bZ ¡ 2D4�§�[oZXr{�b^4�~r�j6|l�yabv4v�t�my[)�yabv�Z@my�z�~�ot=m)�oZ@^z[:j±\�my��[o[oZ@^�m{Z@�yv�t�^l�yZ�[{t/[o�bZ
k1��m{Z@r@[ot�mVt���m{j�k4�~j=[o��t�^�[o�lZ�m�j=vzn�j=[9ïPj=¬z�}u"j��ojenz�}^l£bqDK ¡ ��[{Z@m¯rXj=m{Z���ab|�rXt�^l���~kbZ�m�j=[y�~t�^
\PZ�j=m{Z t��¯[o�bZ�t=vb��^b��t�^¦[o�lj=[«[o�b���«klj=u�j�£gZ�r@t�ab|~k¦^lt=[«�²j��gZ ��Z@Z@^�vbm{t+k4alr@ZXk �zn
j6^+nwu�j=|���ab^br@[o��t�^�t��C[o�lZ/���lZ@m{j�r�x��ghst�mP�+n�j=^zn�t�v�Z�m�j=[ot�m�Z�momot�m��¾M����lZ/|~Z�[o[{Z�m�£gt+ZX�
t=^©[{t"��abvbv�t�mo[±[o�b����t�v4��^b��t�^`�zn�|��~��[o�}^l£w[]\Pt"v²j�£�ZX�/t���[{ZXr{�4^b�~rXj=|�moZ�j��yt�^l�±\��zn8j6^
te��Z@m{k4tg�oZw�+n8[y�lZ����lZ@m{j�r�x��gh�\�j�����uwv�t��o�y�}�b|~Z=qCj=|�t�^l£�\���[y��[y�lZwj�kbk4�}[o�~t=^²j=|)j=mo£�a4x
u�Z@^z[P[o�²j=[P[o�lZ�m{Z±�lje��Z�Koj=vbvlj=m{Z�^+[y|�n���ZXZ@^�^bt�t�[o�bZ@m��}^l�y[{j=^lr@ZX��t��2����uw��|~j=m)klj=u�j�£gZ
[ot�[o�b����t�m�t=[o�lZ�m�v²j=[y�~Z@^z[o�X�¾MT���lZ/|�Z@[y[{Z@m�Z@^lkb�@qDK¼/G^ r@|�tg�y�}^l£bqm/)\����y��[ot�j�k4�z�~�yZ/[o�²j=[
[y�b�~��u�j=[y[{Z@m��lj�����Z@Z@^��bm{t=al£��z[V[{t«[o�lZ�j=[y[{Z�^+[y�~t�^�t��®t�abm¬h�j1��j6m{kb�²4�t�uwu��}[o[oZXZ�j��
����^lt�myu"j=|�vbm�j�r�[o��rXZ��¾M
���lZP�ltg�yv4��[�j6|z�y[�j�J�Z��gZ@^z[ya²j=|�|}nsj��or�mo����ZXk�[o�lZ:v²j=[y�~Z@^z[�jÔ�®�y¬z��^sm{Z�j=r@[o��t�^	[otBKyrXj=al�yZ

a4^b¬z^lte\�^C�ñM /G^¦j�moZ@v�t�mo[�\�mo�}[o[oZ@^�t=^T[o�4�~�@nbm{��[:ïPj=¬z�}u"j���^lr��~kbZ�^z[�j=��[oZ@m	j=^lt�[y�lZ@m

267

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c��

ïPj6¬+�}u"j�te��Z@m{k4tg�oZsj�n�Z�j=mV|~j=[{Z�m�q4[y�lZ�u�Z@k4�~rXj=|�vb�zn+�y��r@���y[V��^z�gt=|��gZ@kR\�mot�[{ZIG
¡ [�[o�lj=[�[y��u�Z�qi\�Z±k4�~kw^lt�[���Z@|}�~Z��gZ�[y�²j=[�� [y�lZ�v²j6[o�~Z�^z[o ç\�j���t���Z@mokbtg�oZ@k
��Z@r�j=al�yZ�[o�lZ�u�j=^zab�;j�r@[yabm{Z�m��²j�k���^b�y[�j6|�|~Z@k�j�kbk1��[o��t�^²j=|ç�²j=mok4\�j=m{Z�j=^lk
�ot���[]\�j=m{Z��oj=�¥Z@[]n kbZ��z�~rXZ@�¯[ot«[o�lZ�j�r@rXZ@|�Z@m{j=[{t�mX�

/G^�j±|�Z@[o[oZ@mI��mot�u [y�lZ�u�j=^zab�;j�r@[yabm{Z�m)klj=[oZXk ce�6x�º1Z@v4x]fih1q6��[������y[{j=[{Z@k
[o�²j=[BK ¡ ^lj=|�n+�y���±t��I[y�lZs�lj1��j=mok©m�j=[oZsmoZX�ya4|�[o�}^l£���mot�u [o�lZ@�oZ�u�t1k1��nlrXj6x
[o�~t=^l�/��^lk1�~r�j6[{ZX��j6^��}u�v4m{te�gZ�u�Z�^+[�t=��j=[�|�Z�j���[Cnb�gZwt�mokbZ@mo��t=�Pu�j�£�^b�Ùx
[oalkbZ<M9>®´¨�}[o�«��alr{��j=^«��uwvbmot���Z@u�Z@^z[��}^«�{j6�¥Z@[]n�¾�c�04qñ0`0`04qñ0`0`0@? ¿ \PZ�k4�~k
^lt�[/��Z@|}�~Z@��Zs[y�²j=[/[y�lZ@moZ�rXt�a4|~k©�²j��gZ���ZXZ�^�j=^zn©j�r@rXZ�|~Z@m{j=[{t=m/u"j6|���ab^lr x
[o�~t=^C�w���lZX�yZ�u�t1k4�¢nlr�j6[o�~t=^l�±[{t [o�bZ�j=rXrXZ�|~Z�m�j=[ot�m�\�Z�m{ZwrXt�uwvb|~Z�[{Z@k�t�^
h1qÍ��x�º1Z�v4x�fih+�

2��gZ�^«\���[y�	�;j=�}mo|�n±�ot�v4�b�~��[o�~rXj=[{Z@ksvb�zn+�y��rX����abvbv�t�mo[Xq=[y�lZP�lt��yvb�}[�j=|+�y[{jIJ®qgj��2al�oZ�m{�@q
k1�~k�^bt�[P�lje��Z�[y�lZ/j=�4��|��}[]n	[ots��^z��ZX�y[y�~£ij6[{ZV[o�lZ¯v�tg�y�y�}�b��|}��[]n�t=��u�j�r{�b��^bZ¯u�j=|���a4^lr@[y�~t�^
��a4mo[o�bZ@m��/���lZ@nR\�Z�m{Z	^lt=[�j�\�j=moZ�t��:j=^znRt�[o�bZ@m±�}^lr@��kbZ@^z[o�/j=^lk�q���^R�;j�r@[Xq�\PZ@m{Z�[ot�|~k
[y�²j=[�[y�lZ@moZ��²j�k���ZXZ�^�^lt�^lZ=qg�ot/[y�lZ@moZ�\�j���^bt±m{ZXj��ot�^��¥t�m®[o�lZ�u [ot/vbabmo�yalZ�[y�lZ�u�j=[yx
[oZ@mX�5A¯t���abmo[y�lZ@m���^z�gZ@�y[y�~£ij=[y�~t�^Rt���[y�b�~�¯��^lr��~kbZ�^z[�\�j��/kbt=^lZs�zn�[o�lZ�u"j=^zab�;j=r@[oa4m{Z@m
t=m��+n�j6^+n"£gte�gZ@my^bu�Z@^z[/j=£gZ@^lr��~Z@��¾;\��ltwk4�~k�^lt=[¯¬z^lte\j6��t�a4[���[¿ �
¡ ��t�a4[:j±ngZ�j6mI|�j=[oZ@mV¾?¼²Z��bmoalj=mon�cedgfip ¿ qij=��[oZ@m�[y�lZ��oZ@rXt�^lk�ïPj=¬z��u�j±te�gZ�m{kbt��oZ�|~Z@k

[y�lZ��lt��yvb�}[�j=|1�y[{jIJ�[ot/�yab�yv�ZXr@[I[y�²j=[®[o�b����nbmo�y[��}^1��abmon��²j=k	��Z@Z@^wk4alZP[{t�j/���bZ@m�j=r�x���h
�;j6ab|�[Xq�[y�lZ���[�jIJ���^z��ZX�y[y�~£ij6[{ZXkTj=^lk��¥t�ab^lkT[y�²j=[�[o�lZ?nbmo�y[�te��Z@m{k4tg�oZ��z��r@[o�}u �²j�kTj
r{�4m{t�^b��r)�y¬z��^sab|~r@Z@m�qe[y�~�o��alZ)^lZXr�m{tg���~�P¾?kbZXj=[o� ¿ ab^bkbZ@m�[o�lZ:�y¬z�}^Cq�j6^lk�\�j��2��^srXt�^z[y��^za²j=|
vlj=��^C�����lZ�klj=u�j�£gZ�\�j��s��abm{£=�~r�j6|�|�nRm{Z�v²j=��moZXk'q��y¬z�}^T£�m{j=��[{��\PZ@m{Z�u�j�kbZ�q®j=^lk%[o�bZ
��nzu�vb[ot�u���m{Z�|��~Z��gZ@k'����lZ©v²j=[y�~Z�^+[��~�"j6|�����ZR[ot1klj�n�\���[y�¨u��}^lt�m�k4�~�oj=�b��|}��[]n�j=^bk
�yt�u�Z��or�j6momo�}^l£�m{Z�|�j=[oZXk�[{t«[y�lZ�te�gZ@mokbtg�yZ��P���lZ��ltg�yv4��[�j6|C�y[{jIJ8rXt=^lr@|}alkbZXk�[y�²j=[�[o�bZ
k4tg�oZ«j=rXr@��kbZ@^z[{j=|�|}n kbZ@|}���gZ�m{Z@k`��^©[y�lZ�n4m{�y[�j�rXr��~kbZ�^+[�u�al��[/�²j��gZ	��ZXZ�^8u�alr{�8|�t�\PZ@m
[y�²j=^"�}^�[y�lZ±�yZXr@t�^lk'qlj=�P[o�bZ�m{ZXj�r@[y�~t�^�\�j=���y��£�^b�¢nlr�j=^z[y|�n«|~Z@�o�:��^z[{Z�^l�oZ±j=^lk�^lZ@r@motg�y���
k1�~k"^lt�[�kbZ@��Z@|~t=v�ab^z[o��|��y�Ù�"t�m�Z@�~£=�+[�u�t�^z[y�l��j=��[oZ@m�Z �1v�tg��abm{Z=��º1t=u�Z�t�[o�lZ�m��;j�r@[ot�m{�
moZ@|~j=[{Z@k`[{t�[y�lZ	vb|~j�rXZst�^©[y�lZ	��t1k4n \��lZ�m{Z�[y�lZ�te�gZ�m{kbtg�yZ«t1r@r@abmym{Z@k%j=|~�yt�¬gZ�vb[/�lZ�m
��mot�uµ�lje�z�}^l£wu�t�moZ/�y��£�^b��nbr�j=^z[�vbmot��b|~Z�u��@�

ÑOÒBA C£àlØ)ÙED Õ,FCà+Ø°å=àl×@ã�Õ�æ ågÕ�×9ÙªÕYæ�çG5 à+æSãIH Ó�ë�ìKJ
Æ�t�m{Z"���	¬z^lte\�^¢j=��t�ab[[o�lZ �Inz|~Z@mXq:��Z �bj=�XqPj�rXr��~kbZ�^+[o�«[o�²j=^¦[y�lZ�t�[y�lZ@mo����Z@r�j=al�yZ
t=�P[y�lZ�k4��|}�~£gZ�^lrXZ�t=�P[y�lZ��)nz|�Z@m��ltg��vb��[{j=|�vb�zn+�y��r@�~��[�q®¼bmo��[!��h±j=£gZ@mXq2\��}[o�lt=ab[�\��ltg�yZ
ZJ�t=mo[{��[o�lZwab^lkbZ�m{��[�j=^lk1��^l£©t=��[o�lZ��ot���[]\�j=moZ�vbm{t=�b|~Z�u���u"j�n8�²j���Z���Z@Z@^¤kbZ�|�j�ngZ@k
Z��gZ�^`��abmy[o�lZ�m��

268

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(cep

���lZ����lZ@m{j�r�x��gh �lj�kT��ZXZ@^¦j=[�[o�lZ32:j=�y[��Z �bj=�?4�j=^lr@Z@m?4�Z�^z[{Z@m�¾�2)�O494 ¿ �¥t�m
[]\Pt�ngZXj=m{�/��Z@�¥t�moZ	[o�bZÆnbm{��[��oZ�mo�~t=al��j�rXr��~kbZ�^z[�qCj=^bk©u�t�moZ	[o�lj=^�h10`0�vlj=[o��Z@^z[{�/�²j=k
��ZXZ�^T[ym{Z�j6[{ZXk��3�±^�Æ`j=mor{�¤�1cgq)ced�fg�4q2j�u"j=|�Z	v²j=[y�~Z�^+[�rXj=u�Z��}^z[{t�2)�O494 �¥t�m��b�~�
^4��^z[o�©[ym{ZXj=[ou�Z@^z[�t�^8[y�lZ«���lZ�m�j�r x��gh+q't�^lZst��Pj��oZ�mo�~Z@�±vbmoZX�or�mo�}��Z@k�j=�±�¥t�|�|�te\�abv`[ot
[y�lZ�m{Z�u�te�=j=|Ct���j�[oabu�t�m���mot�uµ�b�����²j�r{¬ç�
���b����[omoZ�j=[yu�Z�^z[�\�j���[{t	��Z�j«����ÆRZ<;Z�|~Z@r@[omot�^"��Z�j=u [omoZ�j=[yu�Z�^z[�t��)cef`0�m�j�k4�

t=^�[y�lZ�abvbv�Z@m:�²j�r{¬�j=^bk�j�|��}[o[o|�ZP[ot�[y�lZ�|~Z@��[)t=���b���I�yvb�}^lZ�qz�¥t�m:j�[{t�[{j=|lt����4qñ0`0`0/m�j�k4�
te��Z@m����}��j=^lk js�lj=|��'\PZXZ�¬+�X�+h�Z�\�j���[{j=¬gZ�^ ��^z[{t�[o�lZ±[ym{ZXj=[ou�Z@^z[�mot1t=uµj6^lk�vb|~j�rXZ@k
�;j=rXZ©kbte\�^Çt�^¨[y�lZ`[ym{Z�j6[ou�Z@^z["[�j6�b|~Z=����lZ8t�v�Z@m{j=[{t�m�[o�lZ�^¨|~Z���[�[o�bZ`[omoZ�j=[yu�Z�^+[
mot1t=u`q1r@|~t��oZXk [o�bZ�k4t1t�mXqlj=^lk �oj=[�j=[�[o�lZ�r@t�^z[om{t=|C[{Z@myu��}^²j=| �
���lZ�t�v�Z@m{j=[{t=m/�²j�k8�lZ�|~k©[o�4�~�+��t��%�¥t�m/�ot�u�Z	[o�}u�Z=qCj=^lk8�lZ�m�[]nzvb��^l£�Z�°wr@�~Z�^lr@n

�lj�k«��^lr�m{Z�j=�oZXk«\��}[o��Z��+v�Z@my�~Z@^brXZ��:ºz�lZ�rXt�a4|~k ³ ab�~r{¬z|�n	Z@^z[{Z�mIvbm{Z@�or�mo��v4[o�~t=^�klj=[�j�j=^bkr{�lj=^l£gZw��[�rXt�^z��Z@^b��Z@^z[o|}n�\��}[o��[o�lZ����lZ@m{j�r1j ��Z@k4��[y��^l£��¥Z�j6[oabmoZX�X�Rº+�bZ�Z@^z[oZ@m{Z@kT[o�bZ
vlj=[o��Z@^z[�j ��vbmoZX�or�mo�}vb[o��t�^ klj=[{j ³ ab�~r{¬z|�n�q4[o�bZ@^�^lt�[y�~r@ZXk"[o�lj=[��y�bZ±�²j�k"[]nzv�ZXkòK��mM ¾;�¥t�m
-¯xGm{jen ¿ \��lZ�^©���lZ��²j�k ��^z[{Z�^lkbZXkFKyZ<MR¾¥�¥t�mVZ@|�ZXr�[om{t=^ ¿ u�t+kbZ=�)���b�~��\�j��¯j�r@t�uwu�t�^
uw�~��[�j=¬�Z�j���u�tg�y[�t��2[o�lZ/[ym{Z�j6[ou�Z@^z[{���}^+��t�|���ZXkB-�x m�j�n+�Xqlj6^lk �y�lZ/�²j=k�£�t�[o[oZ@^ al�oZ@k
[ot�[]nzvb��^b£�[o�b���X�����lZ	uw�~��[�j=¬�Zs\�j��/Z�j=�yn�[{t3n4�S,'���lZ	u�Z@moZ@|�n�ab�oZXk8[y�lZ�«�L ¬gZ�n`[ot
Z@k4��[�[y�lZ�u�t+kbZ�Z�^+[ymon��
Y�Z@r�j=ab�oZ�[o�lZ�t�[y�lZ@m�v²j=m{j=u�Z@[{Z�m{�����lZw�lj�k�Z�^z[{Z@moZXk�\�Z�m{ZwrXt�mym{ZXr�[�q2�y�bZw�b�}[/[o�bZ

moZ@[yabmo^¦¬�Z@n��yZ@��Z@m�j6|�[o�}u�Z@�	j=^bk�|~Z@��[�[o�bZ@��ms�=j=|�alZ@�sab^br{�²j=^l£gZ@k'��º+�lZ�moZ�j�r{�bZXk�[o�bZ
��t�[y[{t�uÃt��I[y�lZ	�yr@m{Z@Z@^Cq'\��bZ@m{Z��}[�\�j��±�}^lk4��r�j=[oZXk`[y�²j=[±[y�lZsvlj=m�j=u�Z@[oZ@mo�±�²j�k`��ZXZ�^
M ý�þ¤¹>´m¹>ý�ú`j6^lk«[o�lZ�[{Z�mouw��^²j6|4k4���yvb|~j�ngZXkON�ý�±�¯ þ�ý�±�úQPPqzj=�:Z �+v�Z@r@[{Z@k'�:º+�lZ��b�}[�[o�bZ
t=^lZ�x ¬gZ@n	rXt�uwu�j=^lk'qv«SR �¥t�mUTP!¦1§ W�¨lq�[ot/��Z@£���^	[o�lZ�[ym{Z�j6[ou�Z@^z[�� ¡ ��[{Z�m)j±u�t�u�Z�^z[�q
[y�lZPu�j�r{�b�}^lZ:�y�zab[�k4t�\�^«j=^lk	[y�lZ�r@t�^l�ot=|~Z:k4�~��vb|�j�ngZ@k	[o�bZ:u�ZX�y�{j�£gZ�¯5±�³#´vµ_¶_·�¸¤¹>ºY¶
V�W �)���bZ/u"j�r{�4��^lZ±j=|~�yt�k4�~��vb|�j�n�ZXk jÆ¸�þ�ý�±ª¸¤¯�ý�¶_¸�ÿI±�µ_ü�ý'qz��^lk1�~r�j6[o��^b£	j	vbmot��b|�Z@u
t=��|�t�\ vbmo��t�mo�}[]ng�¦���bZR���lZXZ�[�t�^¤[y�lZR���~kbZ�t=�±[o�bZ u�j�r{�b�}^lZ�Z��+vb|~j=��^bZXk¤[o�²j=[«[y�b�~�
u�j=|}��ab^lr@[y�~t�^�\�j���j=Kyk4tg�oZ���^bv4ab[±�IM�Z�momot�m������lZ.2)�O494 k4��k�^bt�[��lje��Z	j6^+n�t�[y�lZ@m
�}^b�¥t�myu"j=[y�~t�^wj��=j=�}|�j=�b|�Z���^���[{�)��^b�y[omyalr@[y�~t�^wu�j=^za²j=|çt�mPt�[o�lZ�m����lZ�m�j�r x��gh�kbt+r@abu�Z@^4x
[{j=[o��t�^�[{t�Z��+vb|�j6��^�[o�lZ�u�ZXj=^b�}^l£Rt=�O¯5±�³#´vµ_¶_·�¸¤¹>º�¶ V�W � ¡ ^ ¡ 2D4�§¢[{Z@r{�b^b��r@��j6^
|~j=[{Z�m)[{ZX��[o�¢nlZXk�[y�²j=[ÆKykbtg�yZ��}^bvbab[��IMsu�Z�j6^+[:[o�lj=[�j�kbtg�yZ��²j�kw��Z@Z@^�k4Z@|��}�gZ�m{ZXk�[o�²j=[
\�j��VZ@�}[o�lZ�mV[{t+t��b�~£���t�m�[ot1t«|�t�\��)���bZ�u�ZX�y�{j�£gZ@���²j�k ��Z@Z@^RZ��+v�Z@r@[oZXk`[ot���Z�al�oZ@k
t=^b|�n�k4abmo�}^l£«��^z[{Z�mo^²j6|CrXt�uwv²j=^zn�k4Z@�gZ�|~t�v4u�Z�^+[X�
���lZIu�j�r{�b�}^lZ��y�bt�\PZXk	j��yab�b�y[�j6^+[y��j=|�ab^lkbZ�m{kbtg�yZPt=^���[{�Ck4tg�oZ�u�t�^b�}[{t�m�k4�~��vb|�j�n`�

��u�t�^b��[ot�m�ab^b�}[{��kbZ�|�����Z@moZXk�\��bZ@m{ZXj��s[y�lZwt�v�Z�m�j=[ot�m��²j�k�m{Z ³ alZ@�y[oZXk��10i�"u�t�^b��[ot�ma4^b��[o�X��º+�lZ�\�j��	j�rXr�al�y[ot�u�ZXk�[ot�[y�lZ ³ ab��my¬1��t��P[o�lZ�u"j=r{�b��^lZ=qC\��b�~r{��\�t�a4|~k%��m{Z�x
³ alZ�^z[o|�n���[{t�v�t�m)kbZ�|�j�n�[ym{Z�j6[ou�Z@^z[�,i��^�[y�lZ�v²j��y[Xqi[o�lZVt�^b|}n�r@t�^l�oZ ³ alZ@^lr@ZX���lj�kw��ZXZ�^�}^lrXt=^+��Z@^b��Z@^lr@Z��"º+�lZ���uwu�Z@k4��j=[oZ@|}n�[ot1t=¬`[o�bZw^lt=mou�j=|)j�r�[o�~t=^�\��bZ@^T[y�lZ«u"j=r{�b��^lZ

269

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c�f

u�Z@moZ@|}n�v²j=ab�oZXk�qb\��b�~r{��\�j=�V[ot��b��[�[y�lZÆ«® ¬gZ�n�[{t�vbmot1r@ZXZ@k�\��}[o� [o�lZ�[ym{Z�j6[ou�Z@^z[��
���bZ�u�j�r{�b�}^lZ"vbm{t=u�vb[y|�n��y�zab[�kbte\�^·\��}[o�¤[o�lZ �oj=u�Z7¯5±�³#´vµ_¶_·�¸¤¹>º�¶ V�W Z@mym{t�m
j6^lk�[y�lZ��{j=u�Z/ab^lk4Z@m{k4tg�oZ��y�lte\�^R�+n�[y�lZ�kbtg����u�Z@[omyng�
���lZ�t=v�Z�m�j=[ot�m�\�j������ot�|~j=[{Z@k���m{t�u [y�lZ±v²j=[y�~Z�^+[Xq4����^lr@Z±[o�lZ�u"j�r{�4��^lZ�j6vbv²j=m{j=[oal�

\�j����}^l�y��kbZ�j	�y�b��Z@|�kbZXk�mot1t=u t��C��[o�Pte\�^C�)���lZ±t�^b|�n�\�j�n�[y�²j=[�[y�lZ±t=v�Z�m�j=[ot�m�r@t�ab|�k
��Z�j=|~Z�mo[{Z@k�[ot�vlj=[o��Z@^z[�k4��°wr@a4|�[]n8\�j���[y�bm{t=al£��Tj=alk4��t`j=^bk��z�~kbZ@t�u�t�^b�}[{t�mo�X�3�±^
[y�b�~�Ikbjen�qi[o�lZ��z�~k4ZXt�k4�~��vb|�j�ns\�j��Iab^4vb|�al£�£gZXkwj=^lk«[y�lZVj=alk4��t/u�t=^b��[ot�m�\�j��I�bm{t=¬gZ@^'�
¡ ��[{Z@m«[y�lZ3nbmo�y[wj=[y[{Z�u�vb[s[{t©[ym{Z�j6[��b��uRq�[y�lZ"v²j=[y�~Z@^z[«�oj=�~k�[y�²j=[s�lZ"�¥Z@|}[�j��	�}�

�bZs�²j�k�m{Z@rXZ@�}�gZ@k8j=^©Z�|~Z@r@[omy�~r��y�lt+r{¬�t�m¯[o�²j=[��ot=u�Z@t�^lZ��²j�k`v�t�abmoZXkR�bt�[±r@t1J�ZXZ	t=^
�4�~���²j�r{¬}G7h�Z �¥Z@|}[wj8[y�zabu�v·j=^lk¤�lZXj=[�j=^lk¤�lZ�j=mok·j©�baª���@�}^l£��ot�ab^bk ��m{t=u [o�bZ
Z ³ ab��vbu�Z@^z[X��º+��^lr@Zw[y�b�~��\�j��s�4�~��^b��^z[y�T[omoZ�j=[yu�Z�^z[�q2�lZ�¬z^lZ�\¶[o�²j=[�[o�4�~��\�j=�s^lt�[^bt�mou�j=|G�øh¯Z���ZX£ij6^·[{t�£gZ�[�abv ��m{t�u [o�lZ [omoZ�j=[yu�Z�^+[�[{j=�b|~Z�[ot�£gt%�¥t�m��lZ�|�vC�¿/G[
\�j��sj=[�[o�b����u�t�u�Z@^z[�[o�lj=[s[y�lZwt�v�Z�m�j=[ot�m��b��[�[y�lZz«® ¬�Z@n%[{t vbm{t+rXZ@ZXk�\���[o��[o�bZ
[ym{ZXj=[ou�Z@^z[������lZ�vlj=[o��Z@^z[/�oj=�~k©[y�²j=[/�lZs�¥Z@|�[�|��}¬gZ	�b����j=myuÃ\�j��/��Z@�}^l£��y�lt+r{¬gZ@k��zn
Z�|~Z@r@[omy�~r���[]n�j=^bk�[o�lj=[P�4�~�I�²j=^lk�\�j��)|~ZXj��+�}^l£��b�~�)��t+k4n���h�Z¯\�Z�^+[P[{t�[o�lZ¯[omoZ�j=[yu�Z�^+[
mot1t=u k4t1t�m�j=^lk©v�t�ab^lkbZ@k%t�^8��[X�����lZ«t�v�Z@m{j=[{t�m±\�j������lt+r{¬gZXk�j=^lk©�}u�u�ZXk1��j=[oZ@|�n
t=v�Z�^lZXk [o�lZ�kbt+t�m��¥t�m��4��uR��h�Z�j=vbv�Z�j6m{ZXk �z�~�����b|}n"�y�lj=¬gZ�^8j=^lk abvl�yZ@[X�
���lZ/vlj=[o��Z@^z[�\�j�����uwu�Z@k4��j6[{Z@|}n«Z��4j=uw��^bZXk��zn�j	v4�+n+���~r@�~j=^Cq4\��bt«t��l�oZ�mo��ZXk ��^4x

[oZ@^l�yZwmoZXkbk4Z@^b�}^l£`t��:[o�bZw[ym{Z�j6[ou�Z@^z[sj=m{ZXj4qC�bab[s�yal��v�Z@r@[{Z@kT^lt�[y�b��^b£ u�t�moZ«�oZ@my�~t�ab�
[y�²j=^�Z@|~Z@r@[ymo�~r¯�y�bt1r{¬ç�)���lZ¯v²j=[o��Z@^z[:\�j��Pk4�~�yr{�²j=mo£gZXk�j6^lk��yZ@^z[��lt�u�Z�\���[y����^b�y[omyalr�x
[y�~t�^b�s[{t�m{Z�[oabmy^¦�����lZ��yaªJ�Z@moZXk�j=^zn%��abmo[y�lZ@m�moZ�j�r�[o��t�^l�X�`���lZ��lt��yvb�}[�j=|:vb�zn+�y�~r��~��[
\�j��wr�j=|}|~Z@k¤�}^CqPj=^lk �bZ �¥t=ab^lk [y�lZ�u"j=r{�b��^lZ rXj=|��}�bm�j=[y�~t�^¦\��}[o�b�}^��yv�ZXr@�¢nlr�j6[o�~t=^l�X�
���bZ�u�Z�j6^b��^l£«t=��[y�lZ�u"j6|���ab^lr�[o��t�^�u�ZX�y�{j�£gZ�\�j���^lt�[�ab^bkbZ@mo�y[{t+t+k'�)���lZ�u"j=r{�b��^lZ
\�j���[o�bZ@^`ab�oZXk [{t�[omoZ�j=[�vlj=[o��Z@^z[{���¥t�m�[y�lZ�m{ZX��[¯t��®[y�lZ�klj�ng�

/G^�j�r@[ya²j=|��}[]ngq��ba4[®ab^4¬+^bt�\�^s[{t�j=^zngt�^bZ�j=[2[y�²j=[2[o�}u�Z=q�[o�lZ)v²j=[y�~Z@^z[C�²j=k�moZXrXZ�����ZXk
j�u"j��y�y�}�gZ©te�gZ�m{kbt��oZ�q¯rXt=^lrXZ�^+[ym�j=[oZXk¨��^·[o�lZRrXZ@^z[oZ@m t���[y�lZ`[omoZ�j=[yu�Z�^z[�|~t+r�j6[o�~t=^C�
¡ ��[{Z�myxG[y�lZ�x �;j�r@[s�y�}u�ab|~j=[o��t�^l��t���[y�lZ"j�r@r@��kbZ@^z[moZ@��Z�j=|�ZXk�v�tg�o�����b|�Z�kbt��oZX�	t���ce�4qÍh10`0
[ot��gh1qñ0`0`0�m�j�k4�V�}^�|~Z@�o��[o�²j6^Tc��oZ@rXt�^bk`te�gZ�m/j=^Rj=moZ�j�t���j=��t=ab[�c�r@uR�

�±�gZ�mP[y�lZ�\�Z@Z@¬+�)�¥t�|�|�t�\��}^l£±[y�lZ¯j�rXr��~kbZ�^+[Xqi[o�lZ�v²j=[y�~Z�^+[)r@t�^z[o�}^+abZXk�[ot��²j��gZVv²j=��^
�}^	�b���®^lZ@r{¬«j=^bk��y�lt=ab|~kbZ�m��Yh�ZP|�tg�y[®[o�lZ:��ab^lr�[o�~t=^«t��b�b���®|�Z@��[�j=mou j=^lks�²j�k	v�Z@my�~t+k4�~r
��t�ab[o��t���^²j=al�yZ�jwj=^lk �gt�uw��[y��^l£b�Yh�Z�\�j��VZ@�gZ�^z[oa²j=|}|�n"�btg�yvb�}[�j=|}���@ZXk"�¥t�m�m{j�k4�~j=[o��t�^4x
�}^lk4alr@ZXk�u�ngZ�|���[y�~�2t��1[o�lZPrXZ@my�z�~r�j6|1r@t�m{ksr�j=ab�y��^b£�v²j=m{j=|�n+���~��t��4�b����|�Z@��[®j=myu j=^lks��t�[y�
|�ZX£g�@q�|�Z@��[���t1rXj=|:rXt�mok�v²j=m{j=|�n+���~�w¾;\��b��r{�T|�Z@��[��b�}u ab^²j=�4|~Z«[{tR�yv�Z�j=¬ ¿ q�^lZ@a4m{tg£gZ�^b�~r
��te\�Z�|Cj=^bk��b|�j=kbkbZ@mXqbj=^bk�v²j=m{j=|�n+�y����t���[o�lZ±|�Z@��[Pk4��j6vb�bm�j=£�u`�Yh�Z±j=|~�yt	�²j�k�j�|~ZX���~t�^
t=^8�b�~�±|�Z@��[/|}ab^l£ j=^bk©m{ZXr�abmomoZ@^z[��lZ@myv�Z@���y��uwvb|�Z��R�y¬z��^%�}^b�¥ZXr�[o�~t=^l�X�:h�Z«k1�~ZXk©��mot�u
r@t�uwvb|���r�j=[y�~t�^l�Pt���[o�lZ�te�gZ�m{kbtg�yZ:n4�gZ�u�t�^z[y�l�¯j=��[{Z�m�[o�lZ�j�r@r@�~k4Z@^z[��

270

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(c�d

� �YX_��� -�|�x#q t�r�ÂZ	 t�r¤p_�'t��1sfp_qfx)q[�3xm|<��{Sr�|�x
���bZ±���lZ�m�j�r x��gh±\�j��:�y�zab[Pkbte\�^��¥t�mI[oZX�y[y��^l£�[y�lZVklj�nwj=��[{Z�mI[o�b���Pj=rXr@��kbZ@^z[X���±^lZ�|~t=x
rXj=| ¡ 2D4�§ Z@^l£��}^lZXZ�m�j6^lk�t�^lZ)��m{t=u[o�lZ:�lt�u�ZPt�°wr@ZP��^�4�j=^²j�kbj�r�j6u�Z)[{t52:�O494T[ot
�}^z�gZX��[o��£ij=[{Z=�)���lZ@n"�yv�Z@^z[�j�kbjen�moab^4^b��^l£«[y�lZ/u"j=r{�b��^lZ�[o�bmot�al£�� [{Z@�y[o�Xqb�bab[Vr@t�ab|�k
^bt�[/m{Z�vbm{t+k4alr@Zwj Æ`j=|���a4^lr@[y�~t�^�h6ªb�	���bZ ¡ 2D4�§ Z@^b£���^lZ@Z@m���mot�u [y�lZ��lt�u�Z�t�°wr@Z
moZ@v�t�mo[oZXk4|}n�Z��+vb|~j=��^lZ@kw[y�²j=[:��[I\�j��P^bt�[Pv�tg�y�y���4|~Z��¥t�m)[o�lZ����lZ�m�j�r x��gh�[{t�t���Z@mokbtg�oZ/j
vlj=[o��Z@^z[������lZ92)�O494Tvb�zn1���~r��~�y[�r@|�j6��u��2[y�²j=[®�lZ�j���¬gZ@k ¡ 2D4�§�j6[�[o�4�~�®[y��u�ZI���b[y�lZ@moZ
\PZ@moZ«j=^zn�t�[o�bZ@m±moZ@v�t�mo[o�±t���m�j�k4�~j=[o��t�^�te�gZ@moZ��+v�tg�yabmoZ�j=^lk`[y�²j=[¡ 2D4�§¦v�Z�m{�ot=^b^lZ@|
¾¥��^lr�|�alk1��^l£�[o�lZ ³ alj=|��}[]n`j=�o�ya4m�j=^lr@Z�u"j6^²j�£gZ�m ¿ [{t�|�k`�b��u [y�²j=[¡ 2D4�§¤¬z^lZ�\ t��I^btj=rXr@��kbZ@^z[o����^z�gt=|��z��^l£�m�j�k4�~j=[o��t�^ t���Z@moZ��+v�t��yabmoZ%�zn [o�lZ8���bZ@m�j=r�x���h1����b���"�oZ@Z@u��
t+kbk �y��^brXZ ¡ 2D4�§-\�j����yabmoZ@|}n�j=[�|~Z�j=�y[�je\�j=moZ`t���[o�lZ7h±j=uw��|}[{t�^ j�r@r@��kbZ@^z[w[o�²j=[
�lj�k�t+rXr@a4mom{Z@k¦�oZ��gZ@^�u�t�^z[o�l����Z��¥t�m{Z�j=^lk�[o�bZ�ïPj=¬z��u�j`j=rXr@��kbZ@^z[Xq)j=^lk'q�Z��gZ�^��zn
[y�lZ@�}m�j�r@rXt�ab^z[Xq2|�Z�j=my^lZXk8t=�:[y�lZ�8�ZXt�mo£���j�|~j�\ ��ab��[�j=m{t�a4^lk8[o�b���±[o�}u�Z�¾¥\��b�~r{�%�²j=k
��ZXZ�^ nb|�ZXk��¥t�a4mPu�t�^z[o�l�PZ�j=my|���Z@m ¿ �����lZ ¡ 2D4�§8Z@^l£��}^lZXZ�m{��[y�lZ@^"�yal£g£�ZX�y[oZXk"[y�²j=[�j6^
Z�|~Z@r@[omy�~rXj=|'vbmot��b|~Z�uµuw�~£��z[��lje��ZsrXj=al�yZXkR[y�lZ�vbm{t=�b|~Z�u`�
���lZ±Z@|~Z@r@[ymo�~r��y�lt+r{¬w[o�lZ@t�mon�\�j���r{�lZ@r{¬gZXkRt�ab[:[o�lt=m{t�al£=�b|�n��zn"j6^"��^lk4Z@v�Z@^lkbZ�^z[

Z�^l£��}^lZXZ�mo��^b£�n4mouR� ���lZ£nb^²j=|�moZ@v�t�mo[��^bk4�~rXj=[{Z@kÇ[y�²j=[�[y�lZ@moZ%\�j�� ^lt¤Z@|�ZXr@[ymo��r�j=|
£=m{t�ab^bk4��^l£wvbm{t=�b|~Z�u �}^`[o�bZ	u"j=r{�b��^lZ=q'j=^bk`��[±k4�~k`^bt�[�j=v4v�ZXj=m/rXj=v²j=�b|�Z	t��)£=���z��^l£
j�v²j=[y�~Z@^z[�j=^"Z�|~Z@r@[omy�~rXj=|²�y�lt+r{¬ç�:���lZ�2)�O494 vb�zn+�y��r@�~��[�r{�lZ@r{¬gZ@k [y�lZ±rXj=|��}�bm�j6[o�~t=^�t��
[y�lZ����lZ�m�j�r x��ghsj=^lk"�¥t�ab^bk"��[:[{t	��Z/�{j6[o�~���;j�r@[ot�mon���h�Z�vbab[�[y�lZ±u�j�r{�b��^bZ��²j�r{¬���^z[{t
�yZ@my�+��rXZ�t�^ ¡ vbmy��|�p+q'cedgfg�1qbrXt�^z�z��^brXZXk�[o�²j6[���[�\�j���v�Z�mo�¥t�myu��}^l£�vbm{t=v�Z�mo|�n��

ÑOÒßí C£àlØ)ÙED Õ,FCà+Ø°å=àl×@ã�Õ�æ ågÕ�×9ÙªÕYæ�ç]\68@æ}Þ!á£Ó�ëlìKJ
���4m{ZXZ/\PZXZ�¬+�¯|~j=[{Z�m�q4t=^ ¡ vbmy��|®cgcgq�c�dgfg�4q4j=^lt�[y�lZ@m�u�j=|�Z�v²j=[y�~Z�^+[�\�j����yr{�lZXk1ab|~Z@k�[ot
moZXr@Z@����Zwj=^�Z@|~Z@r@[ym{t�^�[omoZ�j=[yu�Z�^+[�j6[@2)�O494 �¥t�m�j��y¬z��^�rXj=^lrXZ�m�t�^%[o�lZ��y��kbZ«t��:�b�~�
�;j=rXZ������lZ�vbmoZX�or�mo�}vb[o��t�^«\�j=���¥t�m�c�0�Æ�Z<;������lZ��{j6u�Z�[oZXr{�b^4�~r@�~j=^«\��lt/�²j=k�[om{ZXj=[{Z@k
[y�lZCnbm{��[/�Inz|~Z�m/j�r@r@��kbZ@^z[V�z�~r@[y��u�v4m{Z@vlj=m{Z@kR[o�4�~��v²j=[y�~Z�^+[V�¥t�mV[ym{Z�j6[ou�Z@^z[���Æ�alr{�`t��
\��lj=[V�¥t�|�|�t�\V�P�~����m{t=u�[o�lZ�t�v�Z@m{j=[{t=m�j ��kbZ@v�tg�y�}[o��t�^C�
¡ ��\��}[o���lZ@m��¥t�mou�Z@m�v²j6[o�~Z�^z[�q2�y�lZ�Z@^z[{Z�m{Z@kT[o�lZ�vbmoZX�or�mo�}vb[o��t�^Tkbj=[�j�j=^lk%[o�lZ�^

^bt�[o��rXZXk�j=^�Z�mom{t=mw�}^¦[o�lZ�u�t1k4Z�� ¡ £ij=��^����lZ�al�oZ@k�[y�lZ ZXk4�}[B«�L ¬gZ�n¦[{t%r{�²j=^l£�Z
[y�lZ�u�t+kbZ±��mot�u -¯xGm{jen�[{t�Z@|�ZXr@[ym{t�^'� ¡ ��[{Z�mV�y�lZ@nb^b���y�lZ@kRZ@k4��[y��^l£4q4�y�bZ�v4m{ZX�y�oZ@kR[o�bZ
þ�ý�¸�µ_þ�¶�¬gZ�n8�oZ��gZ@m{j=|�[y��u�ZX�±[ot"vb|�j�r@Z	[o�bZ�r@abmo�ot�m�t=^8[o�lZ���t�[o[ot�u t��I[o�lZ«�yr@moZXZ@^'�
ºz�lZ��{j�\-[o�bZ^NSý�±�¯�þ�ý�±�úQPTu�ZX�y�{j�£gZ�k4���yvb|~jen�ZXk�j=^lk [oa4mo^lZ@k�[y�lZ���ZXj=uEt�^C�
´¨�}[o�b�}^�jV�¥Z@\¤�oZ@rXt�^bkb��[o�bZPu�j�r{�b��^bZP���+a4[�kbte\�^Cq�u�j=¬z��^b£±jV|~t�alk�^lt����oZPj=alk4�}�b|~Z

�z�~j¦[y�lZ ¾;^lte\ \Pt�my¬+�}^l£ ¿ ��^z[oZ@m{r@t�uR� ���bZ�k4���yvb|~j�n¢�y�bt�\PZXk ¯5±�³)´mµ_¶�·S¸¤¹>ºY¶ V�W

271

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�I0

j=£ij=��^'�����lZ t�v�Z@m{j=[{t�m«myal�y�bZXk¤��^z[{t8[o�bZ"[om{ZXj=[ou�Z@^z[�m{t+t�uRq��lZ�j6mo��^b£©�lZ@m�v²j=[y�~Z�^+[
u�tij=^4��^l£��¥t�m"�lZ�|�vC�ih�Z©��ZX£gj=^¨[{t�moZ@u�t���Z©[o�lZ©[{j=v�Z`[o�²j6["�²j�k¢�lZ�|~k¢�b�����lZXj�k
�}^¢v�tg�y�}[o�~t=^Çj=^lk¨�oj=�~k¨�yt�u�Z�[o�b�}^l£T\�j���\�m{t�^b£b� º+�lZ%j���¬gZXkÇ�b�}u \��²j6[��lZ©�¥Z@|}[�q
j6^lk��bZ�moZ@vb|}�~Z@k'q¬KßnbmoZ�M t�^%[o�lZ����~kbZ�t��:�b�~�/�;j=rXZ���º+�bZ��}u�u�ZXk1��j=[oZ@|�n�\PZ@^z[�[{t�[o�bZ
�btg�yvb�}[�j=|2vb�zn+�y��r@���y[±j=^lkR[ot�|~k��b��uµ[o�²j=[±j=^lt=[o�lZ�m�v²j6[o�~Z�^z[/j=v4v�ZXj=m{Z@k`[{tw�²j��gZs��ZXZ�^
�4abmo^lZ@k'� ¡ ��¬gZ@k��zn�[o�lZ�vb�zn+�y��r@���y[:[{t�kbZX�yr@my����ZXk�\��lj=[)�²j�k��²j=vbv�Z@^lZ@k'qz[o�lZ�v²j=[y�~Z�^+[
Z �+vb|�j=�}^lZXk"[y�²j=[V�yt�u�Z�[o�b�}^l£��²j�k��b�}[��b�}uµt�^ [y�lZ��y��kbZ�t���[o�lZ/�;j�r@Z�q4�bZ��oj�\j.�²j����
t=��|���£��z[�q�j6^lkT�lZw�lZ�j=mok¤j`�y������|���^b£R�yt�ab^lk�moZ@uw��^b���orXZ�^z[t�����mynz��^l£RZX£g£g�@�Éh¯Z�\�j=�
��Z@myn�j�£���[{j=[{Z@k j=^lkRj��y¬�ZXk'q+K�´¨�lj=[V�²j=vbv�Z@^lZ@k�[otwu�Z�q1\��²j=[V�²j=vbv�Z@^bZXk [{t�u�Z`_�M
���b����v²j=[y�~Z@^z[Ik1�~ZXk���mot�u [o�lZ�te�gZ�m{kbt��oZVt�^�Æ`j�n"cgq4cedgfg�4q=[o�bmoZXZ�\PZXZ@¬+�Pj=��[{Z�m�[o�bZ

j=rXr@��kbZ@^z[X�.h¯Z��²j�k8k4���ot�my�~Z@^z[{j=[o��t�^Cq�\��4�~r{�%vbm{t�£�m{Z@�o�oZ@k8[{t�rXt=u"j4q��¥Z@�gZ�m�[{t8c�0=ª�a{¼�q
j6^lk©^lZ@a4m{t�|�tg£��~rXj=|�klj=u�j�£gZ=� ¡ ^�j6ab[{t�vb�yn©���lte\�Z@k�j=^�j�r@a4[{Z	�b��£��4xGkbtg�oZ�m�j�k1��j=[y�~t�^
�}^1��abmyn�[{t«[y�lZ�mo�~£=�+[�[oZ@uwv�t=m�j=|'|�t���Z/t���[o�lZ��bm{j=��^Rj=^lk [o�bZ��4m�j=�}^R��[{Z�u`�

� ��bS��� -�|�x#q t�r�ÂZ	 t�r¤p_�'t��1sfp_qfx)q[�3xm|<��{Sr�|�x
¡ ��[{Z�m�[y�b�~�¯�oZ@rXt�^lk©�)nz|~Z�m�j�r@r@��kbZ@^z[�q²[o�bZ.2)�O494 vb�zn+�y�~r��~��[±��uwu�ZXk4�~j=[{Z�|�nw[{t+t�¬"[o�bZ
u�j�r{�b�}^lZ)t�ab[®t��b�yZ@my�+��rXZ�j=^lk	rXj=|�|�ZXk ¡ 2D4�§"[{t�j=|~Z�mo[2[o�bZ@u[{tV[o�b���®�yZXr@t�^lk«j=v4v²j=m{Z�^z[
te��Z@m{Z �+v�tg��abm{Z=�`���bZ�vb�zn+�y��r@�~��[s[y�lZ@^T��Z@£ij=^TjRr�j6m{Z@��a4|:�}^z�gZX��[o��£ij=[o��t�^�t����b���ste\�^C�
h¯Z�\Pt�mo¬�ZXk�\���[y��[o�bZ�t�v�Z@m�j6[{t�mXq=\��lt±moZ@u�Z@u���Z@moZXk«Z �bj=r@[o|}n�\��²j=[I���lZ��²j�k	kbt�^lZ�t=^
[y�b�~��t+rXrXj��y��t�^C� ¡ ��[{Z�m±j�£=m{Z�j6[VkbZ�j=|'t���ZJ�t=mo[�q1[o�lZ�n"\�Z�m{Z�Z@��Z@^z[oalj=|�|}n j=�b|�Z±[{t�Z@|}�~r���[
[y�lZ�¯5±�³#´vµ_¶_·�¸¤¹>º�¶ V�W u�ZX�y�{j�£gZ=�¸���lZ�n¨kbZ�[{Z@myu��}^lZXk¨[y�²j=[�klj6[�j¦Z@^z[omyn¨�yv�ZXZ@k
k1abmo�}^l£8ZXk4�}[o�}^l£`\�j���[o�lZ"¬�Z@n��;j=r@[{t=m���^¦vbmot1k1alr@�}^l£©[o�lZ�Z�momot�m«rXt=^lk4��[y�~t�^¤G�/G�V[o�bZ
v4m{ZX�yr@my��vb[y�~t�^�klj=[{j \�j��	Z@k4��[oZXk�j=[j �;j���[�v²j�rXZR¾ j=������^lj=[oabm{j=|)�¥t�m��ot�u�ZXt=^lZ«\��lt
�lj���m{Z�v�ZXj=[{Z@k"[o�lZ�vbm{t+rXZ@k4abm{Z�j�|�j=mo£gZ�^zabu���Z@m�t��C[o�}u�Z@� ¿ qz[o�bZ/te�gZ@mokbtg�yZ�t+rXr�abmomoZXk'�
/G[)[ot1t�¬��ot�u�Z�vbm�j�r�[o��rXZ���Z��¥t�m{ZV[o�bZVv4�+n+���~r@���y[PrXt�a4|~k�m{Z@v�Z�j6[:[y�lZVvbm{t+rXZ@k4abm{ZVm�j6vb�~k4|}n
Z�^lt�al£=�R[otwZ�|���r@��[�[o�lZ�¯5±�³#´vµ_¶_·�¸¤¹>º�¶ V�W u�ZX�y�{j�£gZ�j=[V\��}|�|G�
���lZ�^lZ �1[�klj�ngqçj=^�Z�^l£���^bZXZ@m¯��m{t=u ¡ 2D4�§�rXj=|�|�ZXk�j=^lk��{j=��k�[o�²j=[V�lZ�r@t�ab|~k ^lt�[

moZ@vbmot1k1alrXZ¯[o�lZ�Z@momot�m�� ¡ ��[{Z�m�[y�lZ�2)�O494·vb�zn+�y�~r��~��[�Z��+vb|~j=��^bZXk�[y�²j=[:[o�lZ¯vbm{t+rXZ@k4abmoZ
�lj�k [ot���ZRv�Z@mo�¥t=mou�ZXk ³ ab�}[{Z m�j=v4�~k4|}ngq ¡ 2D4�§r@t�ab|�kònb^²j6|�|�nTvbm{t+k4alr@Z©j�����uw��|~j=mu�j=|}��ab^lr@[y�~t�^�t�^���[o��te\�^�u"j=r{�b��^lZ=�)��\�t�klj�n+�Vj=��[oZ@m�[y�lZ�j�rXr��~kbZ�^z[�q ¡ 2+4�§��{j=��k"��[
�lj�k©u�ZXj��ya4m{ZXk8[y�lZ�kbtg�oj�£gZ�¾?j=[/[y�lZ�rXZ�^z[{Z@m�t��I[y�lZÆnlZ�|~k ¿ [{t"��Z��gh1qñ0`0`0�m{j�kb�@� ¡ ^
¡ 2D4�§ÇZ�^l£��}^lZXZ�m	Z �1v4|�j=�}^lZXk%[o�²j6[s[y�lZw��mynz��^l£��ot�a4^lkT�lZXj=m{k��+n%[y�lZwvlj=[o��Z@^z[{��\�j=�
[y�lZ��~t�^�r{�²j6u���Z�m{����Z@��^b£w�oj=[oa4m�j=[oZXk'�

/G^ t�^bZ�|�j�\Ç��ab��[P[o�²j=[:m{Z@�yab|}[{Z@k"��m{t�u [o�bZ��)nz|�Z@m�j=rXr@��kbZ@^z[o�Xq4[y�lZ ¡ 2+4�§ ³ a²j=|}��[]nr@t�^z[omot�|Cu"j6^²j�£gZ�m�[{Z@�y[o�¢nlZXk [o�lj=[¯j¥K�r@abmo�ot�m�abvªMwvbmot��b|�Z@uµ�lj�k���ZXZ�^R�¥t=ab^lk ��^�[o�bZ
�yZ@my�+��rXZ±¾;u�j=��^z[{Z�^²j=^lr@Z ¿ u�t+kbZPj=[�t�[o�bZ@m�r�|��}^b�~r@�2�}^�¼lZ��bmoa²j6mon�t�m�Æ`j=m{r{��t��'ced�fih�j=^bk

272

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�+c

j6|~�ot ��^%[y�lZ���abuwu�Z�m	t��±cedgfih+��Y�t=[o�T[y��u�ZX�@q ¡ 2D4�§·[o�lt�ab£��z[s[y�²j=[�[o�lZw�ot���[]\�j=moZ
v4m{t��b|�Z@u��:�lj�k���ZXZ@^3n4�1ZXk'�:���lZ�m{Z±���:^lts\�j�nw[{t�kbZ�[{Z�mouw��^lZV\��lZ@[y�lZ@m�[o�lZ�m{Z±����j=^zn
moZ@|~j=[o��t�^l�y�4��v���Z@[]\PZXZ@^R[o�lZ@�oZ�vbm{t=�b|~Z�u��Vj=^bk�[y�lZ��)nz|~Z�m�j�rXr��~kbZ�^+[o�X�

� ��bS��� � x)w>tvs�x)Â¿o.�_x#qft��dc��fe¥y:qf{�uYw>x�+=|
���bZ¦�ot���[]\�j=m{Z��¥t=m©��t=[o�[o�bZ¤���lZ@m{j�r�x��gh¢j=^lk���lZ�m�j�r x��10�K�Z@�gt=|��gZ@kªM¨��m{t�u [o�bZ
���bZ@m�j=r�x��V�ot=��[]\�j=moZ�� ¡ kbk4�}[o�~t=^²j=|���a4^lr@[y�~t�^l�C�²j=k�[ot¯��Z�j=kbkbZXk���ZXr�j6al�oZ:[o�lZ:���lZ�m�j�r x
�I0 ¾?j=^lk ���lZ@m{j�r�x��gh ¿ t�v�Z@m�j6[{Z8��^A��t=[o�°-�xGm{j�nÇj=^lkAZ@|�ZXr@[ym{t�^Au�t1kbZ=q±\��b�}|~Z©[o�bZ
���bZ@m�j=r�x��¯�²j���t=^b|�nC-¯xGm�j�n�u�t1kbZ=��498@*�u�t+k4�¢nlZXk�[o�lZP�ot���[]\�j=m{Z:�¥t�m�[y�lZ����bZ@m�j=r�x��I0
[ot��²j6^lk4|~Z�[y�lZ	k4alj=|2u�t+kbZX�@��´¨�lZ@^`[o�lZs���lZ@m{j�r�x��gh�kbZ��gZ�|~t�vbu�Z@^z[¯��Z@£ij=^Cq ¡ 2D4�§
Z�^l£��}^lZXZ�m{��j=klj=vb[oZXk�[y�lZw�ot���[]\�j=m{Zw��m{t�u [y�lZ"���bZ@m�j=r�x��1q®�bab[�[o�bZ@n�j=|~�yt���t�mym{te\�Z@k
�yt���[]\�j=m{Z�m{t=ab[o�}^lZX����mot�u [y�lZ����lZ@m{j�r�x��10©[{t©�²j6^lk4|~Z�Z�|~Z@r@[omot�^¤u�t+kbZ=q�\��b�~r{��\�j=�
j6|�|~te\PZXk�ab^lk4Z@mV[o�lZ���mVr@t1t�v�Z@m{j=[o�}�gZ�j�£=m{ZXZ�u�Z�^z[{�X�
¡ ��[{Z@m�[y�lZ©�yZXrXt=^lk �Inz|~Z�m�q���Z �bj=�Xq/j=rXr@��kbZ@^z[Xq±jTvb�zn+�y��r@���y[�j=[�[o�lZ%¹V^b����Z@m{����[]n

t=��4P�b��r�j�£�t·_�t=��^z[74�Z@^z[{Z�m �¥t�m�*�j=k4��j=[y�~t�^¨���lZ@m{j=vzn¨�lZ�j=mok j6��t�a4[�[o�lZ����lZ�m�j�r x
��h��ot���[]\�j=m{Z«vbmot��b|�Z@u j=^lk8kbZ@r@�~k4ZXk%[{t nb^lk%t�a4[/\��lZ@[y�lZ@m�[y�lZ«�{j=u�Z�[o�4��^l£"r@t�ab|�k
�lj=vbv�Z@^©\��}[o�`[y�lZ����bZ@m�j=r�x��I04� ¡ [5nbmo�y[�q²[o�bZsvb�zn+�y��r@�~��[±\�j��±ab^lj=�b|~Z�[{twm{Z�vbm{t+k4alr@Z
[y�lZ�Z@mym{t�mVt�^��b����u"j�r{�4��^lZ=q4�bab[V[]\Ptwu�t�^z[o�l��|~j=[{Z�m��lZ��¥t�ab^lk�[o�bZ�|}��^b¬ç�
���lZ����lZ@m{j�r�x��10�j=[¯[o�bZ�¹¯^4���gZ�m{����[]n�t��D4P�b��r�j�£�t��~��al�yZXk©[ot�[{ZXj�r{�8��[oalkbZ�^z[{�/��^

jwm�j�k4�~j=[o��t�^`[y�lZ@m{j=vzn©�yr{�lt1t=|�rXt=^lk4alr�[{ZXk8�zn`[y�lZ�r@Z@^z[{Z�m��s���lZ�rXZ�^z[{Z@m�jÔ��vb�zn+�y��r@���y[�q
¼bm{j=^b¬%Y�t=m{£gZ�m�q2^lt�[o��rXZ@k�[o�lj=[�\��lZ@^lZ��gZ�m�j ^bZ@\ r@|~j��o��t����y[yalkbZ@^z[o���y[{j=mo[oZXk�ab�y��^b£
[y�lZ����lZ@m{j�r�x��104q)��al�oZ@��j6^lk��4m{Z�j6¬gZ@mo��t�^¤[y�lZ�u"j�r{�4��^lZ"[ymo��v4v�Z@k'qP���zab[o[y��^l£�kbte\�^
[y�lZ/ab^b�}[��I���bZX�oZ��;j=�}|�abmoZX�@q+\��b��r{� �²j�k"��ZXZ@^�t+rXr�abmomy��^l£�Z��gZ�m�����^lr@Z±[o�bZ��or{�lt+t�|'�²j=k
j=r ³ ab��moZXk [o�lZ�u�j�r{�b�}^lZ�qbuw�~£��z[��lj=vbv�Z@^`[y�bm{Z@Z�[y��u�ZX�Vj�\PZXZ@¬ \��b�}|~Z/^lZ�\�y[yalkbZ�^+[o�t=v�Z�m�j=[oZXk¦[o�lZ"u�j�r{�b�}^lZ j=^lk¦[y�lZ@^�k4���{j=vbv�Z�j6m«�¥t�m�u�t�^z[o�l�@�¦Y�t�mo£gZ@m�kbZ�[{Z�mouw��^lZ@k
[y�²j=[�^lZ@\ �y[yalkbZ�^+[o�/u"j6¬gZ	u�j=^zn�k4��J�Z@moZ@^z[±[]nzv�ZX��t��Iuw�~��[�j=¬�ZX�/j6^lk`al�yZ�Kyr@moZ�j=[y����Z
u�Z@[y�lt+kb�!M�t���Z@k4��[y��^l£�v²j6m�j=u�Z@[oZ@m{��t�^�[o�bZ�r@t�^l�ot=|~Z������bm{t=al£���Z �+v�Z�mo��u�Z@^z[{j=[o��t�^Cq
�bZ��¥t�a4^lkR[y�²j=[¯rXZ�mo[�j6��^RZXk4�}[o��^b£w�yZ ³ alZ�^lrXZ@��rXt�mym{Z@|~j=[{Z@k�\��}[o�R�b|~te\�^���al�oZ@�/j=^lkRkbZ�x[oZ@myu��}^lZXk�[y�²j=[«[o�bZ��{j=u�Z�rXt�uwvbab[oZ@m«�bab£ ¾?j�����^¦[y�lZ����lZ@m{j�r�x��gh©�ot���[]\�j=moZ ¿ \�j=�
moZX��v�t�^b�y���4|~Z��:���lZ�vb�zn+�y��r@���y[¯^lt�[o�¢nlZXk�[y�lZ�¼�½ ¡ qb\��b�~r{��^lt�[y��nlZ@k`���bZ@m�j=r�x��I0«ab�oZ@mo�
� �= ?�
���lZ	�ot���[]\�j=m{Z	Z@momot�m¯�~�D��ab�y[�j�^zab�~�oj=^lrXZ	t�^©[o�bZ����lZ�m�j�r x��10���ZXrXj=al�yZ	[o�b���¯u�j6x

r{�4��^lZ	�lj��/��^lk4Z@v�Z@^lkbZ�^z[��²j=m{k1\�j=moZ�vbm{t=[{ZXr�[o�}�gZ«r@�}m{r�ab��[o���¥t�m/u�t�^b�}[{t�my��^l£�[o�bZ�Z@|�ZXr�x
[ym{t�^`��ZXj=uÃ�or�j6^b^b��^b£b�±���bZ	vbm{t=[{ZXr�[o�}�gZ	r���mor@ab�}[{�¯kbt�^lt�[/j=|�|�te\ [o�bZs��Z�j=u [{t�[oabmy^
t=^Cq±�yt�[y�lZ@moZ%���"^lt¤klj=^l£�Z@m t���m�j�k1��j=[y�~t�^¨Z �+v�tg��abm{Z%[{t�j�v²j=[y�~Z�^+[X�¸´¨�b��|�Z`[o�bZ
���bZ@m�j=r�x��I08moZ@|}�~ZX�«t=^�u�ZXr{�lj=^b�~rXj=|��}^+[oZ@my|~t+r{¬1�«�¥t�m«u�t�^b�}[{t�my��^l£�[o�lZ�u�j�r{�b�}^lZ�qI[o�bZ

273

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(���

���bZ@m�j=r�x���h«moZ@|���ZX��|~j=m{£�Z@|�n�t�^R�ot���[]\�j=moZ��

� ��bS� � o.�_xhg�{���sjiÆtªqfxlk@m�p��In
¡ |~ZX�y�ot�^8[ot"��Zs|~Z�j6mo^lZ@k`��m{t�uÃ[o�bZ«���lZ@m{j�r�x��gh��y[ot�monR�~�¯[o�²j=[±�¥t1r�al�y�}^l£"t�^8v²j6mo[o��r�x
a4|�j=m��yt���[]\�j6m{ZêK��bal£g�¼M�����^bt�[�[o�lZ \�j�n¤[{t%u�j=¬gZ�j%�{j=�¥Z��yn+�y[oZ@uR�F;±�}mo[ya²j=|�|}n�j6|�|
r@t�uwvb|~Z �¦�ot=��[]\�j=moZ`rXj=^ ��Z�u"j=kbZ�[{t8��Z��²j��gZ���^ j=^�ab^lZ��+v�ZXr�[{ZXk¢�;j=�y�b��t�^¤ab^lkbZ�m
�yt�u�Z¯r@t�^lk4�}[o��t�^l�X�����lZV�²j��y��r�u����y[{j=¬gZ@�)�bZ@m{ZV��^z��t�|���ZXk�v�t+t�m)�ot���[]\�j=moZ¯Z�^l£��}^lZXZ�mo��^b£
v4m�j�r�[o�~r@ZX�	j=^lk��bab�}|~k4�}^l£�jRu�j�r{�b��^bZ�[o�lj=[moZ@|���ZX��t�^�[y�lZ��yt���[]\�j6m{Z��¥t�m	�{j=�¥Z�t�v�Z@myx
j6[o�~t=^C�"¼babmy[o�lZ�mou�t�m{Z=q�[y�lZwvlj=mo[y�~r@a4|�j=m�r@t1k4�}^l£�Z@momot�m��~��^lt�[j�����uwv�t�my[�j=^z[�j���[o�bZ
£�Z@^lZ�m�j=|lab^b�{j=�¥Z¯kbZX���~£�^�t���[o�lZV�ot=��[]\�j=moZ�te��Z@m�j6|�|G�Y2��bj6u��}^b��^l£/[y�lZVv²j=mo[)t=��[o�bZ¯r@t1k4Z
�4|�j=u�ZXk"�¥t�m�[o�lZ��In+|�Z@m¯j�r@r@��kbZ@^z[{��������^l��[omoabr@[o�}�gZ=qb�lte\�Z��gZ@mXql��^ kbZ�u�t�^b�y[om{j=[o�}^l£�[o�bZ
te��Z@m�j6|�|��ot���[]\�j=m{Z�kbZX���~£�^3�²j�\V�X�:¼®��mo�y[)[o�bZ±�ot=��[]\�j=moZ/kbZ@�y�~£=^"�~�:kbZX�yr@my����ZXk�j=^bk�[o�lZ�^
[y�lZ/Z�mom{t=m{����Z@|}�~Z@��ZXk�[ot���Z¯��^z�gt=|��gZ@k���^�[y�lZ��Inz|~Z@m�j�rXr��~kbZ�^+[o�Vj=^lk"v�Z@my�²j=vl��t=[o�lZ�m{�X�

o���x#qft��dc��obpg¤{���sji.tªqfxrqzxs*}x)w>{}�t+¥x)rSs�t�r�Âuqzxm|�~��}r�� ¡ 2D4�§Tr�|�j=�}u���v4m{t�vbmy�}x
Z�[�j=myn�mo�~£=�+[o�®[ot���[o���yt���[]\�j6m{Z�kbZ@�y��£�^C��h¯te\�Z��gZ@mXqg��m{t�u��t�|�abuw��^bt�al��kbt1r�abu�Z@^z[�j=[y�~t�^
moZX£ij6m{k4�}^l£�[o�lZ¯j�r@r@�~k4Z@^z[{�@q+[y�lZ�m{Z@vlj=��mo�Xq+j=^lk�[o�lZVZ��gZ@^z[ya²j=|�kbZX���~£�^�r{�²j=^l£�ZX�Xq+\�ZVrXj=^
�4ab��|�k j�mot�al£�� vb��r@[oa4m{Z�t��®��[��
���lZ��yt���[]\�j6m{Z��~��moZX��v�t�^b�y���4|~Z/�¥t�m�u�t�^b�}[{t�my��^l£�[o�lZ�u�j�r{�b�}^lZ/�y[{j=[oab�Xq²j�r@rXZ@v4[o��^b£

�}^bvbab[:j6��t�a4[I[o�lZ�[omoZ�j=[yu�Z�^z[Pk4ZX�y�}m{Z@k'q+j=^lkw�oZ@[y[o�}^l£�[o�lZ�u�j�r{�b��^bZ�abv��¥t=mI[o�b����[om{ZXj=[yx
u�Z@^z[X��/G[¯[yabmo^b�V[y�lZ/��Z�j=uEt=^��}^ m{ZX��v�t=^l�oZ�[{twj=^�t�v�Z@m{j=[{t�m�rXt�uwu"j6^lk�¾ j��y�yabuw��^l£
[y�²j=[�rXZ�mo[�j6��^¢t=v�Z�m�j=[y�~t�^²j6|Vr{�lZXr{¬+��t�^¢[y�lZ`��[�j=[yal��t=�/[o�lZ vb�zn+�y��r�j=|�u"j�r{�4��^lZRj=m{Z
�oj=[o���¼nlZ@k ¿ j=^lk�j=|��ot�[oabmy^l�P[y�lZV��ZXj=u t1J�\��lZ@^�[ym{ZXj=[ou�Z@^z[:�~�)rXt�uwvb|�Z@[{Z@k'qz\��lZ@^ j6^
t=v�Z�m�j=[ot�m�r@t�u�u�j=^lk4�:�}[�q+t�m�\��lZ�^�jsu�j=|���ab^br@[o��t�^w�~��k4Z@[{Z@r@[oZXk'�P���lZ/t�v�Z@m{j=[{t=m�rXj=^
v4mo��^z[�t�ab[��lj=m{kbr@t�vzn	��Z@m{���~t�^b�It��l[o�lZ94�*��¦k4�~��vb|�j�n�t�m�u�j�r{�b�}^lZ��yZ@[yabv�v²j=m�j6u�Z�[{Z@mo�X�
���lZ [omoZ�j=[yu�Z�^z[«ab^b��[«�lj���j=^���^z[{Z�mo|~t+r{¬��yn+�y[oZ@u kbZX���~£�^bZXk¤[{t8m{Z�u�te�gZ�v�te\�Z�m

[ot"[o�lZ�a4^b��[/\��bZ@^%[o�lZ�m{Z�����j��²j=mok4\�j6m{Z«u"j6|���ab^lr�[o��t�^C�����lZ«r@t�u�v4ab[{Z�m/u�t=^b��[ot�m{�
[y�b�~����^z[oZ@mo|�t1r{¬%��n+�y[{Z�u�j6^lkTvbmot��z��kbZX�sk4��j�£=^ltg�y[y�~r«u�ZX�o�oj�£gZ@�X�R½/Z@v�Z@^lk4�}^l£`t=^T[o�bZ
�;j6ab|�[Xq+[y�lZ�rXt�uwvbab[oZ@m�Z���[y�lZ@m�v4m{Z@��Z@^z[{��j	[omoZ�j=[yu�Z�^z[���m{t�u ��Z@��^b£«�y[�j6mo[{Z@k t�m�q+���C[o�bZ
[ym{ZXj=[ou�Z@^z[��~���}^�vbm{tg£=m{ZX�y�Xq²r@moZ�j=[oZX��j�v²j=al�yZ�t=m±j«��al�yv�Z@^l���~t�^`t���[o�lZ�[omoZ�j=[yu�Z�^z[��
���lZ�m{Z¤j=moZ�[]\Pt¢�²j����~rTt=v�Z�m�j=[y�~t�^²j6|�u�t+kbZX�<GÇ[ym{ZXj=[ou�Z@^z[`u�t+kbZTj6^lk�oZ�mo�z�~r@Z

u�t+kbZ��R�2moZ�j=[yu�Z�^z[u�t1kbZwrXt=^+[ym{t�|��s[y�lZ�^lt=mou�j=|)[om{ZXj=[ou�Z@^z[svbm{t+rXZ@�o�X�V/G^¦�oZ�mo�z�~r@Z
u�t+kbZ�q+[o�lZ�ab^b�}[�r�j6^���Z�t�v�Z@m{j=[{Z@k \��}[o� �yt�u�Z�t=��[y�lZ�t�v�Z@m{j=[o��t�^²j=|'j=^lk�[omoZ�j=[yu�Z�^+[
�}^z[{Z@my|~t+r{¬+�/�+nzv²j=�o�oZ@k'q�j6^lk�j�kbk4�}[o�~t=^²j=|®t�v�Z�m�j=[y�~t�^lj=|�r@t�uwu"j=^bkb��j=^lk%r{�²j=m{j�r@[oZ@my�~��x
[y�~r@��u�jen���Z©�oZ�|~ZXr�[{Z@k'� º1Z@my�z�~rXZ©u�t+kbZ�����Z�^+[oZ@moZXkAt�^b|�n¤[y�bm{t�ab£��¢[o�bZ`al�oZ8t=��j
vlj��o��\�t�mok©j=[�[y�lZ��oZ�mo�z�~r@Z�¬�Z@nz��tgj=m{k'�

274

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�=�

���lZ�u�j=^zab�;j�r�[oabmoZ@m«kbZ@�or�mo����ZX�«[y�lZ ���lZ@m{j�r�x��gh©�ot���[]\�j=moZ j����²j��z��^l£%j8�y[{j=^lk1x
j6|~t�^lZ=q�m{ZXj=|}x [o��u�Z�[omoZ�j=[yu�Z�^+[�t�v�Z@m�j6[o��^b£��yn+�y[oZ@uR����lZ8�yn+��[{Z@u kbt+ZX��^lt=[�al�yZ%j
��[�j=^bklj=m{k t�v�Z@m�j6[o��^b£���n+�y[{Z�u t�m�Z��1ZXr�ab[o�}�gZ�� *¯j=[y�lZ@mXq±[o�lZ%m{ZXj=|}x [o�}u�Z©Z �1ZXr@a4[o����Z
\�j��"\�my��[o[oZ@^ÇZ@�yv�ZXr@�~j=|�|}n �¥t=m�[o�bZ%���lZ@m{j�r�x��gh¦j=^lk¢moa4^l��t�^Aj¦�i�1î E)½CE�x�cgcf»����4�
4Pn+r�|~ZX�±j=m{Zsj=|}|~t+r�j=[oZXk�[{t�[o�lZ�r@my��[y�~r�j6|�j=^lkR^bt�^lr@my��[y�~r�j6|'[�j���¬+��al����^l£�j�vbmoZXZ�u�vb[y����Z
�yr{�lZXk1ab|~Z�m��
���lZV�yt���[]\�j6m{Z�qi\�my��[o[oZ@^«�}^�E:½CE�x{cgcVj��o�yZ@u��4|�n	|~j=^l£�alj�£gZ�q6�²j����¥t�a4m�u"jf��t�mIrXt=uwx

v�t�^lZ�^z[{��G)��[{t�moZXk klj=[{j4qbj��yr{�lZXk4a4|~Z@mXq²j��oZ�[Vt���r@mo�}[o��r�j=|�j=^lk"^lt=^lr@my��[o��r�j=|ç[�j=�y¬+�Xq²j=^bk
�}^z[{Z@mymoabv4[s�yZ@my�+��rXZ@�X�����lZw�y[ot�m{Z@kTklj6[�j���^lr�|�alkbZ@��r�j=|}���bm{j=[o��t�^©v²j=m{j=u�Z@[{Z�m{���¥t�m�[o�bZ
j=rXrXZ�|~Z�m�j=[ot�m��oZ�[oabvTj��±\PZ@|}|)j��/v²j6[o�~Z�^z[yxG[ym{ZXj=[ou�Z@^z[�klj6[�j4�s���lZ���^z[oZ@momyabvb[�mot�ab[o�}^lZX�
�}^lr@|}alkbZ

v ¡ r@|~t+r{¬"�}^+[oZ@mymoabvb[¯�yZ@mo�z��rXZ�m{t�a4[o��^bZ
v ¡ �or�j6^b^b��^b£w�}^+[oZ@mymoabvb[¯�yZ@mo�z��rXZ�m{t�a4[o��^bZ
v �2m{j=vl��¾;�¥t�m��ot=��[]\�j=moZ�te��Z@m!�bt�\ j=^bk�r@t�u�v4ab[{Z�ms�²j6m{k4\�j=m{Zw£gZ�^lZ@m{j=[{Z@k���^z[oZ@myxmoabvb[o� ¿
v E®te\�Z�m�abv�¾;�}^b��[y��j=[oZXk�j6[�v�te\�Z�m®a4vs[ot¯�}^b��[y��j=|}���XZ2[o�bZ:��n+�y[{Z�u j=^lksvlj��o�2rXt=^+[ym{t�|
[{t«[o�lZ��yr{�lZXk4a4|~Z@m ¿

v �2moZ�j=[yu�Z�^+[¯r@t�^l�ot=|~Z��or�m{Z@Z@^`�}^z[{Z@mymoabv4[¯�lj=^lk4|�Z@m
v �2moZ�j=[yu�Z�^+[¯r@t�^l�ot=|~Z/¬gZ�nz��tij6m{kR�}^z[{Z@mymoabv4[¯�lj=^lk4|�Z@m
v º1Z@my�+��rXZ�vbmy��^z[{Z�m¯�}^z[{Z@mymoabv4[��²j=^lk4|�Z@m
v º1Z@my�+��rXZ�¬gZ�nz��tij6m{kR�}^z[{Z@mymoabv4[��²j=^lk4|�Z@m
���lZs�or{�lZ@k4ab|�Z@m/r@t�^z[omot�|~��[o�bZ	�oZ ³ alZ@^lr���^l£�t��Ij=|}|'^lt�^4��^z[{Z�momoa4vb[±Z��gZ�^+[o��j=^lkRrXt=xt=m{k4�}^²j=[{Z@�:j=|�|²r@t�^lr@a4mom{Z�^z[�vbmot1r@ZX�o�yZX�@�P��j���¬1��j=m{ZV��^4��[o�~j=[{Z@k«Z@��Z@mon�04�Ùc¯�oZXr@t�^lk'q+\���[y�

[y�lZ`r�mo�}[o�~rXj=|V[�j���¬+�"Z��1ZXr�ab[{Z@kênbm{��[�j=^lk [o�lZ�^lt�^lr�mo��[y�~rXj=|V[�j���¬1��Z��1ZXr�ab[{Z@kÇ�}^¨j=^zn
moZ@u�j=��^4��^l£�r�n+r@|~Z�[y��u�Z���4Pmy��[o��r�j=|�[�j���¬1���}^lr@|}alkbZ/[o�bZ��¥t=|�|~te\��}^l£ªG

v ���lZ�[ym{Z�j6[ou�Z@^z[Pu�t�^b�}[{t�m�¾?�2moZ�j=[¿ k4�}m{Z@r@[{��j=^lkwu�t�^4��[{t=m{�Iv²j=[y�~Z@^z[P�oZ�[oabv�j=^bk[om{ZXj=[ou�Z@^z[��z��j«Z��~£��z[Vt�v�Z@m{j=[o�}^l£�vb�²j��yZX�@�����lZ@�oZsj=m{Z�rXj=|�|�ZXk j��V�ya4�bm{t�a4[o��^bZX�Xq
kbZ@v�Z@^lk1��^l£�t�^8[y�lZ��=j=|�abZ�t��I[o�bZ���vb�²j��yZwr@t�^z[omot�|��=j=my��j=�b|�Z���¼lt�|}|~te\���^l£�[o�bZ
Z��1ZXr�ab[o��t�^Çt���j�v²j6mo[o��r@ab|~j=mw�yab�4m{t�ab[y��^lZ=q¯�2moZ�j=["moZX�yr{�lZXk4a4|~ZX�"�}[{�yZ@|���� �Cm{Z�j6[
��^z[{Z�m�j�r�[{�«\���[y��[y�lZ�¬gZ�n+��tij=mok vbmot1r@ZX�y�y��^b£�[{j��y¬çqP\��4�~r{���²j=^lk4|�ZX��t�v�Z@m{j=[{t�m
rXt�^l�yt�|~Z`rXt�uwu�ab^b��r�j=[y�~t�^'� ���bZ%v4m{ZX�yr@my��vb[y�~t�^Çklj6[�jT�~��r@m{t��o��xGr{�lZXr{¬�ZXkj=^bk
�gZ@my��nlZ@k"�zn�t�[y�lZ@mP[�j���¬+��¾?��alr{��j��P¬�Z@nz��tij=m{k�vbmot1r@ZX�y�ot�m�t�m�v²j6m�j=u�Z@[oZ@m��yZ@[yabv
�oZ@^b�ot�m ¿ [o�lj=[���^b�¥t�myu�[o�bZ�[ym{Z�j6[ou�Z@^z[�[�j���¬ t=�±[o�bZ���Z@mo�¢nlr�j6[o�~t=^·��[�j=[yal�w�z�~j
�y�²j=moZXk �=j=mo�~j=�b|~Z@�X�

275

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�6ª

v ���lZ��yZ@mo��t`[�j=�y¬%rXt=^+[ym{t�|��s£=ab^TZ�u����o���~t�^Cq�kbtg�yZwm{j=[{ZR¾;v4ab|~�yZwmoZ@v�Z@[o�}[o��t�^%��m{Z�x
³ abZ@^lr�n ¿ q���n+uwu�Z@[omyn�¾;��Z�j=u ��[{ZXZ�mo�}^l£ ¿ q�j=^lk�u"j=r{�b��^lZ�u�t�[o��t�^l�X�����lZ	�yZ@my�gt[�j���¬�j=|~�yt��yZ@[{�¯abv`[y�lZsu�j�r{�b�}^lZ�v²j=m{j=u�Z�[{Z�m{��j=^lkRu�t�^b�}[{t�mo��[o�lZ���Z�j=u�xG[y��|�[�x
Z@momot�m¯j=^lk [o�bZ@�lj=[o^lZ@�o��x]Z@mym{t�mV�}^+[oZ@my|~t+r{¬1�@�

v ���lZ	�lt�ab�oZ@¬�ZXZ�v�Z�ms[{j��y¬�[�j=¬�ZX��rXj=m{Z�t=�)�yn+�y[oZ@u ��[�j=[yal�±��^z[oZ@mo|�t1r{¬+��j6^lk`|��}u��}[r{�lZXr{¬+��j6^lk%k4�~��vb|�j�n+��j=vbvbmot�vbmo�~j=[{Zsu�Z@�o�{j=£gZX��t�^�[o�lZ�4�*�� k4���yvb|~jen��Æ/G[�kbZ�x
rXt+kbZX�V�ot=u�Z���^4�¥t�mou�j=[o��t�^�j6^lkRr{�bZXr{¬+��[y�lZ��oZ@[yabv`��Z@my��nlrXj=[o��t�^C�

A¯t�^lr@my��[y�~r�j6|'[�j���¬+�V�}^lr@|}alkbZ
v 4P�lZXr{¬+�ya4uÃv4m{t+rXZX�y�ot�m	¾?�yr{�lZXk1ab|~Z@kR[{t«myab^Rv�Z@my�~t+k4�~rXj=|�|}n ¿
v �2moZ�j=[yu�Z�^+[�rXt�^l�yt�|~Z"¬�Z@nz��tij=m{k¦vbmot1r@ZX�y�ot�m�¾;�or{�lZ@k4ab|~Z@k�[ot©moab^¤t=^b|�n������}[�~�r�j=|}|~ZXk��+n�t�[o�bZ@m�[{j��y¬+�Vt�m��zn�¬�Z@nz��tij=m{k��}^+[oZ@mymoabvb[o� ¿ �P���4�~��[{j��y¬"j�r@[o�Vj���[o�bZ
rXt�uwu�ab^b��r�j=[y�~t�^���^z[{Z�mo�;j�r@Z±��Z@[]\PZXZ@^R[o�lZ�t=[o�lZ�m��ot���[]\�j=moZsj6^lk"[o�lZ�t=v�Z�m�j=[ot�m��

v �2moZ�j=[yu�Z�^+[�r@t�^l�yt�|~Z«�yr@m{Z@Z@^�vbm{t+rXZ@�o�ot=m�¾¥moab^%v�Z@my�~t+k4�~rXj=|�|}n ¿ �����b�~�/[{j��y¬©|~j�n1�t�ab[�j6vbvbm{t=vbmo�~j=[{Z¯m{ZXr@t�m{k"�¥t=mou�j=[{�)�¥t�m�Z���[o�bZ@mO4�*��Çk1�~�yv4|�j�n+��t�m��lj=m{k"r@t�vb��ZX�X�
v º1Z@my�+��rXZ�¬�Z@nz��tgj=m{k«vbmot1r@ZX�o�yt�m�¾;myab^�t�^wkbZ@u�j=^lk ¿ �����4�~��[{j��y¬�j=mo�b�}[om{j=[{Z@��^lt�^4x[om{ZXj=[ou�Z@^z[�xGm{Z�|�j=[oZXk�rXt�uwu�ab^b��r�j=[y�~t�^w��Z@[]\PZXZ@^�[o�bZ±[o�lZ�m�j=vzn��yn+�y[oZ@u j6^lk�[o�bZ
t�v�Z�m�j=[ot�m��

v º+^²j=vl���lt�[s¾;myab^�v�Z�mo�~t+k4��r�j=|}|�n«�zn�[o�lZ��yr{�lZXk4a4|~Z@m ¿ �Pº+^²j6vl�y�lt=[±rXj=vb[oa4m{ZX��vbmoZX��xZ@|~Z@r@[oZXk�v²j=m�j6u�Z�[{Z@m)�=j=|}alZX�:j=^lk��~�IrXj=|�|�ZXk«�zn�[o�bZ¯[ym{Z�j6[ou�Z@^z[)[�j���¬�j=[)[o�lZVZ�^lk
t���j�[ym{Z�j6[ou�Z@^z[��

v h±j=^lk�rXt=^+[ym{t�|�vbm{t+rXZ@�o�ot=m�¾¥moab^�v�Z�mo��t1k4��r�j=|}|�n ¿ �
v 4�j=|��}�bm�j=[y�~t�^`vbm{t+rXZ@�o�ot=m������b�~��[�j=�y¬©����moZX��v�t�^b�y���4|~Z��¥t�m�j�v²j�r{¬=j�£gZ�t��P[�j���¬+�
[o�²j=[�|~Z@[�[o�lZ�t�v�Z@m{j=[{t=mIZ��4j=uw��^lZ�j=^lk�r{�²j=^l£�Z¯��n+�y[{Z�u¶�oZ�[oabvwv²j=m{j=u�Z@[{Z�m{�)j=^bk
��^z[{Z�mo|~t+r{¬�|}��uw��[o�X�

/G[/���/r@|�Z�j=m���m{t�uÃ[o�bZ ¡ 2D4�§ k4t1r�abu�Z�^z[�j=[y�~t�^8t=^8[o�lZ	u�t+k4��nlrXj=[o��t�^l�V[o�²j6[±[o�bZ
�yt���[]\�j=m{ZRj=|�|�te\V�«rXt�^lr�abmomoZ@^z[�j�rXr@ZX�o�w[{t%�y�lj=m{Z@k u�Z@u�t�mon�q)[y�²j=[�[o�bZ@m{Z�����^bt�moZ�j=|
��nz^lr{�bm{t=^b���Xj=[o��t�^-j=�y�~k4Z���mot�u klj=[{j¤[y�²j=[Rj=moZ���[{t�moZXk �}^A�y�²j=moZXkA��j6mo��j6�b|~Z@�Xq�j=^bk
[y�²j=[s[o�lZ�K�[{ZX��[�M%j=^bkiKy�oZ�[�M©�¥t�m	�yalr{�¤�=j=mo�~j=�b|�ZX�sj=m{Z�^bt�[���^bk4���z�~�����b|�Z«t�v�Z@m�j6[o�~t=^l�X�
*¯j�r@Z"rXt�^bk4��[y�~t�^l��m{Z@�yab|}[o�}^l£`��m{t=u [y�b�~����uwvb|~Z�u�Z�^z[�j=[y�~t�^�t���u�ab|}[o�}[�j���¬+�}^l£ vb|�j�ngZ@k
j6^��}u�v�t�my[�j=^z[�v²j6mo[���^ [y�lZ�j�rXr��~kbZ�^+[o�X�

g���x)�	~�wY�xqzx)|�~��}rzy�qfqf{}q�|1� ���lZ��¥t�|}|~te\���^l£�Z��+vb|�j6^²j=[o��t�^�t��+[o�bZI�yv�ZXr@�¢nlr)�ot���[]\�j=moZ
v4m{t��b|�Z@u��:�¥t=ab^lk"j6[P[y�b�~�)[o�}u�Z��~�)[�j6¬gZ@^���mot�u¶[o�bZ±kbZ@�or@my��vb[y�~t�^ ¡ 2D4�§©vbm{te�z�~k4ZXk�[ot
[y�lZ�¼�½ ¡ q²�bab[�r�|�j=my��nlZ@k©�ot�u�Z@\��lj=[��s���lZ«kbZ@�or@my��vb[y�~t�^8|�Z�j��gZ@���ot�u�Z	ab^lj=^l�y\PZ@moZXk
³ alZ@�y[y�~t�^l�@q1�ba4[���[:�~�)[o�bZ���ZX�y[P[o�²j6[�r�j6^���Z±kbt�^bZ�\���[y�"[o�bZ���^4�¥t�mou�j=[o��t�^wj��=j=��|~j=�b|~Z=�

276

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(��h

Mode/Energy Offset (MEOS)

Handler

Date, Time, ID Changes

Reset

Set Up Test

Datent

Pause Treatment

Terminate Treatment

Hand

collimator)
(Set upper

Set Up Done

Keyboard

Patient Treatment

Data Entry
Complete

Offset parameters Mode/energy
5

0

1

2

3

4

6

7

Tphase

Treat

control
variable

Calibration
tables

¼��~£�abmoZ/�vG)��j���¬1�¯j=^bk���ab�bmot�ab[o�}^lZX���}^�[o�lZ�r@t1k4Z±�b|�j6u�Z@k"�¥t�m�[o�bZ��)nz|~Z�m¯j�rXr��~kbZ�^z[{�X�

���lZ�[ym{Z�j6[ou�Z@^z[�u�t=^b��[ot�m�[{j��y¬%¾?�2moZ�j=[¿ rXt�^z[ym{t�|���[o�lZ/�=j=my�~t�al�Pvb�²j��yZX�¯t��2[om{ZXj=[yx
u�Z@^z[)�zn«Z��1Z@r@ab[y��^l£���[{�IZ��~£��z[)��ab�bm{t=ab[o�}^lZX�@�)���lZ�[om{ZXj=[ou�Z@^z[)vb�²j=�oZ���^lk1�~r�j6[{t�m��=j=my�}x
j6�b|~Z¯¾ ��v4�²j��oZ ¿ ���2ab�oZXk�[{t�kbZ@[oZ@mouw��^bZ)\��4�~r{����ab�bmot�ab[o�}^lZ:�y�lt�a4|~k���Z:Z��1ZXr�ab[{Z@k ¾ ¼®��£=x
a4m{Z�� ¿ �I¼lt�|�|�te\���^l£�[o�lZ±Z��1ZXr�ab[o��t�^ t���jsv²j6mo[o��r@ab|~j=mP�yab�bmot�ab[y��^lZ=qb�Cm{Z�j6[�m{Z@�or{�lZ@k4ab|~Z@�
�}[{�yZ@|����

�±^lZ8t����Cm{ZXj=[�j ���ya4�bm{t�a4[o��^bZX�Xq�r�j=|}|~Z@k¨½�j=[{Z�^z[%¾?klj6[�j�Z@^z[ymon ¿ q¯rXt�uwu�ab^4�~r�j6[{ZX�
\��}[o�%[o�bZ�¬�Z@nz��tij=m{k%�²j=^bk4|~Z�m�[�j���¬¤¾ j"[�j=�y¬©[y�²j=[�moa4^l��rXt�^lr�abmomoZ@^z[o|}n8\���[y�T�Cm{ZXj=[¿
�z�~j�jw�y�²j=moZXk©�=j=my��j=�b|�Z�¾ ½�j=[{j�2�^z[omynV4�t�u�v4|~Z@[oZ:�lj�£ ¿ [{t�k4Z@[{Z�mouw��^lZ�\��lZ�[o�lZ�m±[o�bZ
v4m{ZX�yr@my��vb[y�~t�^ klj=[{j%�²j=�w��ZXZ�^¢Z@^z[oZ@m{Z@k'�Ç���lZ ¬gZ�n+��tij=mok·�²j=^bk4|~Z�mwmoZXr@tg£�^b���XZX��[o�bZ
r@t�uwvb|~Z�[o�~t=^Rt=�Iklj=[{j�Z@^z[omynRj=^lk©r{�²j6^l£gZX��[o�lZs½�j=[�j�2�^+[ymonV4�t�uwvb|~Z�[{Z��=j=mo�~j=�b|~Z�[ot
k4Z@^lt�[oZ`[o�4�~�X�H�±^lrXZ`[y�b�~�w�=j=mo�~j=�b|~Z �~���oZ�[�q�[o�lZ©½�j=[{Z�^+[��yab�4m{t�ab[y��^lZRkbZ@[oZXr�[{�"[o�bZ
�=j=my��j=�4|~Z1j �:r{�²j=^l£gZ/�}^��y[{j=[oab��j=^lk�r{�²j6^l£gZX��[y�lZ±�=j=|}alZ±t�����v4�²j��oZ/��mot�u c«¾ ½�j=[oZ@^z[¿
[ot%�¦¾Gº1Z�[w¹¯v �2ZX�y[¿ �k/G^�[y�b�~�	r�j��yZ�q)[o�lZ ½�j=[oZ@^z[«��ab�bm{t=ab[o�}^lZ�Z��+��[o���²j�r{¬�[{t©[o�bZ
�Cm{ZXj=[��yab�4m{t�ab[y��^lZ=q/\��b�~r{� \���|}|/m{Z@�or{�lZ@k4ab|~Z���[o�oZ@|}��j6^lkA��ZX£=��^ Z��1ZXr�ab[o��t�^-t���[o�bZ
º+Z@[�¹Vv%��Z@�y[���ab�bm{t=ab[o�}^lZ���/G�I[y�lZ«½�j=[{j32�^z[omyn�4�t�uwvb|~Z�[{Z��=j=mo�~j=�b|~Z��²j���^lt�[±��ZXZ�^
�yZ@[Xq'½�j=[oZ@^z[/|~ZXj��gZX��[o�lZ���j6|�alZst��)��vb�²j=�oZ�ab^lr{�lj=^l£gZ@k%j=^lk8Z��+�}[{���lj�r{¬R[ot��Cm{Z�j6[�j �

277

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�=�

u�j=�}^b|��}^lZ��C�Cm{ZXj=[2\���|}|�[o�bZ@^�m{ZX�yr{�lZXk1ab|~Z)��[o�oZ@|}��qeZX�y�oZ@^z[y��j=|}|�n±moZX�yr{�lZXk4a4|���^b£¯[y�lZ:½�j=[{Z�^+[
��ab�bmot�ab[o�}^lZ��
���lZ�rXt=u�u�j=^lk�|��}^lZ�j=[V[y�lZ�|~te\�Z�mVmo�~£=�+[�xG�²j6^lk rXt�my^lZ@m¯t���[o�lZ��yr@m{Z@Z@^¤¾;�oZ@Z	¼®��£=x

a4m{Z�� ¿ �~�/[y�lZ�r�abm{�yt�m�j ��^lt�mou�j=|�v�tg����[o��t�^8\��lZ�^T[o�bZ�t�v�Z@m{j=[{t=m��²j���rXt�uwvb|�Z@[{Z@kTj6|�|
[y�lZV^lZXr@ZX�o�oj=monwr{�²j6^l£gZX�:[{t�[o�lZ�vbmoZX�yr@mo�}vb[o��t�^C��E�moZX�or�mo�}vb[o��t�^�Z@k4��[y��^l£����I�y�~£=^b��nlZ@kw�zn
u�te�z��^l£«[o�bZsr�abm{�yt�m±tIJ8[o�lZ�rXt�uwu�j=^lk�|��}^lZ�� ¡ �V[o�lZ�vbmotg£�m�j6u�\�j=��t�my�~£��}^²j=|}|�nwkbZ�x
���~£�^bZXk'q�[y�lZ«½�j=[{j 2�^z[omon£4�t�uwvb|~Z�[{Zs�=j=my��j=�4|~Zs�zn���[o�oZ@|}�I�~�±^bt�[/��ab°wr@�~Z�^z[���Z@r�j=al�yZ
�}[«kbt+ZX�«^lt�[�Z�^l�ya4m{Z [o�²j=[«[y�lZ�r@a4m{�ot=mw����|~t+r�j=[oZXk¦t�^¤[y�lZ rXt�uwu"j6^lk�|��}^lZ1,:ab^lkbZ�m
[y�lZ�mo�~£=�+[�r���m{r�abu��y[�j6^lrXZ@�Xq®[y�lZwklj=[�j Z@^z[ymon%vb�²j��yZ�rXj=^T��ZwZ��+��[oZXk���Z@�¥t=m{Z�j=|�|IZ@k4��[
r{�lj=^l£gZ@�±j=moZ/u"j=kbZ�t�^ [o�lZ��or�m{Z@Z@^C�
���lZ�¬gZ�nz��tij6m{kR�lj=^lk4|�Z@mVv²j=mo�oZX�V[o�bZ�u�t+kbZ�j=^lk�Z@^lZ�m{£�n�|�Z@��Z@|��yv�ZXr���nlZ@kR�zn"[o�bZ

t=v�Z�m�j=[ot�m�j=^bk�vb|�j=rXZX��j=^�Z@^brXt+kbZXk�m{Z@�yab|}[��}^�j=^lt=[o�lZ�m��y�²j6m{ZXk"�=j=my��j=�4|~Z�qi[y�lZ���x �+nz[oZ
Æ�t1kbZ�»12�^lZ@mo£�n=��J��oZ�[s�=j=my��j=�4|~Z�¾GÆV2D��º ¿ �����lZw|~te\�x]t=m{kbZ�ms�znz[{Z"t=��[o�4�~����j6mo��j6�b|~Z
���:ab�oZXk"�zn�j=^lt�[y�lZ@mP[�j���¬©¾�h±j=^bk ¿ [ot	�oZ�[�[o�bZ±rXt=|�|��}u"j6[{t�m%»6[oabmy^z[�j=�b|�Z�[{t�[o�lZ�vbm{t�v�Z@m
v�tg����[o��t�^��¥t�mI[y�lZ��oZ�|~Z@r@[{Z@kwu�t+kbZVj=^lk�Z@^bZ@m{£=ng�)���lZ��b��£��4x]t=m{kbZ�m��zn+[oZVt��²[o�lZ�ÆV2D��º
�=j=my��j=�4|~Z±����al�oZ@kR�zn ½�j=[oZ@^z[V[{t��oZ�[��yZ@��Z@m�j6|®t=v�Z�m�j=[y��^l£«v²j=m{j=u�Z@[{Z�m{�@�

/G^b�}[o�~j=|�|}ngqI[o�lZRklj=[{j6x]Z�^+[ymon¤vbmot1r@ZX�o�w�¥t�m{r@ZX�w[o�lZRt�v�Z�m�j=[ot�mw[{t�Z@^z[{Z�m"[o�lZ u�t1kbZ
j6^lk Z�^lZ@mo£�nÇZ��1r@Z@vb[R\��lZ@^ [o�lZ%vb�lt�[ot�^Au�t+kbZ©�~� �yZ@|~Z@r@[oZXk'q/�}^ \��b��r{� rXj��oZ%[o�bZ
Z�^lZ@mo£�nwkbZ@�;j6ab|�[o�)[ot«�gh�ÆRZ;��1���lZ�t=v�Z�m�j=[ot�m:r�j=^�|�j=[oZ@m:ZXk4�}[P[y�lZVu�t+kbZ¯j=^lk�Z@^lZ�m{£�n
�yZ@v²j6m�j=[oZ@|�n���/G�ç[o�lZ�¬�Z@nz��tgj=m{k��²j=^lk1|~Z@m)�yZ@[o�)[y�lZV½�j=[{jC2I^z[ymon�4�t�uwvb|�Z@[{Z+�²j�£���Z��¥t�m{Z
[y�lZ�t�v�Z@m{j=[{t�mVr{�lj=^l£gZ@�V[y�lZ�klj=[{j	��^RÆV2D��º�q²½�j=[oZ@^z[�\���|}|�^lt�[Vk4Z@[{Z@r@[V[o�bZ�r{�²j=^l£gZ@�
��ZXrXj=al�yZ"��[��²j=�«j=|�moZ�j�k1nTZ �1�}[{Z@k j6^lk�\���|}|P^lt=[���Z�m{ZXZ�^z[{Z@moZXk j�£ij=�}^C�%���lZ"abv4v�Z�m
r@t�|�|}��u�j=[{t=m�¾;[yabmo^z[�j6�b|~Z ¿ qçt�^©[o�bZ	t�[y�lZ@m��²j=^lk'qç�~�¯�oZ�[/[{tw[o�lZ�v�tg����[y�~t�^Rk4�~r�[�j=[oZXk`�zn
[y�lZ�|~te\�x]t�mokbZ@m��znz[{Z�t��VÆ72+��º8�+n�j6^lt�[o�bZ@m�rXt�^br@abmym{Z@^z[y|�n%moab^4^b��^l£ [�j=�y¬�¾�h�j=^lk ¿
j6^lk�r�j=^w[o�lZ�m{Z��¥t�m{Z���ZV�}^lrXt=^l�y���y[{Z�^z[:\��}[o��[o�bZ�v²j=m�j6u�Z�[{Z@mo�)�oZ@[)�}^�j=rXrXt=m{klj=^brXZ�\���[y�
[y�lZs�}^b�¥t�myu"j=[y�~t�^��}^R[y�lZs�4�~£��4xGt�m{k4Z@m¯�+nz[oZ������lZ	�yt���[]\�j6m{Z�j6vbv�ZXj=m{�¯[{t�rXt�^z[�j6��^`^bt
r{�bZXr{¬+��[otwk4Z@[{Z@r@[��yalr{�©j=^���^lr@t�u�vlj=[o�}�b��|}��[]ng�
���lZ n4m{�y[[o�b�}^l£8½�j=[oZ@^z[�kbt+ZX�s\��lZ@^¤��[s�~�sZ@^z[{Z�m{ZXk¦���s[{t`r{�lZXr{¬�\��bZ@[o�bZ@m«[o�bZ

¬�Z@nz��tij=m{k%�²j=^bk4|~Z�m/�²j����oZ�[�[o�lZ«u�t1k4Z«j=^lk%Z@^bZ@m{£=n`��^TÆV2D��º��¤/G�P�ot4q'��[/al�yZX��[o�bZ
�4�~£��4xGt�m{k4Z@m��znz[{Z©[ot���^lk4Z�� ��^z[{t¦jT[{j=�b|�Z`t���vbmoZX�oZ�[t�v�Z@m�j6[o��^b£Tv²j=m{j=u�Z�[{Z�m{��j=^bk
v4|�j�r@ZX�2[o�lZ�u �}^s[y�lZ�k1�~£��}[�j=|ÙxG[{t6x�j=^²j6|~tg£:t�ab[yvbab[�[�j=�b|�Z��®���lZ�r@t�^z[{Z�^+[o��t��4[o�b���®t�a4[ovbab[
[{j=�b|�Z/j=moZ�[om{j=^l���¥Z@momoZXk�[{ts[o�lZ/k1�~£��}[�j=|ÙxG[{t6x�j=^²j6|~tg£/r@t�^z�gZ�mo[{Z�mVk4abmy��^l£	[y�lZ±^lZ �+[Vr@|~t+r{¬
r�n+r@|~Z=�O�±^lrXZ�[o�lZ�v²j=m{j=u�Z@[{Z�m{��j=m{Zsj=|}|C�oZ�[�q�½�j=[{Z�^+[�r�j6|�|~��[y�lZ��yab�bmot�ab[y��^lZ	Æ`j�£�^bZ@[�q
\��4�~r{�s�oZ@[o�C[o�lZI��Z@^lk4�}^l£�u"j=£�^lZ@[o�X�®���lZI�¥t�|�|�te\���^l£P�y�lte\V�®jV����uwvb|��¢nlZXk/vb�oZ@abkbt1r@t1k4Z
k4ZX�or�mo�}vb[o��t�^�t��®moZ@|�Z@�=j=^z[Vv²j=mo[o�Vt��®[y�lZ��ot���[]\�j=moZ1G

½�j=[{Z�^+[�G

278

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(��p

~�� u�t1kbZ�»=Z@^bZ@m{£=n"�yv�ZXr���nlZ@k sf�_x)r
u�x)�}~�r
r�j=|�r@ab|~j=[{Z±[{j=�b|�Z/��^lkbZ �
q�x#��x#tvs
�¥Z@[{r{��v²j=m{j=u�Z@[{Z�m
t�ab[ov4ab[Vv²j=m�j6u�Z�[{Z@m
v�t��}^z[�[{t«^lZ��+[Vv²j=m{j=u�Z@[{Z�m

p�rSs�~�w j=|�|�v²j=m�j6u�Z�[{Z@mo�V�oZ@[
�`t�w�w Æ`j�£�^bZ@[
~�� u�t1kbZ�»=Z@^bZ@m{£=n"r{�²j=^b£gZXk sf��x)r¿qfx	sfp_qIr

xmr�Â
~�� klj=[{j«Z@^z[omyn��~��rXt=u�vb|�Z@[oZ sf��x)r �yZ@[±��vb�²j��yZ�[otw�
~�� klj=[{j«Z@^z[omyn��~��^lt�[Vr@t�uwvb|~Z�[{Z sf�_x)r

~�� m{Z@�oZ�[�r@t�uwu"j=^bk�Z�^z[{Z@moZXk sf��x)r �yZ@[���vb�²j��yZ�[ot�0
q�x	sfp_q�r

Æ`j�£�^lZ�[�G
º1Z@[V��Z@^lk4�}^l£«u"j=£�^lZ@[9�lj�£
q�x#��x#tvs
º1Z@[V^lZ �1[Vu�j�£�^lZ�[
�`t�w�w E�[o��u�Z
~�� u�t1kbZ�»=Z@^bZ@m{£=n��²j��Vr{�²j6^l£gZXk�q s���x)r Z��+�}[

p�rSs�~�w j=|�|�u"j�£=^lZ@[o�Vj=m{Z��oZ�[
q�x	sfp_q�r

EI[y��u�Z1G
q�x#��x#tvs

~�� ��Z@^lk4�}^l£«u"j=£�^lZ@[9�lj�£«�~���oZ�[sf��x)r
~�� ZXk1��[o�}^l£�[�j6¬+�}^l£«vb|�j=rXZ sf�_x)r

~�� u�t1kbZ�»=Z@^bZ@m{£=n��²j��Vr{�²j6^l£gZXk sf�_xmr Z �+��[
p�rSs�~�w �+n+��[{Z@moZX���~�¯kbZ@|~jen��²j��VZ��+vb�}m{ZXk
4P|~Z�j6m���Z�^lk4��^b£�u�j�£�^bZ@[9�²j�£
q�x	sfp_q�r

º1Z�[o[y��^l£"[y�lZ���Z�^lk4�}^l£�u"j�£=^lZ@[o�±[�j=¬�ZX��j=��t�ab[�Z��~£��z[��yZXr@t�^lkb�@�wÆ`j�£�^lZ�[�r�j=|}|~�±j
��ab�bmot�ab[o�}^lZ)r�j=|}|~Z@k@EI[y��u�Z�[{t��}^+[ym{t+k4alr@Z)j�[y��u�Z�kbZ�|�j�ng��º+��^brXZ)�oZ��gZ@m{j=|zu"j=£�^lZ@[o�'^lZXZ@k

279

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�=f

[otw��Z��oZ@[Xq�E�[y��u�Z�����Z�^z[{Z@moZXk8j6^lk`Z �1�}[{Z@k`�oZ��gZ�m�j=|®[o��u�ZX�@� ¡ �²j�£w[{t���^lk4��r�j=[oZ�[o�²j=[
[y�lZ���Z�^lk4��^b£Ru�j�£�^lZ�[{�sj=m{Z���Z���^l£��oZ�[�����}^b��[y��j=|}���@ZXk`abv�t�^TZ@^z[omyn�[otR[y�lZ"ÆRj�£�^lZ�[
��ab�bmot�ab[o�}^lZ"j6^lk�r@|�Z�j=moZXk¦j6[s[y�lZ�Z�^lk¦t��OE�[o�}u�Z=��¼la4mo[o�bZ@mou�t�moZ�q�E�[y��u�Z�r{�lZ@r{¬+��j
���²j=moZXk¢�=j=mo�~j=�b|�Z�q��yZ@["�zn�[o�lZ`¬�Z@nz��tij=m{k¢�lj=^lk4|�Z@m�q�[y�²j=[���^lk4��r�j=[oZX�w[o�lZ`v4m{ZX�yZ@^lr@Z
t=�/j=^zn¦Z@k4��[y��^l£©moZ ³ alZ@�y[{�@�F/G��[o�lZ�m{Z�j=m{Z Z@k4��[o�Xq)[o�lZ�^¿E�[o�}u�Z�r�|~ZXj=m{��[y�lZ���Z�^lk4��^b£u�j�£�^bZ@[/�=j=my��j=�b|�Z�j=^bk�Z �+��[{�/[ot�Æ`j�£�^bZ@[�q'\��4�~r{�%[o�lZ�^�Z��+��[o�/[{t�½�j=[{Z�^z[��sYPab[�[o�bZ
Z@k4��[±r{�²j=^l£�Z	�=j=mo�~j=�b|~Z����±r{�lZ@r{¬gZXk��znÉE�[o�}u�Z�t�^b|}n ����[y�lZ	��Z@^lk4�}^l£�u�j�£�^lZ�[²�lj�£��~�
�yZ@[X�«Y�ZXrXj=al�yZ�E�[y��u�Z�r@|�Z�j=mo�/��[�k4a4mo��^b£"��[{�²nbm{��[�Z��1ZXr�ab[o��t�^Cq�j=^zn©Z@k4��[o�/v�Z�mo�¥t�myu�Z@k
k1abmo�}^l£8Z�j�r{� �yabrXrXZ@ZXk4�}^l£%v²j��o��[y�bm{t=al£��òE�[o��u�Z�\��}|�|:^lt�[«��Z"m{ZXr@tg£�^b���XZ@k'�����zal�@q
j6^TZ@k4��[�r{�²j6^l£gZwt���[y�lZ«u�t+kbZ�t�m�Z@^bZ@m{£=ngq�j6|�[o�bt�al£��%m{Z�lZXr�[{Z@kTt�^�[o�lZwt�v�Z@m{j=[{t�m�jÔ�
�yr@moZXZ@^©j=^lk [o�lZ�u�t1k4Z�»=Z�^lZ@mo£�n�t1J��oZ�[¯�=j=my��j=�4|~Z�q+\���|}|�^lt�[V��Z��oZ@^b�oZXk��zn�½�j=[{Z�^+[¯�yt
�}[�r�j6^R�}^lkbZ��"[o�lZ�j=vbv4m{t�vbmy��j=[oZ�r�j=|}���bm{j=[o��t�^"[{j=�b|~Z@���¥t�m�[o�bZ�u�j�r{�b�}^lZ/v²j=m{j=u�Z@[{Z�m{�@�

*VZXrXj=|�|:[o�²j6[�[o�lZ"�)nz|~Z�m«Z@mym{t�m	t1r@r@abmym{Z@k�\��lZ@^¤[o�bZ"t�v�Z@m�j6[{t�msu"j�k4Z"j=^¤Z�^+[ymon
�}^lk4��r�j=[y��^l£�[o�lZ�u�t1kbZ/j=^lk Z@^lZ�m{£�n�qb\�Z�^z[¯[ot«[o�lZ�r@t�u�u�j=^lk"|}��^lZ=q+[y�lZ@^�u�t���ZXk�[o�bZ
r�abm{�yt�m�abv	[{t/r{�²j6^l£gZ�[y�lZ�u�t1kbZ:t�m�Z@^lZ�m{£�n	j=^lk	moZ@[yabmo^lZ@k«[{t�[y�lZ�r@t�u�u�j=^lk�|��}^lZ�j6|�|
\��}[o�b�}^�Z@�~£=�+[V�yZXr@t�^lkb�@��Y�Z@r�j=al�yZ�[y�lZ�u"j�£=^lZ@[V�yZ@[o[y��^l£«[{j=¬gZ@�±j=��t�ab[¯Z��~£��z[V�oZ@rXt�^bkb�
j6^lk�Æ`j�£�^bZ@[�kbt+ZX�/^lt=[/m{Z@rXtg£�^4���XZ	ZXk4�}[{��j=��[oZ@m/[y�lZ.nbmo�y[�Z��1Z@r@ab[y�~t�^�t��+E�[o�}u�Z=q�[o�bZ
Z@k4��[y��^l£"�lj�k���ZXZ�^Tr@t�uwvb|~Z�[{ZXk8�zn©[y�lZ«m{Z@[yabmo^�[{t�½�j=[oZ@^z[�qC\��b��r{��^bZ@�gZ�m	k4Z@[{Z@r@[oZXk
[y�²j=[s��[��²j�k¦t+rXr@a4mom{Z@k'��E�j6mo[�t=��[o�lZ�v4m{t��b|�Z@u \�j��.n4�1ZXk�j=��[oZ@ms[o�lZ�j=rXr@��kbZ@^z[��zn
r�|~ZXj=mo�}^l£�[y�lZR��Z@^bk4��^l£�u"j=£�^lZ@[w�=j=mo�~j=�b|�ZRj6[�[y�lZ`Z�^lk¨t���Æ`j=£�^lZ@[©¾ j=��[oZ@mÉ¦({|{�[o�bZ
u�j�£�^bZ@[{���lje��Z���ZXZ�^`�yZ@[¿ �}^l�y[oZ�j�k t���j=[V[o�lZ�Z�^lkRt=��E�[o�}u�Z=�
YPa4[:[y�b�~�I���)^bt�[I[o�lZ¯t�^b|}n	vbmot��b|�Z@uR��¹¯v�t�^�Z��+��[)��mot�u¸[o�bZ±ÆRj�£�^lZ�[P��ab�bmot�ab[o�}^lZ�q

[y�lZ�kbj=[�j¯Z@^z[omyns��ab�bmot�ab[o�}^lZ/¾?½�j=[{Z�^z[¿ r{�lZXr{¬+�I[o�lZ�½�j=[�j¬2�^z[omonÆ4�t�uwvb|~Z�[{ZI�=j=mo�~j=�b|�Z��
/G����[���^lk4��r�j=[oZX�"[y�²j=[klj=[{j¦Z@^z[omyn¢�~��r@t�u�v4|~Z@[oZ�q�½�j=[{Z�^z[�oZ@[o����vb�²j��yZ�[ot �¤j=^bk
½�j6[{Z@^z[�����^lt�[�Z@^z[{Z�m{ZXk�j�£ij6��^C��/G�²��[����®^lt�[��oZ@[Xq+½�j=[{Z�^+[�|~Z�j���ZX�)��vb�²j=�oZ�ab^lr{�²j6^l£gZXk�q
\��4�~r{�«u�Z�j=^l�®��[�\��}|�|+Z@��Z@^z[oalj=|�|}ns��Z�m{Z@�or{�lZ@k4ab|�ZXk'�:YPab[�[o�lZ�½�j6[�j52�^z[omyn?4�t�uwvb|�Z@[{Z
�=j=my��j=�4|~Z/t�^4|�n"�}^lk4�~rXj=[{Z@��[o�²j6[¯[y�lZ�r@abmo�ot�mV�²j��V��ZXZ@^`kbte\�^`[otw[y�lZ�rXt�uwu"j6^lk�|���^bZ�q
^bt�[s[y�²j=[s��[��~���y[y��|�|I[y�lZ@moZ�� ¡ v�t�[{Z�^z[o��j6|:m{j�rXZ�rXt�^bk4��[y�~t�^��~���oZ�[abvC�R�2tVn4��[o�b���Xq
¡ 2D4�§���^z[omot1k4abrXZXksj=^lt=[o�lZ�m����²j=m{Z@ks�=j=my��j=�b|�Z�rXt=^+[ym{t�|}|~Z@k��zn�[y�lZ:¬�Z@nz��tij=m{k��²j=^lk1|~Z@m
[{j��y¬�[o�²j6[���^lk1�~r�j6[{ZX�:[o�lZ�r�abm{�yt�m��~�:^lt�[�v�tg�y�}[o��t�^lZXk�t�^ [o�lZ±rXt�uwu"j6^lk�|��}^lZ��Y/G��[y�b�~�
�=j=my��j=�4|~Z��~�	�yZ@[Xq)[y�lZ@^¤vbmoZX�yr@mo�}vb[o��t�^¦Z�^+[ymon��~�	��[o�}|�|:��^�vbmotg£�moZX�o��j6^lk�[o�lZ���j6|�alZ�t��
��v4�²j��oZ��~��|�Z@��[�ab^br{�²j=^l£gZ@k'�

� ��bS�YX o.�_xh) {�*}x#qIr,+¥x)rSs�t�r�Âu-�|�x#q}� x)|���{}r�|<x
���bZ8¼�½ ¡ kbt+ZX��^bt�[�j=v4vbm{te�gZ`Z�j�r{�¨^lZ�\ u�Z@k4�~rXj=|±k4Z@�z�~r@Z©t�^¢[y�lZ`u�j=mo¬�Z@[�G ¡ |�|
u�ZXk1�~r�j6|'kbZ��+��rXZ@�¯£�t�[y�bm{t=al£��Rj�r@|~j��o����nlrXj=[o��t�^�vbm{t+rXZ@�o��[o�lj=[VkbZ@[oZ@myu��}^lZX��[y�lZ/|~Z��gZ@|

280

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�=d

t=�V¼�½ ¡ j6vbvbm{te�=j=|)^lZ@rXZX�y�{j=myng�`ÆRZXk1�~r�j6|�j�r@rXZ�|~Z@m{j=[{t=m{���¥t�|�|�t�\ j�v4m{t+rXZXk1abm{Z�r�j=|}|~ZXk
v4m{Z�x u"j6mo¬gZ�[/^lt�[y��nlrXj=[o��t�^`��Z@�¥t=m{Z�r@t�u�u�Z@mor@�~j=|�k4�~��[omo�}�bab[y�~t�^C�²/G^8[o�b����vbmot1r@ZX�y�Xq'[o�bZ
n4mou¶u�al��[:ZX�y[{j=�b|}�~�y��[o�²j6[:[y�lZVvbm{t+k4alr�[:���P��ab�l��[�j=^z[o�~j=|�|}n�Z ³ a4���=j=|~Z�^z[:�}^��oj=�¥Z@[]n�j=^bkZJ�Z@r@[y���gZ�^lZX�y�/[{t�jwvbmot1k1alr@[/j=|�moZ�j�k4n"t�^`[y�lZsu�j=mo¬�Z@[X�9/G��[o�²j6[±rXj=^b^lt�[¯��Z	kbt�^bZ�[ot
[y�lZw¼�½ ¡ j ���{j=[y�~�y�;j=r@[o��t�^CqCj"vbmoZ�x u"j=my¬gZ�[�j=vbvbmot��=j=|��~�/m{Z ³ ab��moZXk'�«¼lt�m�[y�lZ����lZ�m�j�r x��h1q®[y�lZ�¼�½ ¡ moZ ³ ab��moZXk�t=^b|�n�jRvbmoZ�x u"j=my¬gZ�[^lt�[y��nlrXj=[o��t�^C� ¡ ��[oZ@ms[o�lZ����bZ@m�j=r�x���hj=rXr@��kbZ@^z[o�XqP^bZ@\µv4m{t+rXZXk1abm{Z@�w�¥t�mwj6vbvbm{te�=j=|Vt����ot=��[]\�j=moZ�xGrXt�^z[omot�|�|�ZXk¤kbZ��+��rXZ@��\PZ@moZ
j=kbt�vb[oZXk'�
���lZ	j�£gZ�^lr@n����V�lj��y��r�j=|}|�n�moZ�j�r�[o�}�gZ�[{t�vbm{t��4|~Z@u��Vj=^lk�m{Z ³ a4��m{Z@�¯u�j=^zab�;j�r�[oabmoZ@mo�[ot"m{Z�v�t�my[/�yZ@mo��t�al�/t=^lZX�@�Æ�±^lr@Z«j�vbm{t=�b|~Z�u �����~k4Z@^z[o�¢nlZXk©�}^%j�m�j�k1��j=[y�~t�^4xGZ@uw��[y[o��^b£

v4m{t+k4alr@[Xq¯[y�lZ%¼�½ ¡ �~��m{ZX��v�t=^l�y�}�b|~Z`�¥t=m j=vbvbmote�+�}^l£�[o�bZ8rXt�mym{ZXr�[o�}�gZ%j�r�[o�~t=^¨vb|�j=^
¾�4 ¡ E ¿ �
���lZ@nbmo�y[¯m{Z@v�t�my[{�¯t���[y�lZ��)nz|~Z�m��}^lr@��kbZ@^z[o�¯rXj=u�Z�[otw[y�lZs¼�½ ¡ ��mot�u�[o�bZ�º+[{j=[{Z

t=�«�2Z��4j��7h�Z�j6|�[o� ½/Z�v²j=mo[yu�Z�^z[�q�j=^bkA[y�b�~��[omy�~£g£�Z@m{Z@k ¼�½ ¡ j�r�[o��t�^C� ���lZ�¼�½ ¡
�}^z�gZX��[o��£ij=[o��t�^�\�j���\�Z�|�|¯ab^lkbZ�m�\�jen�\��lZ�^ ¡ 2D4�§-vbm{t+k4alr@ZXkÇj�u�ZXk1�~r�j6|�k4Z@�z�~r@Z
moZ@v�t�mo[[{t8k4���or@ab�o�«[o�lZ�k4Z@[�j6��|~�st��V[o�lZ"m{j�k4�~j=[o��t�^�te�gZ�m{Z �1v�tg��abm{Z@�"j=[��Inz|~Z�m������bZ
¼�½ ¡ kbZ@r@|~j=m{Z@k�[y�lZ)���lZ�m�j�r x��gh�kbZ@�¥Z@r@[y���gZIab^bkbZ@m2[o�bZ�*�j�k1��j=[y�~t�^:4�t=^+[ym{t�|i�¥t=m_h�ZXj=|�[y�
j6^lk�º4j=�¥Z�[]n ¡ r�[¯j=^lk�t�mokbZ@moZXk�[o�bZ�nbmou [{t�^lt�[y����n�j=|}|�vba4m{r{�²j��yZ@mo�Xql��^z�gZ@�y[y�~£ij=[oZ±[o�bZ
v4m{t��b|�Z@uRq4kbZ�[{Z�mouw��^lZ�j��yt�|�a4[o�~t=^Cqbj=^bk���ab�buw��[Vj�r@t�momoZXr�[o����Z�j�r@[y�~t�^�v4|�j=^��¥t�m�¼�½ ¡
j6vbvbm{te�=j=| �
���lZ�nb^²j=|�4 ¡ EErXt�^l���~��[{ZXk t��	u�t�moZ%[y�²j=^A[]\�Z�^z[]n r{�²j6^l£gZX��[{t¤[o�lZ��yn+��[{Z@u

�lj=m{k4\�j=moZ/j=^lk��ot���[]\�j=m{Z=q1vb|}al�)u�t+k4��nbr�j=[y�~t�^l�I[ots[o�bZ±�yn+��[{Z@u kbt+r@abu�Z@^z[{j=[o��t�^�j=^bk
u�j=^za²j=|��X�¢º1t�u�ZRt���[o�lZ@�oZRr{�²j=^l£gZ@��\PZ@moZ`ab^bmoZ@|�j6[{ZXk¤[{t�[o�lZ��yv�ZXr���nlr`j�rXr��~kbZ�^z[{�Xq
�4ab[±\PZ@moZ	��uwvbm{te��Z@u�Z@^z[{�V[{tw[o�lZs£gZ@^lZ�m�j=|®�{j6�¥Z@[]nRt���[o�bZsu�j�r{�b��^bZ��¯���lZs��a4|�|Y4 ¡ E
�}u�v4|~Z@u�Z@^z[{j=[o��t�^Cq��}^lr@|}alk4��^b£¦j=^AZ��+[{Z�^l�y�}�gZ��{j=�¥Z�[]nÇj=^²j6|�n+�y���XqV\�j���^lt=[�rXt�uwvb|�Z@[{Z
a4^+[y��|'u�t�moZ/[o�²j=^�[]\Ptwn�Z�j=mo�±j=��[oZ@m�[y�lZ��)nz|~Z�m�j�rXr��~kbZ�^+[o�X�
¡ 2+4�§ u�j�kbZ�[y�lZ@�}mwj�rXr��~kbZ�^+[wm{Z�v�t=mo[�[{t8[o�bZ`¼�½ ¡ t�^ ¡ vbmy��|�c�h+q�ced�fg�4�ò�±^

[y�²j=[:�{j6u�ZVklj=[oZ�q ¡ 2D4�§©�yZ@^z[�t=ab[Pj�|�Z@[y[{Z@m)[ot�ZXj�r{�����bZ@m�j=r¯al�yZ@m:m{Z@rXt�uwu�Z�^lk4�}^l£�j
[oZ@uwv�t=m�j=myn�Kßn4�mMs[ot�[y�lZVu"j�r{�4��^lZ�[o�lj=[)\�t�a4|~k"j6|�|~te\ rXt�^z[y��^zalZXk�r@|}��^b��r�j=|bab�oZ��)���bZ
|�Z@[y[{Z@m�¾;�y�lte\�^R��^ ��[o��rXt�uwvb|~Z�[{Z/�¥t�myu ¿ �y[�j6[{ZXk�G

º4¹±Y�_`2D4���G¬4�h ¡ A�8@2L/ðA �@E�2�* ¡ ��/ðA�8 E�*9�@4�2)½�¹5*¬2:ºÇ¼��C*
�9h52¢�9h²2D* ¡ 4-�gh«§�/ðA52 ¡ * ¡ 494�2)§_2�* ¡ �O�C*

2�J�ZXr�[o����Z«��uwu�Z@k4��j=[oZ@|}ngqçj=^lk8ab^z[o�}|���abmy[o�lZ�m�^lt�[y�~rXZ=q�[o�bZ�¬gZ@n`al�oZ@k
�¥t�m u�te�z��^l£¦[y�lZ%r@abmo�ot�m��²j�r{¬Ç[o�4m{t�al£=� [y�lZ8vbm{Z@�or@my��vb[y�~t�^ �oZ ³ alZ@^lr@Z¾;�G� Z��Ùq+r@abmo�ot�m�~Í¹5E9j1�}^l�or�mo�}��Z@k�\���[y��j=^"abvz\�j=m{k�v�t���^z[o�}^l£�j6mom{te\ ¿ u	al�y[
^lt�[���Z�ab�oZXk��¥t�mVZXk1��[o�}^l£«t�m¯j=^zn�t=[o�lZ�m¯v4abmov�tg�oZ=�

281

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�10

�2tRje��t��~k�j�r@r@�~k4Z@^z[�j=|)al�yZ�t=��[o�4�~��¬gZ�ngq®[y�lZ«¬gZ�n�rXj=v�u�al�y[���Z�moZ�x
u�te�gZ@k�j=^lk�[o�bZ��y\���[or{��rXt�^z[�j=r@[{�Æn1�4Z@k��}^�[o�bZ�t�v�Z�^¤v�tg����[y�~t�^�\���[o�
Z@|~Z@r@[ymo�~rXj=|�[{j=v�Z�t�m�t�[y�lZ@m��}^l�yab|~j=[o�}^l£"u�j=[{Z�mo��j6|G��¼lt�m�j��y�y�~��[�j=^brXZ�\���[o�
[o�lZ�|�j=[y[{Z@m¯ngt=a8�y�lt=ab|~k©r@t�^z[�j�r�[±n�t�abm/|�t1rXj=| ¡ 2D4�§¤�oZ@my�z�~rXZsm{Z@v4m{ZX�yZ@^4x
[�j=[y���gZ=�
½±���{j=�4|���^b£�[o�4�~��¬gZ�n«u�ZXj=^l��[y�²j=[I���çj6^+n	vbm{Z@�or@my��vb[y�~t�^wklj6[�j/Z@^z[oZ@m{Z@k

�~�2��^lr@t�momoZXr@[®[o�lZ�^�j�~b*:j�m{Z@�oZ�[�rXt=u�u�j=^lk�u�al�y[®��Z:al�oZ@k�j=^lk	[y�lZP\��bt�|~Z
vbm{Z@�or@my��vb[y�~t�^ moZXZ@^z[oZ@m{Z@k'�
¼lt�mw[o�btg�oZ`ab�oZ@mo��t���[o�bZ8Æ�ab|}[o�}v�t�my[wt�vb[o��t�^¢�}["j=|��ot�u�ZXj=^l��[y�²j=[

ZXk4�}[o��^b£�t��:kbtg�yZ�m�j=[oZ�q�kbtg�oZ�j6^lk©[o�}u�Z�\���|�|2^lt=[/��Zsv�tg�y�y�}�b|~Z	��Z@[]\PZXZ�^
v�t�my[{�@�

�±^·Æ`j�n��1qVcedgf��4q�[o�lZ ¼�½ ¡ k4ZXr@|~j=m{Z@k¦[o�lZ����lZ�m�j�r�kbZ��¥ZXr�[o����Z�qPkbZ@u�j=^lkbZ@k�j
4 ¡ E®qCj6^lk8m{Z ³ ab�}m{Z@k%moZ@^lt=[o��nbr�j=[y�~t�^8t=��j6|�|�[y�lZ����lZ�m�j�r«r�al�y[ot�u�Z�m{�@�./G^%[o�lZ�|�Z@[y[{Z@m��mot�u¸[y�lZ±¼�½ ¡ [{t ¡ 2D4�§Iqi[o�lZ�½±��moZXr�[{t�m)t���4�t�uwvb|��~j=^lrXZ=q)4�Z@^z[{Z�m��¥t�mP½/Z��+��rXZ@��j=^bk
*¯j�k4��t�|~t�£��~rXj=|Sh�Z�j6|�[o�'q4\�m{t�[oZ1G

´TZ)�²j��gZ)m{Z��+��Z@\PZXkR� ¡ 2D4�§�j �y ¡ vbmy��|²c�h�|~Z�[o[{Z�m2[{tVvbabm{r{�lj��oZ�m{�Ij=^bks�²j��gZ
rXt�^lr�|�alk4ZXk�[o�²j=[C�}[Ckbt+ZX�C^lt�[2�oj=[o���y��n/[y�lZIm{Z ³ a4��m{Z�u�Z�^z[{�C�¥t�mC^lt�[y��nlrXj=[o��t�^[{t`vba4m{r{�²j��yZ@mo�«t��¯j`kbZ��¥ZXr@[��^¤j=^�Z@|~Z@r@[ym{t�^b��r�vbmot1k1alr@[X�%º+v�ZXr@�¢nlr�j6|�|�n�q
��[skbt1Z@�	^lt�[skbZ@�or@my����Z�[o�bZ"kbZ@�¥Z@r@[�^bt�m	[y�lZ��²jI��j=mokb�«j��y�ot+r@��j6[{ZXk�\���[o�
��[��¯���lZ�|~Z�[o[{Z�m/kbt+ZX�¯^lt�[¯vbm{te�z�~k4Z�j=^zn�m{Z�j=�ot�^©�¥t=m±k4���{j=�4|���^b£w[y�lZ	r�abmyx
�ot�m�¬�Z@n�j=^lk%[o�bZ�[{t�^lZ«���/^lt�[�rXt=u�u�Z@^l��abm�j6[{Z�\���[y�%[o�lZ«abmo£gZ@^lr�n©�¥t�m
kbt���^b£��otb�Æ/G^��;j�r�[�q'[o�bZ�|~Z@[y[{Z�m���uwvb|���ZX��[y�lZ���^brXt�^z�gZ�^b�~Z�^lrXZ�[{t t�v�Z@m{j6x
[{t�mo��t�a4[]\�Z��~£��l�¯[o�lZ�^lZ@ZXk`[ot�k4���{j=�b|�Z�[o�lZ�¬gZ@n���´TZ�m{Z ³ alZ@�y[�[o�²j=[¯ngt=a��uwu�Z@k4��j=[oZ@|}n«m{Z@^bt�[o�}��n�vbabmor{�²j��yZ@m{�@�

¡ 2+4�§`v4m{t�uwvb[o|}n�u�j�kbZVj�^lZ@\¨^lt=[o�~r@Z�[{t�al�oZ�m{�Pj=^lk"j6|~�ot�moZ ³ alZX��[{Z@k j=^�Z �+[{Z@^1x���~t�^ [ot�v4m{t+k4alrXZ�j�4 ¡ E��²���lZ	¼�½ ¡ £�m{j=^z[{Z@k�[y�b�~��moZ ³ alZX��[��¡ ��t�a4[®[y�b�~�2[o�}u�Z=q6[y�lZ����lZ�m�j�r x��gh�al�oZ�m{��r�m{ZXj=[{Z@k«j¯al�yZ@m�jÔ��£=m{t�abv�j=^lk��lZ@|�ks[o�bZ@��m
n4m{�y[Pu�Z@Z@[y��^l£	j=[P[y�lZ�j=^4^+alj=|�r@t�^b�¥Z�m{Z@^brXZ/t���[o�lZ ¡ u�Z�mo��r�j=^ ¡ �o�yt1r���j=[y�~t�^�t��_E��zn+�y�Ùx
r��~��[{�	�}^ ÆRZXk4��r@�}^lZ�� ¡ [�[y�lZ�u�ZXZ@[y��^l£4q�al�oZ�m{�«k4���or@ab�o�oZ@k�[y�lZ��Inz|~Z@mwj=rXr@��kbZ@^z[wj=^bk
�bZ�j=mokTj=^ ¡ 2D4�§·moZ@vbmoZX�oZ�^z[�j=[y���gZwvbm{Z@�oZ�^+[s[o�lZ�r@t�u�vlj=^znSj ��vb|�j=^b�/�¥t�m�m{ZX��v�t=^lk4��^b£
[ot«��[�� ¡ 2D4�§�vbm{t=u����oZXk�[otw�yZ@^lk`j�|~Z@[y[{Z�m�[{t�j=|�|�al�oZ�m{�¯kbZ@[{j=��|}��^l£	[y�lZ�4 ¡ E��
º1Z��gZ�m�j=|çal�oZ�m{�:kbZX�yr@my����ZXk"j=kbk4��[y�~t�^lj=|4�²j6m{k4\�j=m{Z¯�{j6�¥Z@[]n«�¥Z�j6[oabmoZX�)[o�²j=[)[y�lZ@n«�²j=k

j=kbkbZXk�[{tw[o�lZ���m¯te\�^©u"j=r{�b��^lZ@�¯[otwv4m{te�z�~kbZsj�kbk4�}[o��t�^²j=|'v4m{t�[oZXr@[y�~t�^'� ¡ ^R��^z[{Z�mo|~t+r{¬
¾¥[o�²j6[)r{�lZXr{¬�ZXk"£�a4^�r�abmomoZ@^z[)�=j=|�alZ@� ¿ qg\��b�~r{��[o�bZ�;:j=^lrXt=ab�gZ�m�r�|���^4�~rP�lj�k«vbm{Z��+��t�al��|�n
j=kbkbZXk¨[ot�[o�lZ���m ���lZ�m�j�r x��gh+q¯\�j��"|�j6��Z�|~ZXk¢j��"m{Z@k4ab^lklj6^+[��zn ¡ 2D4�§�,�[o�lZ`ab�oZ@mo�

282

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�1c

k1�~�{j=£�m{Z@ZXk'�)���lZ�m{Z±\PZ@moZ±��abmy[o�lZ�m�k4���or@ab�o�y��t�^l��t=�'v�t+t�mPkbZX���~£�^�j=^lk"t�[y�lZ@m:vbmot��b|~Z�u��
[y�²j=[VrXj=al�oZ@k©j�c�06x)[otw�`06xGv�Z@morXZ�^+[Vab^bkbZ@mokbtg�y�}^l£���^ ��t=[o� u�t+kbZ@�X�
���lZ�u�ZXZ@[y��^l£�^bt�[{Z@���oj=�~k
���lZ@moZV\�j��:j�£gZ@^bZ@m�j6|²rXt�uwvb|�j6��^z[��zn�j=|}|4al�yZ@mo�:vbmoZX�yZ@^z[�j6��t�a4[�[o�lZ�|~j�r{¬
t��®�}^b�¥t�myu"j=[y�~t�^�vbm{t�vlj�£ij=[y�~t�^C�����lZ�al�oZ�m{��\PZ@moZ�^bt�[��²j=vbvzn�j=��t�ab[�moZ�x
rXZ@�}�z��^l£«��^brXt�uwvb|~Z�[{Z±�}^b�¥t�myu"j=[y�~t�^'�����lZ ¡ 2+4�§TmoZ@vbmoZX�yZ@^z[�j=[y����Zsr@t�ab^4x
[{Z@moZXk��zn��y[{j=[o�}^l£�[o�lj=[¡ 2D4�§�k4t1Z@�V^bt�[�\��~��� [{t��yvbmoZ�j�k�myabu�t=m{�Vj=^lk
[o�²j=[¡ 2D4�§ �²j��/^bt v�t�|}�~r@n�[{tr~ ¬gZ@Z@v�[o�b�}^l£g� ³ ab��Z@[�jÙ�«���lZ«r@t�^l�yZ@^l��al�j=u�t=^l£�[o�lZ�al�yZ@mo�¯\�j��V[o�²j=[¯j6^��}u�v4m{te�gZ�u�Z�^+[V\�j���^lZXr@ZX�y�{j=myng�

¡ ��[{Z@mP[o�lZ¬nbm{��[�al�yZ@m�j ��£�mot�abv�u�Z@Z@[o�}^l£bqz[o�lZ�m{Z¯\�Z�m{Z±[]\Pt�al�oZ�m�j ��£�mot�abv�^bZ@\V�y|�Z@[�x
[oZ@mo�X�P���lZ:n4m{�y[Xqlklj=[oZXk �;j=|�|Ic�dgfg�4qbr@t�^z[�j=�}^lZXk |~Z�[o[oZ@m{����mot�uE���}uÃº+[o�}|�| q+[y�lZ:î�Z�^b^lZ x
��[{t�^bZ¯vb�zn+�y��r@���y[�qz\��ltsrXt�uwvb|�j6��^lZ@k�j6��t�a4[:\��lj=[P�bZ�r@t�^l�y��kbZ@moZXk�[ot���Z¯Z@�~£=�+[)u�j���t�m
v4m{t��b|�Z@u��¯�bZs�²j�k`Z��+v�Z�mo��Z@^lr@ZXk©\���[y�`[y�lZ����lZ�m�j�r x��gh+�±���lZ@�oZ	v4m{t��b|�Z@u��¯�}^lr@|}alkbZ@k
v�t+t�m��or@moZXZ�^4xGmoZ@��m{Z@�y�¤��ab�bm{t=ab[o�}^lZX��[o�²j=[�|�Z�j��gZw[om�j=�y�¦j6^lkTZ�mom{t=^lZXt�ab�s��^4�¥t�mou�j=[o��t�^
t=^©[o�lZst�v�Z@m�j6[{t�m±rXt�^l�yt�|~Z	j=^lk©�yt�u�Zs[�j6v�Z xG|~tgj�k4��^b£�v4m{t��b|�Z@u��¯a4v�t�^%��[�j=my[oabv`[o�²j=[
�bZwk1�~�or@te�gZ@moZXk%��^z�gt=|��gZ@k�[y�lZ�al�yZwt=��K�v4�²j=^z[{t�u [�j=�b|�ZX�¼M"[{t�[omy�~£g£gZ�m/[o�bZ���^z[{Z�mo|~t+r{¬
��n+�y[{Z�u �}^`[y�lZ	Z��gZ@^z[�t=�)jw|�tij�k �;j=��|}abm{Z���^b�y[{ZXj�k`t=��al�y�}^l£"jwr{�lZXr{¬+��abu`�5h�Z	j��y¬�ZXk
[y�lZ ³ abZX�y[y�~t�^'q�K¼/]��vbmotg£�m�j6u�uw��^l£��{j=�¥Z�[]n�moZ@|}n+�}^l£�[{t+t�u	alr{�Tt=^T[o�bZ��yt���[]\�j6m{Z���^4x[oZ@my|~t+r{¬�mot�ab[y��^lZ@��_�MÃ���lZ"�oZ@rXt�^bk¤ab�oZ@m�jÔ�«£=m{t�abvT^lZ@\V��|~Z@[y[{Z�m�q���^¦½/ZXrXZ�u���Z@m�ced�fg�4q
��a4mo[o�bZ@m¯k4�~�yr@al�y�oZ@kR[o�bZ��}u�v4|��~rXj=[o��t�^l�:t���[o�lZ�vb�²j6^+[ot�u�[{j=�b|~Z/v4m{t��b|�Z@uR�
¡ 2+4�§-vbmot1k1alrXZ@k·��[o��nbmo�y[B4 ¡ E¶t�^Ç_=a4^lZTce�1q/cedgfg�1�Ç���lZ©¼�½ ¡ j��y¬�ZXk·�¥t�m

r{�lj=^l£gZ@�Vj=^lk�j�kbk4�}[o��t�^²j=|²��^4�¥t�mou�j=[o��t�^�j=��t=ab[�[y�lZ��ot���[]\�j=moZ�qb��^br@|�abk4��^l£	j��ot���[]\�j=moZ
[oZX��[wv4|�j=^C� ¡ 2D4�§ m{Z@�yv�t�^lkbZ@k·t�^·º1Z�vb[{Z�u���Z@m����©\���[y� �yZ@��Z@m�j6|�k4t1r�abu�Z�^z[{��kbZ�x
�yr@my���b�}^l£	[o�bZ/�ot���[]\�j=moZ�j=^lk"��[o��u�t1k4�¢nlr�j6[o�~t=^l�:�4ab[�^lt�[oZX�y[�vb|�j=^'�)���lZ@n�Z��+vb|�j6��^lZ@k
�bt�\ [o�bZ«���lZ@m{j�r�x��gh��ot=��[]\�j=moZ«Z@��t�|���ZXk8��m{t�uÃ[o�bZ«���lZ@m{j�r�x]�"�ot���[]\�j=moZ�j=^lk8�y[{j=[{Z@k
[y�²j=[3K�^lt��y�}^l£�|~Z/[oZX��[�vb|~j=^`j=^lkRmoZ@v�t�mo[¯Z �1���y[o�¯�¥t�mV[y�lZs�yt���[]\�j=m{Zs�y��^brXZ���t�[y�R�lj=m{k1x
\�j=moZ`j=^bk �yt���[]\�j6m{Z \�Z�m{Z [{ZX��[{Z@k¢j=^lk�Z��1Z�m{r@���oZ@k·�oZ�v²j=m{j=[{Z�|�n�j=^lk¤[{t�£gZ@[y�lZ@mwte�gZ�m
u�j=^zn�ngZ�j6m{�X�¾M ¡ 2+4�§ArXt�^br@|�abkbZXk�[y�²j=[�[y�lZ�r@abmym{Z�^+[�4 ¡ E �}u�vbmote�gZXk K�u"j=r{�b��^lZ
�oj=�¥Z@[]n��znRu�j=^zn�t�m{k4Z@m{��t��Iu�j�£�^b�}[oalkbZsj=^lkR�+�}mo[ya²j=|�|}n�Z@|}��uw��^²j6[{ZX��[y�lZ	v�tg�o�����b�}|��}[]n
t=�®|�Z@[o�lj=|Ckbtg�yZX��j��VkbZ@|}����Z@m{Z@k���^ [o�lZ��Inz|~Z@mV�}^lr@��kbZ@^z[��¾M
¡ ^·¼�½ ¡ �}^z[{Z@my^²j=|�u�Z@u�t©klj6[{ZXkF�/r@[ot���Z�mw�108rXt=u�u�Z@^z[{Z@k¦t�^¤[o�lZ@�oZ ¡ 2D4�§

��ab�buw�~�y�y�~t=^l�Xq4m{j=�~����^l£«�yZ@��Z@m�j6|®r@t�^lr@Z@mo^b��G
¹¯^b�¥t�my[oab^lj=[{Z�|�ngqP[o�lZ ¡ 2D4�§moZX��v�t�^b�oZ©j6|~�ot��oZ@Z@u���[{t�v�t��}^z[�t�a4["j=^
j=vbv²j=moZ@^z[¯|�j�r{¬ t���kbt1r�abu�Z@^z[�j=[y�~t�^Rt�^`�ot���[]\�j=m{Zs�yv�ZXr���nlrXj=[o��t�^l��j=^lk©j
�ot���[]\�j=m{Z�[oZX�y[¯vb|~j=^C�

283

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�g�

½�½�½or@t�^lrXZ�mo^l�%��^br@|�abkbZT[o�bZ ³ abZX�y[y�~t�^ t���vbmoZ@�z�~t�ab�%¬z^lte\�|�ZXkb£gZ¦t=�vbm{t��4|~Z@u����zn ¡ 2D4�§Iql[o�lZ�j=v4v²j=m{Z�^z[¯vlj=alr@�}[]n�t��®�ot���[]\�j=moZ ³ a²j=|}��[]n"j���x�yabm{j=^lrXZ�j=[�[y�lZ/u�j=^zab�;j�r@[yabmo�}^l£��;j�r���|��}[]ngq+j=^lk�v�tg�o�����b|�Z/\�j6mo^b�}^l£g�Vj=^lk
��^b�¥t�myu"j6[o�~t=^	k4���o�yZ@uw��^²j=[y�~t�^	[{t�t�[o�bZ@m{�It=��[y�lZ�£gZ@^bZ@mo��r�[]nzv�Z�vbmot��b|~Z�u��@�

½�½�½ ¡ �®u�Z@^z[o��t�^lZXk���^�u�nCnbmo�y[�moZ@�z�~Z�\�q=[y�lZ@moZP�~���ot=u�Z:rXt�^4��al�y��t�^�t�^
\��lZ@[y�lZ@mI[y�lZ�u�j=^zab�;j�r@[yabm{Z�m����lt�ab|�k	�²j��gZ���ZXZ�^�j�\�j=m{Z�t��l[o�lZ��ot���[]\�j=m{Z
vbm{t��4|~Z@u���vbmy�~t�m�[ot�[o�lZ ¡ *���j �/� ¡ rXr��~kbZ�^+[{j=|S*�j=k4��j=[y�~t�^?�/��Z@mokbtg�oZ@�y ç��^
��Z �bj=�X� ¡ 2D4�§A�²j�k�moZXr@Z@����ZXk�t�°wr@�~j=|�^lt=[o��nbr�j=[y�~t�^Tt���j`|�j�\ �yab�}[���^
A�te�gZ�u���Z�m�cedgfgh���m{t�u jsvlj=[o��Z@^z[�r@|~j=��uw��^b£sj=rXr@��kbZ@^z[{j=|'te�gZ�myxGZ��+v�t��yabmoZ
��m{t�u j����lZ�m�j�r x��gh"��^TÆ`j=my�~Z�[o[�j1qY8�ZXt=m{£��~j4�¢½�½�½¼/G�P¬z^lte\�|~ZXk4£gZ�t=��[o�bZX�oZ
�ot���[]\�j=m{Z�kbZnlr@��Z@^lr��~ZX��\PZ@moZ�¬z^lte\�^`��Z@�¥t=m{Z@�lj=^lk'ql\��²j=[V\Pt�ab|�k ��Z�[o�lZ
¼�½ ¡ jÔ��v�tg��[oabmoZ��}^�[o�b���¯rXj��oZ`_

½�½�½{���lZ�u"j6[{Z@my��j=|����yab�4u��}[o[{Z@k �znÇ[o�lZ�u"j6^+a4�;j�r@[yabm{Z�mR�²j���ZT^lt�[
��Z@Z@^��}^��ya4°�r��~Z�^+[�kbZ@[{j=��|Pj=^lkTr@|�j6mo��[]n8[ot`Z�^l�yabmoZ�j=^¤j=kbZ ³ a²j=[oZ��yt���[yx\�j=moZ ³ a²j6|���[]n"j��o��abm�j6^lrXZ�vbm{t�£�m�j=u�r@abmym{Z@^z[y|�n Z��+���y[{�@��¼lt�mVZ �4j=u�v4|~Z�q²jm{ZX��v�t=^l�oZ±�lj��P^lt=[���ZXZ@^�v4m{te�z�~kbZ@k�\���[y��m{Z@�yv�ZXr�[�[{t	[y�lZ±�yt���[]\�j=m{Z±vlj=mo[
t��2[o�lZ:4 ¡ E [{t«[o�bZ:4�½C*²h:jÔ�	� ¼�½ ¡ 4�Z@^z[{Z�m¯�¥t=mV½/Z@�z�~r@ZX�¯j=^lk�*¯j�k4��t=x
|~tg£���r�j=|Sh¯Z�j=|}[o�b çm{Z ³ abZX�y[V�¥t�m�kbt1r�abu�Z@^z[�j=[y�~t�^"t�^�[o�lZ�m{Z@�z���oZXk�moZ ³ ab��moZ�xu�Z�^+[o��j=^lk¤�yv�ZXr���nlrXj=[o��t�^l���¥t�m«[y�lZ"^lZ�\��ot=��[]\�j=moZ��g/G^ j�kbk1��[o��t�^Cq)j=^
j=^²j=|}n1���~�¯�²j��±^lt=[/��Z@Z@^%vbmot��z��kbZXk'q'j��/m{Z ³ abZX�y[oZXk'q2t�^8[y�lZ	�}^+[oZ@m{j�r@[y�~t�^\���[o� t=[o�lZ�m�v�t�my[o��t�^l��t��2[y�lZ��ot���[]\�j=moZ�[ot�kbZ@u�t�^l��[om�j6[{Z/[o�bZ�rXt�mym{ZXr�[{Z@k
�ot���[]\�j=m{Z�kbt+ZX��^lt=[±j=k4�gZ�m{�oZ�|�n�jIJ�ZXr�[¯t�[o�lZ�mV�ot���[]\�j=moZ���ab^br@[o��t�^l�@�
���bZ"_=ab|}n%���"|�Z@[o[oZ@m���mot�u [y�lZ�4�½C*²h moZ ³ alZX��[{Z@k¦j�kbt1r�abu�Z@^z[{Z@k[{ZX��[�vb|~j=^���^br@|�abk4��^l£��oZ��gZ@m{j=|²�yv�ZXr���nlrPvb�~Z@rXZX�It=�l��^b�¥t�myu"j6[o�~t=^s��kbZ@^z[o�¢nlZXk

��^©[y�lZ�|~Z�[o[{Z�m������b���±m{Z ³ alZX��[��lj��/��Z@Z@^%�~£=^lt�m{Z@k`abv8[ot"[o�b���±v�t=��^z[±�zn[o�lZ�u�j=^zab�;j�r�[oabmoZ@mX��4�t�^l���~kbZ�mo��^b£`[o�lZ�m�j=uw��nlrXj=[o��t�^l��t���[o�bZ"r@abmym{Z�^+[
�ot���[]\�j=m{Zwvbm{t=�b|~Z�u`q�r{�²j=^l£�ZX�s�}^��yt���[]\�j6m{Z[� ¡ j=[o[y��[yalkbZX�sj=moZw^lZ@ZXkbZ@k
j=[¡ 2D4�§I�

¡ 2+4�§�j=|~�ytVv4|�j=^b^bZXk�[{t�moZ@[�j6��^�[o�lZ�u�j=|}��ab^lr@[y�~t�^/rXt+kbZX�@q=�bab[C[y�lZ:¼�½ ¡ m{Z ³ a4��m{Z@k��Z@[y[{Z�m±\�j=mo^b�}^l£g�V�¥t�m¯[o�lZst�v�Z�m�j=[ot�m{�@�V¼babmo[y�lZ@myu�t�moZ�q ¡ 2D4�§��²j�k�^lt�[±v4|�j=^b^bZXk`t=^
j6^+n ³ a²j=|}��[]n�j��o��abm�j6^lrXZ�[{Z@�y[y��^l£`[ot©Z@^b�yabmoZ�Z �4j�r@[«r@t�vznz��^l£8t��V�yt���[]\�j=m{Z=q)�4ab[�[o�bZ¼�½ ¡ ��^b�y�~��[{Z@k·t�^���[X�¢���lZ`¼�½ ¡ ��abmy[o�lZ�m�moZ ³ alZX��[{Z@kÇj��o��abm�j=^brXZX�w[o�²j6[�my�~£gt�mot�al�[oZX��[o��^b£�\�t�a4|~k"��ZXrXt=u�Z�j���[�j=^bklj=m{k�v²j6mo[�t�� ¡ 2+4�§�j ���ot���[]\�j=moZ�u�t+k4��nlrXj=[o��t�^wvbm{t=x
r@ZXk4a4m{ZX�@�

´TZ�j6|~�ot±Z��+vbm{Z@�o�yZXkwt�abmIr@t�^lrXZ�mo^�[o�lj=[�n�t�awk4�~k	^bt�[���^z[oZ@^lk�[ot±v�Z�mo�¥t�myu
[o�lZ±v4m{t�[ot1r@t�|�[ot	��ab[yabm{Z±u�t+k4��nlrXj=[o��t�^l�I[{t	�ot���[]\�j=m{Z=�I´TZ±��Z@|}�~Z��gZ�[y�²j=[

284

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(���

[o�lZ/my�~£gt�mot�al��[oZX��[o��^b£�u	al�y[���Z�v�Z�mo�¥t�myu�Z@k�Z�j�r{��[o�}u�Z�j�u�t1k1��nlrXj=[o��t�^
�~�su�j�kbZ���^¦t�mokbZ@m	[{t8Z@^b�yabmoZ"[o�lZ"u�t1k1��nlrXj=[o��t�^Tk4t1Z@��^lt�[«j=k4�gZ�m{�oZ�|�n
jIJ�Z@r@[V[o�bZ��oj=�¥Z@[]n"t��®[y�lZ��yn+�y[oZ@uR�

¡ 2D4�§ \�j=��j=|��ot%j���¬gZ@k [{t�k4m{je\ abv·j=^¤��^l��[�j=|}|�j=[y�~t�^�[{ZX��[�vb|�j=^¤[ot�Z�^l�ya4m{Z [o�²j=[
��t�[y���lj=m{k4\�j=moZ	j=^bk��yt���[]\�j=m{Z�r{�²j=^l£�ZX�Vv�Z�mo�¥t�myuEj��VkbZ@�y�~£=^lZXk \��lZ@^R��^l��[�j=|}|~Z@k'�
¡ 2+4�§%�ya4�bu��}[o[oZXkB4 ¡ Eò*VZ@�z���y�~t=^ �	j=^bk"�yabv4v�t�my[o�}^l£	kbt+r@a4u�Z�^+[{j=[o��t�^"t=^�½/Z�x

r@Z@u���Z@m��g�1q²ced�fg�4�����bZ@n�r{�²j=^l£gZ@k�[y�lZC4 ¡ ET[{ts�lje��Z±kbt��oZVu"j=|}��ab^lr�[o�~t=^l�I�yal��v�Z�^lk
[ym{ZXj=[ou�Z@^z[:j=^lk��}^lr@|}alkbZ@k�j±v4|�j=^«�¥t�m�u�ZXj=^b��^b£���ab|bZ�momot�m�u�ZX�o�oj�£gZ@�Pj6^lk«�b�~£��4|��~£=�+[oZXk
k4tg�oZ�Z@mym{t�mVu�ZX�y�{j�£gZ@�X�P���lZ@n�j6|~�ot�Z �1vlj=^lkbZ@kR[o�bZ@��mVk1��j�£�m{j=u���t��®�ot���[]\�j=m{Z�u�t1k4�¢n4x
rXj=[o��t�^l�Vj=^bkRZ �1vlj=^lkbZ@kR[o�bZ@��m�[oZX��[¯v4|�j=^ [{t�r@t���Z@m¯�²j=mok4\�j6m{Zsj=^lk �ot���[]\�j=moZ��

ÑOÒ�J /gà�05Þ21�à=3¥àlá¼á¼Õ�ä�5 Õ�1�Ú�æSÞßàlá]7ÖÚ9Øf8:ÞðÙªà+á<ç.è¬à+×²éCà+æ�ä Ó�ë�ì��
�±^Aº1j=[oabmoklj�ngq¯_gj=^za²j6monAc�p1q/c�dgfip1q�[y�lZ`�yZXr@t�^lk¢v²j=[y�~Z�^+[�t��/[y�lZ`kbjen�\�j���[otT��Z
[ym{ZXj=[{Z@k��¥t�m�j8r�j6m{r@�}^lt�u�j4�¤���b����vlj=[o��Z@^z[�\�j���[{t8moZXrXZ�����Z�[]\Ptknb|}u ��Z@mo�¢nlr�j6[o�~t=^
Z �+v�tg��abm{Z@��t��4ª¯j=^lks�Vm{j�kb�2vb|�al��j¯p�d6x m�j�k�vb�bt�[{t�^�[omoZ�j=[yu�Z�^z[�¾¥�¥t�m�jV[ot�[�j6|iZ��+v�tg�yabmoZ
t=��fg��m{j�kb�X� ¿
¼®�}|�uE\�j��/vb|~j�rXZ@k©ab^lkbZ�m�[o�lZ	vlj=[o��Z@^z[�j=^bk8ª"m�j�kb��\�Z�m{Z�j�k4uw��^4�~�y[oZ@moZXk'� ¡ ��[{Z@m

[y�lZ�u"j=r{�b��^lZ�v²j6al�oZ@kw[otst�v�Z@^w[o�bZ¯r@t�|�|}��u�j=[{t=m}�yj�\V�)��abmo[y�lZ@mXqz[y�lZV�oZ@rXt�^lk�Z��+v�tg�yabmoZ
t=����m�j=kb��\�j���j�k4uw��^4�~�y[oZ@moZXk'�I���bZ�u�j�r{�b�}^lZ/v²j=al�yZXkRj�£ij=�}^C�
���lZ«t=v�Z�m�j=[ot�m�Z@^z[oZ@m{Z@k8[o�lZ�[ym{Z�j6[ou�Z@^z[±mot1t�uÃ[{t"moZ@u�te�gZ	[y�lZÆnb|�u j=^bk©�gZ@my����n

[y�lZ�v²j=[y�~Z@^z[�jÔ��vbmoZXr��~�oZ v�tg�y�}[o�~t=^C�=h¯Z ab�oZXk¤[o�bZ �lj=^lk�rXt�^z[omot�|��}^�[y�lZ�[omoZ�j=[yu�Z�^+[
mot1t=u [{t m{t�[{j=[{Z�[o�bZw[yabmo^z[�j6�b|~Z«[{t�[o�lZ?nlZ�|~k%|��~£=�+[�v�tg����[o��t�^CqC\��b��r{�¦j=|}|~te\�Z@k��4��u
[ot�r{�lZXr{¬�[o�lZ�j=|}�~£�^4u�Z�^+[�t��®[y�lZ�u"j�r{�4��^lZ/\��}[o� m{Z@�yv�ZXr@[�[{t«[o�bZ�vlj=[o��Z@^z[�j �¯��t+k4n"��^
t=m{kbZ�m�[otw��Z@mo�}��n�vbm{t=v�Z�m¯��Z�j6uEv�tg����[y�~t�^C�+h�Z�[o�bZ@^©Z���[y�lZ@m¯vbm{Z@�o�yZXk`[y�lZ?X�PRC�ba4[o[{t=^
t=^w[y�lZ��²j=^lk�r@t�^z[om{t=|²t�mI|~Z���[�[o�lZ�mot1t�u j=^lk�[]nzv�Z@k�j��yZ@[:rXt�uwu�j=^lk�j=[I[y�lZVrXt�^l�yt�|~Z
[ot�moZ@[yabmo^�[o�lZ�[oa4mo^z[�j=�4|~Z«[{t�[o�bZwvbmot�v�Z@m�v�t��y��[y�~t�^8�¥t=m�[ym{ZXj=[ou�Z@^z[�,�[o�lZ�m{Z«�~���yt�u�Z
r@t�^b��al���~t�^�j��)[{t�Z��4j�r�[o|�n«\��lj=[)[om�j6^l�yvb�}m{Z@k'��´¨�lZ�^"�lZV|~Z@��[I[y�lZVm{t+t�u`qg�bZ¯�¥t�mo£gt�[I[ot
moZ@u�te�gZ�[o�lZ:nb|�u���mot�uEab^lk4Z@mo^bZ�j=[y�©[o�lZ�v²j=[y�~Z�^+[X�����lZsrXt�^l�yt�|~Z�k4���yvb|~j�ngZXkêK���ZXj=u
moZ�j�k1ngq¾M�j=^bk�[y�lZ�t�v�Z�m�j=[ot�m��b�}[�[o�lZ�«�R ¬gZ@n�[ot«[oabmy^R[y�lZ���ZXj=uEt�^C�
���lZ¯��ZXj=u r�j=u�ZVt�^Cqz�bab[:[o�lZ�rXt�^b�ot�|�Z�k4���yvb|~j�ngZXkw^lt	k4tg�oZ�t�m�k4tg�oZVm�j=[oZ�� ¡ ��[{Z@m

n4�gZVt�m)�y�Ù�«�yZXrXt=^lkb�Xqz[o�bZ�ab^b��[��y�zab[:kbte\�^�\��}[o��j±v²j=ab�oZ¯j=^lk�k4���yvb|~jen�ZXk�j±u�Z@�o�oj�£gZ��
���bZ�u�Z@�o�{j=£gZ�K�u�j�n��lje��Z«k4�~�oj=vbv�Z�j=moZXk ³ ab��r{¬+|}n)Mª,�[o�bZ«t�v�Z�m�j=[ot�m±\�j��±a4^lr@|�Z�j=m�t=^[y�b�~�Vv�t���^z[��²h�te\PZ@��Z@m�q��y��^brXZ	[y�lZsu�j�r{�b�}^lZ�u�Z@moZ@|}n�v²j=al�yZXk'q��bZs\�j���j=�b|�Z�[ot�vbal���
[y�lZ�«® ¬gZ�n�[{t�vbm{t+rXZ@ZXk \���[o� [ym{Z�j6[ou�Z@^z[��
���lZ�u�j�r{�b�}^lZ±v²j=ab�oZXk�j�£gj=��^Cq+[o�b����[o�}u�Z�k4�~��vb|�j�nz��^b£?´v³	±ª¸�¶_ý�üfü�t=^�[o�lZ/moZ�j��yt�^

285

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�=ª

|}��^lZ=�����lZ�t�v�Z@m{j=[{t=m��lZ�j=mok8[o�lZ«v²j=[y�~Z�^+[��oj�n8�ot�u�Z@[y�b��^b£�t���Z@m�[o�bZ��}^z[{Z@morXt�uRq��ba4[
r@t�ab|�k¤^bt�[«ab^lkbZ�m{��[�j=^lk¤�b�}u`�gh¯Z"\�Z�^z[��}^+[ot©[o�lZ�mot1t�u [{t%�yv�Z�j6¬�\���[y��[y�lZ"v²j6x
[y�~Z�^+[Xq�\��lt"moZ@v�t�mo[oZXk°K��¥Z@Z@|}��^l£�j��babmy^b��^l£��oZ@^b�{j=[y�~t�^�M���^©[y�lZ�r{�lZ@�y[������bZ«rXt�^l�yt�|~Z
k1�~�yv4|�j�ngZ@k�t=^b|�n�[o�lZ/[ot�[�j=|�kbtg�yZ�t=�®[y�lZ/[]\�t?nb|}uµZ �1v�tg��abm{Z@�	¾ psm�j�kb� ¿ j=^lk�^lt�[y�b��^l£
u�t�moZ��
§2j=[oZ@m���^�[o�lZ�klj�n�q4[o�lZ/vlj=[o��Z@^z[�kbZ��gZ@|�t�v�ZXk�j��y¬z��^ �ba4mo^�te�gZ@m�[y�lZ�Z@^z[y��m{Z�[om{ZXj=[yx

u�Z@^z[�j=m{ZXj4��¼lt�abm®klj�n+��|�j6[{Z@mXq=[y�lZPmoZXk4^lZ@�o�IkbZ��gZ�|~t�v�ZXk�j±��[omy��v�ZXk	v²j6[o[{Z�mo^�u�j=[or{�b��^l£
[y�lZ��y|�t�[{���}^�[o�lZ/�4|~t+r{¬+�}^l£	[ym�j�ng�:���lZ��y[ymo�}v�Z@k"v²j=[o[oZ@my^�\�j��V�y�}u��}|�j=m)[ot�[y�lZ/�babmy^Rj
n�Z�j=mVZXj=mo|}�~Z�m�j=[�[o�b�����{j=u�Z±�lt��yvb�}[�j=| q+\��b��r{���²j�k nbmo�y[���ZXZ�^`j=�or@my����ZXk"[ot�js�lZ�j6[o��^b£
vlj�k`j6^lk�|�j=[oZ@mVt�°wr@�~j=|�|}n�|�j=��Z@|�ZXk��zn"[o�lZ��lt��yvb�}[�j=|2j=�3K�r�j=al�yZ�ab^b¬z^lte\�^C�¾M
¡ 2+4�§w��Z@£ij=^sj=^���^z��ZX�y[y�~£ij6[o�~t=^Cq�j=^lk�al�yZ@m{�C\PZ@moZ)[ot�|~k/[ot�rXt�^vnbmou [o�lZI[oa4mo^z[�j=�4|~Z

v�tg����[o��t�^T�z���ya²j=|}|�n%��Z@�¥t�moZ"[oabmy^b��^l£`t�^¤[o�lZ���Z�j6u`� ¡ |}|�[oZX�y[o��moab^¤�znT[y�lZ ¡ 2D4�§
Z�^l£��}^lZXZ�m{����^bk4�~rXj=[{Z@kT[o�²j6[�[o�lZ"u�j�r{�b�}^lZ�\�j���\Pt�mo¬z�}^l£©v�Z�mo�¥Z@r@[o|}ng��¼bm{t�u [o�bZ"��^4x
�¥t=mou�j=[o��t�^8[o�²j6[��lj�k���ZXZ�^�£ij=[y�lZ@moZXk�[{t [o�²j=[�v�t���^z[Xq2�}[�\�j=�	�yab�yv�ZXr@[oZXkT[y�²j=[�[o�bZ
Z�|~Z@r@[omot�^«��Z�j=u �²j�k«r@t�u�ZPt�^«\��lZ�^w[y�lZ�[yabmo^z[�j6�b|~Z�\�j����}^�[o�bZ�nlZ@|�k	|���£��z[®v�tg�y�}[o��t�^C�
Y:ab[V[o�lZ���^z��ZX�y[y�~£ij6[{t�mo��rXt�ab|�k�^lt�[Vm{Z�vbm{t+k4alr@Z�[y�lZ��;j=ab|}[�rXt�^bk4��[y�~t�^C�

�±^¦[o�bZ��¥t�|�|�te\���^l£����zabm{�yklj�ngq ¡ 2D4�§Ç�oZ@^z[«�}^¦j=^¤Z�^l£���^bZXZ@ms��m{t�u �±[o[{j�\�j`[ot
�}^z�gZX��[o��£ij=[{Z=� ���bZR�ltg��vb��[{j=|Vvb�zn+�y�~r��~��[��²j�k�q���^·[y�lZRu�Z�j6^+[y��u�Z�q:moab^¨�yt�u�ZR[{Z@�y[o�
�4��u��oZ@|}���Dh�Z�vb|�j�r@ZXk`j?nb|}u���^�[o�bZ	���lZ�m�j�rIjÔ�¯��ZXj=uÃj=^lk [o�bZ@^`m{j=^`[]\Pt�Z �+v�tg��abm{Z@�
t=�.-�x m�j�n¨v²j=m{j=u�Z@[{Z�m{� \���[y� [y�lZ�[yabmo^z[{j=�b|~Z%��^°nlZ�|~kÇ|��~£=�+[�v�tg����[o��t�^C�µ���lZ�n4|�u
j6vbv�ZXj=m{Z@k¢[{tTu�j=[or{�¢[o�lZ7nb|�u [o�²j6[�\�j���|~Z���[8¾¥�+n u����y[{j=¬gZ ¿ ab^lk4Z@m"[y�lZ`v²j=[y�~Z�^+[
k1abmo�}^l£«[o�lZ�j�r@r@�~k4Z@^z[��
¡ ��[{Z@m�j¯\PZXZ�¬	t=�lr{�lZXr{¬z�}^l£±[o�bZ:�²j6m{k4\�j=m{Z=q ¡ 2D4�§�kbZ�[{Z@myu��}^lZXk�[o�²j6[®[y�lZÆK���^lr@t�myx

moZXr�[�u�j�r{�b�}^lZst=v�Z�m�j=[y�~t�^ \�j���vbmot��²j=�4|�n"^lt=[±rXj=al�oZ@k`�zn �²j=m{k1\�j=moZ	j6|~t�^lZ=�ñM ¡ ��[{Z@m
r{�bZXr{¬z��^l£ [o�bZ«�ot���[]\�j=m{Z=q ¡ 2D4�§ Z�^l£��}^lZXZ�m{��k4���orXte��Z@m{Z@k�j3�²j�\µ¾?kbZ@�or�mo����ZXk8��Z@|�t�\ ¿
[y�²j=[�rXt�a4|~k`Z �+vb|�j=�}^R[y�lZ	Z�momot�^lZXt=al����Z@�²j��z�~t=m��V���lZsrXt+k4��^l£�vbmot��b|~Z�u��¯Z��+vb|~j=��^4��^l£
[y�b�~��j�r@r@��kbZ@^z[j=m{ZwrXt�uwvb|�Z@[{Z�|�n`k4��J�Z@moZ@^z[s��mot�u [y�ltg�oZ�j��o�yt1r���j=[oZXk%\���[y��[y�lZ��Inz|~Z�m
j=rXr@��kbZ@^z[o�X�

E�m{Z�|��}u��}^²j=mon�kbtg�yZsu�Z�j���abm{Z�u�Z�^+[o�¯�zn ¡ 2D4�§���^bk4�~rXj=[{Z@k�[y�²j=[¯[o�lZ�kbtg�yZ	kbZ�|����ix
Z�m{Z@k�ab^bkbZ@m¯[o�lZ@�oZ�rXt�^bk4��[y�~t�^l�®�¨[y�²j=[����Xq4\��lZ�^`[y�lZ�[oabmy^+[{j=�b|�Z/�~����^ [y�lZCnlZ@|�k |}�~£��z[
v�tg����[o��t�^m�¢�~�	t=^�[y�lZ t�m{k4Z@mwt���ªbqb010`0`[{t�h1qñ0`0`0©m�j=kb�X� ¡ ��[oZ@m«[]\PtTj6[o[{Z�u�v4[{�Xq)[o�bZ
vlj=[o��Z@^z[:rXt�ab|�k«�²j��gZ�moZXr@Z@����ZXk�f4qb010`0�[ot�c�04qñ0`0`0���^l��[{Z�j=k�t��ç[o�bZ±fg�/m{j�kb�)vbm{Z@�or@my����ZXk'�
¡ 2D4�§¨j�£ij=�}^%r�j=|}|~ZXk8al�yZ@mo�st�^�_gj=^za²j=myn����%¾;^b�}^lZ�klj�n+�	j=��[oZ@m�[o�bZ�j=rXr@��kbZ@^z[¿ j=^bk
£gje��Zw[y�lZ@u k4Z@[�j6��|~Z@k8��^l��[omoabr@[o��t�^l��t�^��lte\¸[{tRj��gt���k�[y�b�~��vbmot��b|�Z@uR��/G^�j=^T¼�½ ¡
�}^z[{Z@my^²j=|Vm{Z�v�t=mo[�t�^·[y�lZ©j�r@r@��kbZ@^z[�q�[y�lZ ¡ 2D4�§ ³ a²j6|���[]n�j=�o�ya4m�j=^lr@Z`u�j=^²j�£gZ�m���^4x��ZX��[o�~£gj=[o�}^l£w[y�lZ�vbm{t��4|~Z@uE��� ³ abt�[{Z@k8j��¯�{j�nz��^l£�[o�²j6[�[y�lZs�yt���[]\�j=m{Z	j=^lkR�lj=m{k4\�j=moZr{�lj=^l£gZ@��[{t���Z m{Z�[omot1nb[o[oZXk·�¥t=|�|~te\��}^l£©[o�lZ`�)nz|�Z@m�j=rXr@��kbZ@^z[w^b��^bZ�u�t�^z[o�l�wZ�j6mo|���Z@m

286

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�gh

¾¥�bab[�\��b��r{� �²j=k�^lt=[«ngZ@[w��ZXZ@^���^b�y[�j6|�|~Z@k ¿ \Pt�ab|�k¤�lje��Z�v4m{Z@��Z@^z[{Z@k·[o�bZBïPj6¬+�}u"j
j=rXr@��kbZ@^z[X�
���lZ/vlj=[o��Z@^z[�k4��ZXk��}^ ¡ vbmo�}|���mot�u rXt�uwvb|���r�j=[y�~t�^b�)moZ@|~j=[{Z@k�[{t	[y�lZ/te�gZ�m{kbt��oZ��Dh¯Z

�lj�k�j�[oZ@myu��}^²j=|��¥t=mou t=��rXj=^lrXZ�m�qC�bab[sj"|�j�\V��ab��[/\�j�����^b�}[o�~j=[{Z@kR�zn8�b�~����abmo�z�}�gt�mo�
j6|�|~Z@£���^b£ [y�²j=[s�lZ�k4��ZXk��yt1t=^lZ@ms[o�²j=^¦�bZ�\Pt�ab|~k��²j��gZ�j=^bk¦Z@^lk4a4m{ZXk�a4^b^lZXr@ZX�y�{j=myn
vlj=��^wj=^bkw��aªJ�Z@mo�}^l£�k4alZ�[ot/[o�lZ�m�j=k4��j=[y�~t�^	te�gZ@mokbtg�yZ��:���lZ��ya4��[�qg|}��¬�Z�j=|�|1[o�lZ�t=[o�lZ�m{�Xq
\�j��V�oZ�[o[y|~ZXk�t�ab[¯t��®rXt=abmo[X�

� ���¤��� o.�_x��:t9��~�+¥t�g�{���sjiÆtªqfxlk@m�p��In
���bZ:�yt���[]\�j=m{Z�vbmot��b|�Z@u �¥t=m'[o�lZI�yZXr@t�^lkCïPj=¬z��u�j�j�rXr��~kbZ�^z[������;j=�}mo|�nV\PZ@|}|}x]Z@�y[{j=�b|����y�lZ@k
j6^lk�k1��J�Z@m{Z�^z[:��mot�u¸[y�²j=[)��uwvb|���r�j=[oZXk	�}^�[y�lZ¯�)nz|�Z@m�j�rXr��~kbZ�^+[o�X�)���lZ�m{ZV�~�I^lt�\�j�n«[ot
k4Z@[{Z�mouw��^lZ�\��²j=[�v²j=my[o��r@ab|~j=m��yt���[]\�j6m{Z�kbZ@�y�~£=^RZ�momot�m{��\PZ@moZ�moZ@|~j=[{Z@k"[{t�[o�bZ@î�Z�^b^lZ x
��[{t�^bZ�qªh�j=uw��|�[ot�^Cqij6^lk�nbmo�y[DïPj=¬z��u�j�j=rXr@��kbZ@^z[o�X�D8/���gZ�^�[y�lZ�ab^b�{j=�¥Z¯vbm{tg£=m�j=uwu��}^l£
v4m�j�r�[o�~r@ZX�IZ �1�4���b�}[{ZXk��}^«[o�lZ�rXt+kbZ�qgab^4¬+^bt�\�^�m�j�r@Z�rXt=^lk4��[y�~t�^b��t�mIZ�mom{t=m{��r@t�ab|~k��lje��Z
��ZXZ�^�m{Z@�yv�t�^l�����b|�Z��¥t=ms[y�lZ@uR�����lZ�m{Z������yv�ZXr@a4|�j=[y�~t�^Cq2�lte\PZ@�gZ�m�q�[y�²j=[�[o�lZ�h±j=uw��|Ùx
[ot�^¦j=rXr@��kbZ@^z[�\�j=�s[o�bZ��oj=u�Z�j���[o�b�����oZXr@t�^lkkïPj6¬+�}u"j te�gZ�m{kbtg�yZ��z/G^¦j m{Z�v�t�my[�t��
j«r@t�^b�¥Z@moZ@^lr@ZsrXj=|�|'t�^`_gj=^za²j=mon ���4q'ced�fip1q1��Z@[]\PZXZ�^©[o�bZ ¡ 2D4�§ ³ a²j=|��}[]n"j=�o�ya4m�j=^lr@Zu�j=^²j=£gZ@m�j6^lk¥2IkTÆ���|}|~Z�m/t��:[o�lZw¼�½ ¡ k4���or@ab�o�y�}^l£�[o�lZÆïPj=¬z�}u"j�j�r@r@��kbZ@^z[�q®Æ��}|�|�Z@m
^bt�[{Z@�

���b�~���y��[ya²j=[y�~t�^�vbm{t=�²j=�b|}n t1r@r@abmym{ZXk©�}^`[y�lZÆh�j=u��}|�[ot�^Cq��±^z[�j=my�~t�j�rXr��}x
kbZ@^z[�j©r@t�abvb|�Z�t���n�Z�j=mo��j�£gtb�É/G[s\�j=��^lt�[�k1�~�or@te�gZ@moZXk j=[[y�²j=[s[o��u�Z
j=^lk¨[o�lZ8rXj=al�yZ%\�j���j=[y[omo�}�bab[oZXk¨[{t��}^+[oZ@myu��}[o[{Z�^z["��^z[{Z�mo|�t1r{¬ �;j=��|}abm{Z=�
���lZ��ya4�l�oZ ³ abZ@^z[smoZXrXj=|�|®t���[y�lZ	u�ab|}[o�}vb|~Z�uw�~r@motg�y\��}[{r{�©|�tg£���r�^bZ@[]\Pt�mo¬k4�~k�^lt�[�moZ�j=|}|�n��ot�|}�gZ�[o�bZ�v4m{t��b|�Z@uR�

���lZV�yZXrXt=^lk?ïPj6¬+�}u"j±j�rXr��~kbZ�^+[I\�j��)j�£gj=��^�j6[o[omy���ba4[{ZXk«[ot�j±[]n+v�ZVt��²m�j�r@Z�rXt�^bk4�}x
[y�~t�^��}^�[y�lZ��yt���[]\�j=m{Z�� [o�b���:t=^lZ¯j=|�|�t�\PZXk�[o�bZ�kbZ��z�~rXZV[{t���Z�j=r@[o�}�=j=[{Z@kw�}^"j=^�Z@mym{t�m
�yZ@[y[o��^b£�¾?jVK��;j=��|}abm{Z<M/t���j��yt���[]\�j6m{Z���^z[{Z�mo|�t1r{¬ ¿ �����lZ¯�)nz|~Z�mPj�rXr��~kbZ�^+[o�:\PZ@moZ¯moZ@|~j=[{Z@k
[ot"vbm{t=�b|~Z�u��±�}^8[o�lZ�klj6[�j6xGZ@^z[omyn`m{t=ab[o�}^lZX�±[y�²j=[�j=|}|~te\PZXk©[o�bZ«rXt+kbZ�[{t�vbmot1r@ZXZXk8[ot
º+Z@[¹¯v¦�2ZX��[s��Z@�¥t=m{Z�[o�lZ���ab|�|Iv4m{ZX�yr@my��vb[y�~t�^��²j�k%��Z@Z@^¦Z�^z[{Z@moZXk¦j6^lk�j�r�[{Z@k�abv�t�^C�
���bZ�ïPj=¬z��u�j�j=rXr@��kbZ@^z[���^z�gt�|}�gZ@k`vbm{t=�b|~Z�u��¯Z@^lr@t�ab^z[{Z�m{Z@k%|~j=[{Z�mV��^`[y�lZs|�tg£���rsj6��[{Z@m
[y�lZ�[omoZ�j=[yu�Z�^+[�u�t�^b�}[{t�m��2moZ�j=[Vm{ZXj�r{�lZ@�/º1Z�[�¹¯v`��Z@�y[��
���lZ����bZ@m�j=r�x���hmjÔ�¬nlZ@|�k©|���£��z[¯�¥ZXj=[oa4m{Z«j=|}|~te\V�V�gZ@myn`vbmoZXr��~�oZsv�tg����[y�~t�^b�}^l£�t��I[o�bZ

vlj=[o��Z@^z[«�¥t�m�[ym{Z�j6[ou�Z@^z[��¤���lZ t�v�Z@m{j=[{t=m«r�j=^ rXt=^+[ym{t�|�[o�lZ�u�j�r{�b��^bZ�mo��£��z[wj=[�[o�bZ
[ym{ZXj=[ou�Z@^z[I����[{ZPal�y�}^l£�j/�yu�j=|�|+�²j=^bk«rXt�^z[omot�|4[y�²j=[ItIJ�Z�m{�IrXZ�mo[{j=��^«|}��uw��[{Z@k���a4^lr@[y�~t�^l�
�¥t=m�v²j=[o��Z@^z[V�oZ�[oabv'q²�}^lr@|}alk4�}^l£«�oZ�[o[o�}^l£�£ij=^z[omyngqlr@t�|�|}��u�j=[{t�mXq+j=^lk�[�j=�4|~Z/u�t�[o��t�^l�X�

287

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(���

Set Up Test

During Set
Increment Class 3 on each cycle

Check F$mal

If F$mal=0 system is consistent
then set Tphase=2 for Set Up Done

Hkeper

Lmtchk

If Class3=0

If Class3 is not 0

Chkcol

If upper collimator
inconsistent with treatment
then set bit 9 of F$mal

Treat

Tphase

Then do not enter Chkcol

Then enter Chkcol

0 1

3

2

F$mal

Class3

¼®�~£=abm{Z/ªvG)���lZ@ïPj6¬+�}u"j��yt���[]\�j=m{ZC�²j�\��

A¯t�mou�j=|�|}ngq�[y�lZ8t�v�Z@m�j6[{t�m�Z�^z[{Z@mo��j=|�|�[o�lZ©vbmoZX�yr@mo�}vb[o��t�^Çklj=[{j¦j=[�[o�bZ8rXt�^l�yt�|~Z
¾;t�ab[o�y�~k4Z	[o�lZ�[ym{ZXj=[ou�Z@^z[/mot1t�u ¿ ��Z��¥t�m{Z	[y�lZÆnb^²j6|��oZ�[oabv�t��:j=|}|®u�j�r{�b�}^lZ	v²j6m�j=u�Z�x
[oZ@mo�±�~�¯rXt�uwvb|�Z@[{Z@kR�}^©[o�lZ�[omoZ�j=[yu�Z�^+[�m{t+t�uR�����4�~�±£=���gZ@��my�~�oZ�[{t�j6^�µ_¶ M ý�þ¤¹>´m¹>ý�ú
r@t�^lk4�}[o��t�^8j=[�[o�lZ	rXt�^l�yt�|~Z=�����lZ�t�v�Z@m{j=[{t=m±[o�bZ@^%rXt=u�vb|�Z@[oZX�±v²j6[o�~Z�^z[/�oZ�[oabv%�}^`[o�bZ
[ym{ZXj=[ou�Z@^z[¯m{t+t�u`qçj=^bk8j=|�|CmoZ@|�Z@�=j=^z[�vlj=m�j=u�Z@[oZ@mo��^lte\ M ý�þ¤¹>´sP:�±���bZ	rXt=^l�ot�|�Z	k4����x
v4|�j�n+�«j`u�Z@�o�oj�£gZ"[{t�ÿ�þ�ý�üfü�ü�ý�¸�NSµ_¸�¸�ºY¶¨\��b��|�Z�[o�bZ"[oabmy^+[{j=�b|�Z��~�	�}^�[o�bZ nlZ@|�k
|}�~£��z[�v�tg����[o��t�^C�I���bZ�t=v�Z�m�j=[ot�m�^lte\ vbmoZX�y�oZX�¯[o�lZÆX�PR��4ab[o[ot�^`t=^R[y�lZ��²j=^lk rXt=^+[ym{t�|
t=m±[]nzv�Z@�7Ky�oZ�[�M j=[�[o�lZ�r@t�^l�yt�|~Z=�s���lj=[��y�bt�ab|~k`�oZ@[�[y�lZ�r@t�|�|}��u�j=[{t�m�[ot�[o�bZ�vbm{t�v�Z@m
v�tg����[o��t�^��¥t�m�[ym{Z�j6[ou�Z@^z[��

/G^©[y�lZ	�yt���[]\�j=m{Z=q'j=��[oZ@m¯[o�lZ�vbm{Z@�or@my��vb[y�~t�^R�~��Z@^z[{Z�m{ZXk%j6^lkR��Z@mo�¢nlZXk©�zn [o�bZ�½�j6x
[oZ@^z[�m{t=ab[o�}^lZ�q+[o�lZ�r@t�^z[om{t=|��=j=mo�~j=�b|�Z/��vb�²j=�oZ��~��r{�lj=^l£gZ@k��yt�[o�²j6[�[o�lZ�º+Z@[¯¹¯vR�2ZX��[
mot�ab[y��^lZ©����Z@^z[{Z�m{ZXk¸¾ ¼®��£�abm{Z`ª ¿ � 2��gZ�mon¨v²j��y��[y�bm{t=al£��Ç[o�lZTº1Z�[`¹Vv-�2ZX��[m{t�a4x

288

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(�gp

[y��^lZ¯��^lr�m{Z�u�Z�^+[o��[o�bZ±abvbv�Z@mVr@t�|�|}��u�j=[{t�mIv�tg����[o��t�^�r{�lZXr{¬çqçj	�y�lj=m{Z@k �=j=my��j=�4|~Z¯r�j=|}|~ZXk
4P|~j��o�o�4�D/G�D4P|�j��y�{�«�~��^lt=^��XZ�m{tbql[o�bZ@m{Z��~�¯j=^���^brXt�^l���~��[{Z@^br@n�j=^lk�[omoZ�j=[yu�Z�^+[¯���lt�ab|�k
^bt�[�v4m{t+rXZXZ@k'� ¡ �@Z@m{tw�=j=|�alZ��¥t�m�4P|�j��y�{����^lk4��r�j=[oZX�V[o�²j6[�[y�lZsmoZ@|~Z��=j=^z[�v²j6m�j=u�Z@[oZ@m{�
j6m{Z�rXt�^b�y�~��[{Z�^+[V\��}[o� [omoZ�j=[yu�Z�^+[Xq²j=^lk [o�lZ��yt���[]\�j6m{Z�kbt+ZX��^lt�[V��^4�b���b�}[�[y�lZ���ZXj=u`�
¡ ��[{Z@m��yZ@[o[y��^l£ [o�bZ34P|~j��o�o� �=j=my��j=�4|~Z�q�º+Z@[s¹¯vT��Z@�y[�^lZ��+[sr{�lZXr{¬+���¥t�msj=^zn©u"j6|}x

��a4^lr@[y�~t�^l���}^�[o�lZV�yn+��[{Z@u �zn«r{�lZ@r{¬z��^l£	j=^lt�[y�lZ@m:�y�lj=m{Z@kw�=j=my��j=�b|�Z�¾?�yZ@[:�zn�j/m{t�ab[y��^lZ
[y�²j=[/j�r@[ya²j=|�|}n��²j=^lk1|~ZX��[o�lZ	�}^z[{Z@my|~t+r{¬�r{�lZXr{¬z��^b£ ¿ r�j6|�|~Z@k8¼��6u�j=|2[{t��oZXZs���I��[¯�²j��/j
^bt�^��XZ�m{t"�=j=|}alZ�� ¡ ^lt�^��@Z@mot"��j6|�alZ���^%¼���u"j=|2�}^lk4�~rXj=[{Z@��[y�²j=[±[y�lZ	u�j�r{�b�}^lZs����^lt�[
moZ�j�k1n`�¥t�m�[om{ZXj=[ou�Z@^z[XqCj=^lk©[y�lZwº1Z@[�¹¯v���Z@�y[���ab�bm{t=ab[o�}^lZ	�~��m{ZX�yr{�lZXk1ab|~Z@k'�s´¨�lZ�^
¼��6u"j6|��~���@Z@mot·¾¥��^lk4��r�j=[y��^l£R[o�²j=[�Z��gZ�monz[o�b�}^l£����	m{ZXj�k4n¦�¥t�m«[ym{ZXj=[ou�Z@^z[¿ qI[o�lZRº1Z�[
¹VvA��Z@�y[���ab�bmot�ab[o�}^lZ©�yZ@[{�"[y�lZ8��vb�lj��oZ©�=j=my��j=�b|�Z Z ³ a²j=|/[ot¤�1q�\��b��r{�¨m{ZX��ab|�[o����^^bZ��+[��or{�bZXk4ab|}��^l£s[o�lZ�º+Z@[�¹Vv ½/t�^lZ��yab�4m{t�ab[y��^lZ/j=^lk�[y�lZ�[ym{Z�j6[ou�Z@^z[�����j=|}|~te\�Z@k�[ot
r@t�^z[o�}^+abZ��
���lZ	j�r@[ya²j=|C�}^+[oZ@my|~t+r{¬�r{�lZXr{¬z�}^l£����Vv�Z@my�¥t�mou�ZXk �zn�jwr@t�^lr�abmomoZ@^z[Ch¯t�al�oZ�¬gZ@Z@v�Z@m

[{j��y¬w¾�h¯¬�Z@v�Z@m ¿ �����lZ)abvbv�Z@m®rXt=|�|��}u"j6[{t�mçv�t��y��[y�~t�^�r{�lZ@r{¬��~�Cv�Z�mo�¥t�myu�Z@k��zn�jV�yab�4m{t�a4x
[y��^lZVt��¤h¯¬�Z@v�Z@m�rXj=|�|�ZXk�§'u�[{r{�b¬�¾?j=^²j=|�tg£=x [{t=xGk4�~£��}[�j=|i|}��uw��[�r{�lZXr{¬z��^b£ ¿ �:§'u�[{r{�4¬�nbm{��[
r{�bZXr{¬+��[o�lZ@4P|~j��o�o�s�=j=mo�~j=�b|�Z��Y/G�Y4P|~j��o�o�	rXt�^z[{j=��^l��js^lt�^4x'�XZ�m{t	�=j=|}alZ�q4§Cu	[{r{�b¬�r�j=|}|~�
[y�lZ�4P�lZXr{¬¥4�t�|}|��}u"j=[ot�m	¾'4P�b¬�rXt�| ¿ ��ab�bmot�ab[o�}^lZ��?/G��4P|�j��y�{� rXt�^z[{j=��^l�@�@Z@m{t4qY4P�4¬grXt=|
���±�znzv²j��o�yZXkTj=^lk©[o�bZ�abvbv�Z@m�rXt=|�|��}u"j6[{t�mVv�tg�y�}[o�~t=^8r{�lZXr{¬8���±^lt�[±v�Z�mo�¥t�myu�Z@k'�	���bZ
4P�4¬grXt=|2�yab�bmot�ab[y��^lZ��oZ�[{�Vt�m�moZX�yZ@[{�V�b�}[Vd«t��2[o�lZ�¼���u"j=|��y�²j6m{ZXk �=j=mo�~j=�b|�Z�q+kbZ@v�Z@^lk+x
�}^l£�t�^�[y�lZ±v�tg�y�}[o��t�^�t��C[y�lZ/abvbv�Z@m�r@t�|�|}��u�j=[{t=mß�¨\��4�~r{����^�[yabmo^�����r{�lZ@r{¬gZXk��zn�[o�bZ
º+Z@[±¹¯v8�2ZX��[/��ab�bm{t=ab[o�}^lZst=�)�2moZ�j=[¯[{twkbZ@r@�~k4Zs\��lZ�[o�lZ�m±[{t�m{Z@�or{�lZ@k4ab|�Z	��[o�oZ@|}��t�mV[ot
v4m{t+rXZXZ@k�[ot"º+Z@[�¹¯vR½/t�^lZ=�
½±abmy��^l£�u�j�r{�b�}^lZ)�oZ@[yabvCqgº1Z@[�¹¯v	��Z@�y[�\���|}|g��Z:Z��1Z@r@ab[oZXk��yZ@�gZ�m�j=|+�zab^lk4moZXk	[y��u�ZX�

��ZXrXj=al�yZ��}[/m{Z@�or{�lZ@k4ab|�ZX�s�}[{�yZ@|��I\�j=�}[o��^b£"�¥t�m�t�[y�lZ@m�Z��gZ@^z[o�s[{t�t+rXr�abm���/G^%[y�lZ«rXt+kbZ�q
[y�lZ:4P|�j=�o�{�	�=j=my��j=�4|~Z�������^br@m{Z�u�Z�^z[{ZXk��zn"t=^lZ/��^ ZXj�r{� v²j��o��[y�bm{t�ab£��Rº1Z@[¯¹VvR��Z@�y[��
ºz��^lr@Zs[o�bZ?4P|�j��y�{���=j=my��j=�4|~Z��~��t�^lZs�znz[{Z=q���[�r�j6^%t�^b|�n r@t�^z[�j=�}^%j�u�j6�+��u�a4u��=j=|�alZ
t=�¯�ghgh�kbZXr���u�j=|G�"���+ab�XqIt�^TZ@�gZ�mon¦�gh��=[y��v²j=�o�s[y�bm{t=al£���[y�lZ�º1Z�[�¹Vv¤�2ZX�y[rXt+kbZ�q
[y�lZs�=j=my��j=�4|~Z�\���|}|®te��Z@m!�bt�\ j=^lkR�²j��gZ«j��XZ@mot"�=j=|�alZ=�¯���²j=[/u�Z�j=^b�¯[y�²j=[/t=^8Z@��Z@mon
��h��=[o�Tv²j��o�s[o�bmot�al£���º+Z@[«¹Vv���Z@�y[Xq�[o�lZwabvbv�Z@m«r@t�|�|}��u�j=[{t�m±\���|�|)^lt=[��Z"r{�lZXr{¬�ZXk
j6^lk`j6^�a4vbv�Z�m¯rXt�|}|���u�j=[ot�mP�;j6ab|�[�\��}|�|�^lt�[V��Z�kbZ�[{Z@r@[{Z@k'�
���lZ`t���Z@moZ��+v�t��yabmoZ©t1r@r@abmym{Z@k¢\��lZ@^¢[y�lZ`t=v�Z�m�j=[ot�m��4��[�[o�lZ¿Ky�oZ�[�MT�4ab[o[ot�^¨j=[

[y�lZ�vbm{Z@r@�~�yZwu�t�u�Z@^z[�[o�²j6[�4P|~j��o�o� mot�|�|�ZXk%te�gZ@ms[{t��XZ�m{tb�����zal�@q�4P�b¬�rXt�|:\�j=�s^lt�[
Z �1ZXr@a4[{ZXk�j=^lk�¼��6u"j6|�\�j���^bt�[��oZ@[�[{t ��^bk4�~rXj=[{Z�[y�²j=[�[o�lZ�abvbv�Z@msrXt=|�|��}u"j6[{t�m¯\�j=�
��[o�}|�|±�}^Ç[o�lZ£nlZ�|~k1x |��~£=�+[�v�tg����[y�~t�^C�¸���lZ��yt���[]\�j=m{Z%[oabmy^lZXkAt�^A[o�lZ8��ab|}|��gh¤ÆRZ;
\��}[o�lt=ab[«[o�lZ�[{j=m{£gZ�[«��^¤vb|~j�rXZ j=^bk¤\��}[o�lt=ab[��orXj=^b^b�}^l£b� ¡ �b�~£=�b|�n�rXt�^brXZ@^z[ym�j=[oZXk
Z�|~Z@r@[omot�^���Z�j=u moZX��ab|�[oZXk'q�\��4�~r{�¦\�j��	�yr�j=[y[{Z@moZXk¤j=^bk�kbZ<�bZXr@[oZXk��zn�[o�lZ��y[�j6��^b|�ZX�o�

289

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(��f

��[{Z@Z@|2u��}momot�m�[y�²j=[V\�j=�V�}^ [o�lZ�v²j=[y�C�
���lZw[{Z@r{�b^b�~rXj=|ÆKßn4�mMR�}u�vb|�Z@u�Z@^z[{Z@k��¥t=ms[y�b�~��v²j=my[o�~r�ab|�j6m��ot���[]\�j=m{Z��²j�\¶�~��kbZ�x

�yr@my����ZXkÇ�+n ¡ 2D4�§¶j�� �y��uwvb|�Z1GT[y�lZ�v4m{tg£�m{j=u ��� r{�²j=^l£gZ@k �yt�[y�²j=[�[o�bZ=4P|~j��o�o�
�=j=my��j=�4|~Z��~���oZ�[[ot`�ot=u�Z?n4�1ZXk�^lt=^��XZ�m{tR�=j=|}alZwZ�j�r{��[y��u�Z«[o�bmot�al£��¦º1Z@[�¹¯v¤�2ZX��[
�}^l�y[oZ�j�k t��®��Z���^l£��}^lr@moZ@u�Z@^z[{Z@k'�

� ���¤��� 	 t�r¤p_�'t��1sfp_qfx#q��;) {�*}x#q�rt+¥x)rSs@�Yt�r�ÂZ-7|<x)q%� x)|���{}r�|<x
�±^�¼lZ@�4moa²j=myn8�4q�cedgfip1q�j=��[{Z�m/��^z[oZ@m�j=r@[o��t�^8\���[y�8[o�lZ�¼�½ ¡ j=^lk%t�[o�bZ@m{�@q'��^lr�|�alk1��^l£
[y�lZ�al�oZ�m�j ��£=m{t�abv'q ¡ 2D4�§¦j=^b^bt�ab^lr@ZXkR[ot«��[{��r�al�y[ot�u�Z@m{�
cg� ¡ ^lZ@\ �ot���[]\�j=m{Z�moZ@|~ZXj��oZ/[ot«rXt�mym{Z@r@[V��t=[o� [o�lZ��Inz|~Z�m¯j=^lk ïPj=¬z��u�j��ot���[]\�j=moZ
vbm{t��4|~Z@u��

�1� ¡ �²j=m{k1\�j=moZs����^l£=|~Z�x vbab|��oZ/���+a4[{kbte\�^8r���m{r�ab��[
�4� ¡ [oa4mo^z[�j=�4|~Z�v�t�[{Z�^z[o�~t=u�Z�[{Z@m�[{t���^lkbZ�v�Z�^lkbZ�^+[y|�nsu�t�^4��[{t=m�[yabmo^z[{j=�b|~ZPv�tg����[y�~t�^
ªb� ¡ �²j=m{k1\�j=moZ�[yabmo^z[{j=�b|~Z/�}^z[{Z@my|~t+r{¬"r���m{r�ab��[
���lZR�oZ@rXt�^lk ��[{Z�u`qPj8�²j=m{k1\�j=moZ`����^l£�|�Z�x vbab|~�yZ��y�zab[okbte\�^Çr@��mor@ab�}[�q:ZX�y�oZ@^z[y��j=|}|�n

j=r@[{��j=��j`�²j=m{k1\�j=moZ"��^z[{Z�mo|�t1r{¬�[{t©vbmoZ@��Z@^z[�te��Z@m{k4tg�y�}^l£8�+nTkbZ@[oZXr�[o��^b£�j6^¦ab^l�{j6�¥Z
|�Z@��Z@|²t��²m�j=k4��j=[y�~t�^«j=^lk«�²j=|}[o��^b£±��ZXj=u¶t�a4[ovbab[:j6��[{Z@m)t=^lZ�vbab|��oZVt��²�b�~£=��Z@^lZ�m{£�nwj=^bk
r�abmomoZ@^z[������b���s�}^+[oZ@my|~t+r{¬�ZJ�Z@r@[y���gZ�|�n�vbm{te�z�~kbZ@�«j=^��}^lkbZ�v�Z�^lkbZ@^z[«\�j�nT[{tRvbm{t�[oZXr�[
j=£ij=��^b�y[�j	\���kbZ±m{j=^l£gZ/t=�Cv�t�[oZ@^z[o�~j=|��lj=m{k4\�j=moZ/�;j=��|}abm{Z@��j=^bk��ot���[]\�j=m{Z�Z�momot�m{�@�P���bZ
[y�b��mok��}[{Z@uRq®j�[oa4mo^z[�j=�4|~Z�v�t�[oZ@^z[o��t�u�Z�[{Z�m�q2\�j��s[o�lZ��{j=�¥Z�[]n�k4Z@�z�~r@Z�m{Z@rXt�uwu�Z@^lkbZ@k
�zn��yZ@��Z@m�j6|�£�mot�abvl�¯j=��[oZ@m�[y�lZ:h±j=uw��|}[{t�^ j=rXr@��kbZ@^z[X�
¡ ��[{Z@m±[o�lZ��yZXr@t�^lkVïPj=¬z��u�j�j=rXr@��kbZ@^z[Xq�[o�lZ�¼�½ ¡ ��Z@r�j=u�Z	r@t�^lr@Z@mo^bZXk8[o�²j6[±[o�bZ

ab�oZ±t=��[o�bZ±���lZ�m�j�r x��gh�k4abmy��^l£�[o�lZ�4 ¡ ETvbmot1r@ZX�y�Xq4Z��gZ�^�\���[o� ¡ 2D4�§�j �P��^z[oZ@mo�}u¶t�v4x
Z�m�j=[y��^l£��}^l�y[ymoalr�[o�~t=^l�Xqg�}^+��t�|���ZXk�[{t+t�u�alr{�wmo�~��¬	[ot�vlj=[o��Z@^z[{�@�I���lZ�¼�½ ¡ r@t�^lr�|�alkbZ@k
[y�²j=[V[o�bZ	j�r@r@��kbZ@^z[{�¯kbZ�u�t�^b�y[om{j=[{Z@kR[y�²j=[V[o�lZ��ot=��[]\�j=moZ	j6|~t�^lZ�r@t�ab|~k ^lt�[V��Z�moZ@|}�~ZXk
a4v�t�^ [ot�j��o��abm{Z��{j6�¥Z�t�v�Z�m�j=[y�~t�^"t��2[o�lZ/u�j�r{�b�}^lZ���/G^Rj«¼lZ@�bmya²j=myn©cef4q�cedgfip1qz��^z[oZ@myx
^lj=|b¼�½ ¡ u�Z�u�t�m{j=^lk4a4u`q�[o�lZ�½±��m{Z@r@[ot�m�t=�l[o�lZ�½±���z�~���~t�^st��}*¯j�k4�~t=|~tg£���r�j=|	EImot1k1alr@[o�
\�mot�[{ZIG

/G[��~�:��uwv�tg�y�y�}�b|~Z��¥t�m94�½C*²h [ot.nb^lk j6|�|çv�t�[oZ@^z[o�~j=|ç�;j=��|}abm{Z�u�t1kbZ@��j=^lk
rXt�^lk1��[o��t�^l�)t��C[y�lZ±�yt���[]\�j6m{Z�� ¡ 2D4�§%�²j=�P��^bk4�~rXj=[{Z@kw[y�lZzKy����uwvb|~Z��yt���[yx
\�j=moZ¬n1�vMs\���|�|brXt�mym{ZXr�[P[y�lZ�[yabmo^z[{j=�b|~Z�v�tg�y�}[o��t�^�vbm{t��4|~Z@u k1�~�yv4|�j�ngZ@k"j=[
ïPj=¬z��u�j4��´�Z��²j��gZ«^lt=[�ngZ@[��lj�k8[o�lZ�t�vbv�t�my[oab^b�}[]nR[ot Z@�=j=|�alj=[{Z	[y�²j=[
u�t+k4��nbr�j=[y�~t�^C�l2��gZ@^8�}���}[�k4t1Z@�Xq��lj��oZ@k`abv�t�^`v²j=�y[±�4�~�y[ot�mon�q�/Vj=uE^lt�[

290

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(��d

rXt�^z�z��^lr@ZXk¦[o�lj=[�[o�bZ@m{Z j6m{Z�^lt=[«t�[o�bZ@m«�yt���[]\�j6m{Z £�|��}[{r{�lZ@�s[y�²j=[«r@t�ab|~k
m{ZX��ab|�[��}^��oZ@my�~t�ab�V�}^1��abmyng�

½�½�½y´�Z�j6m{ZI��^�[o�bZ:v�tg�y�}[o��t�^�t��b�oj�n+�}^l£V[o�²j=[C[y�lZ)vbm{t�v�tg�yZXk�4 ¡ E©r�j=^
m{Z�j=�ot�^²j6�b|�n���Z�Z �1v�ZXr�[{Z@k�[otwr@t�momoZXr�[�[o�lZ�kbZnlr@��Z@^lr��~ZX���¥t=m�\��b�~r{� [o�bZ@n
\�Z�m{Z"kbZ��gZ�|~t�v�ZXkÇ¾?�)nz|~Z�m ¿ �R´�Z�r�j6^b^lt�[�{j�n�[y�²j=[�\�Z"j=m{Zwm{Z�j=�ot�^²j6�b|~Z
� ���~r@ �rXt=^ªnlkbZ�^+[¯j6��t�a4[�[o�bZ/�{j=�¥Z�[]n�t=�C[o�lZ/Z�^z[o��moZ±��n1��[{Z�u [{t	v4m{Z@��Z@^z[Vt�m
u��}^b��uw���@Z�Z �1v�tg��abm{Z���m{t�uµt�[o�bZ@mV�;j=ab|}[�rXt�^bk4��[y�~t�^l�@�

�±^ ¼lZ@�bmya²j=myn�4q�cedgfip1q�2Ik Æ���|}|~Z�m©t��«[y�lZ¤¼�½ ¡ r�j=|}|~Z@k E�j��gZ�|w½±�gt�m{j=¬ t��
4�j6^²j�kljvj �zh�ZXj=|�[y�Aj=^lk¢´�Z@|}�;j=m{Z`[ot¦j�k4�z���oZ©�b�}u [y�²j=["[y�lZ%¼�½ ¡ \Pt�ab|~k¨moZXrXt=uwx
u�Z@^bk�[y�²j=[±j=|�|2���bZ@m�j=r�x���h=�¯��Z��y�zab[{k4t�\�^8a4^+[y��|Cv�Z@myu"j=^bZ@^z[�u�t+k4��nlrXj=[o��t�^l��r@t�ab|�k
��Z�u"j�k4Z�� ¡ rXr@t�m{k4�}^l£�[{t�Æ���|}|~Z@m�jÔ��^bt�[{Z@��t�^R[o�lZ�vb�lt=^lZsrXj=|�| ql½±�gt=m�j=¬�j�£=m{ZXZ@k©j=^bk
�}^lk4��r�j=[oZXk8[o�²j6[.h¯Z�j=|}[o�Tj=^lk%´TZ�|��;j=moZ«\�t�a4|~k�rXt+t�m{k4�}^²j=[oZ�[o�lZ���msj�r@[y�~t�^b�/\���[o��[o�bZ
¼�½ ¡ �
¡ 2+4�§�m{ZX��v�t=^lkbZXk�t�^ ¡ vbmo�}|�ce�	\��}[o�Rj=^�abv�klj=[oZ�t�^ [o�lZ����lZ�m�j�r:4 ¡ E·�y[{j=[oab�

j6^lk�j��yr{�lZXk4a4|~Z¯t���[y�lZ�^b��^lZVj=r@[o��t�^���[oZ@u���vbm{Z@�o�oZ@k��zn�[o�bZ¯al�yZ@mo��j=[:j�al�yZ@m�j �:£�m{t�a4v
u�ZXZ�[o�}^l£��}^�Æ`j=mor{�C�����b����ab^b� ³ alZ«j=^lkR�b�~£��4|�n�vbmot1k4abr@[o�}�gZ	u�ZXZ�[o�}^l£�vbmote�+��kbZXk%j6^a4^+ab�ya²j=|�t�vbv�t�mo[yab^b�}[]n�[ot���^z��t�|���Z	[o�lZ�al�oZ�m{�/�}^`[o�bZ?4 ¡ EÇZ@�=j=|}a²j=[o��t�^�vbm{t+rXZ@�o�X�C/G[
�4m{t�al£=�+[:[{t�£gZ@[y�lZ@m�j=|�|brXt�^lr@Z@my^lZXk�vlj=mo[y�~ZX�)��^�t�^lZ�vb|~j�rXZ�j=^lk�j=[Pt�^lZV[o�}u�Z��yts[o�lj=[Pj
r@t�abmo�oZ�t���j�r@[y�~t�^�rXt=ab|~k"��Z�kbZXr��~kbZ@k�abv�t�^Rj=^lkRj=vbv4m{te�gZ@k©j�� ³ ab��r{¬+|}n j���v�tg�o�����b|�Z�����bZsj6[o[{Z�^lkbZ@ZX���}^lr@|}alkbZ@k moZ@vbmoZX�yZ@^z[�j=[y����ZX����mot�u

v ���lZ�u"j=^zab�;j=r@[oa4m{Z@ms¾ ¡ 2D4�§ ¿
v ¡ |�|�al�oZ�m{�Xql�}^lr@|}alk4��^b£	[o�lZ���m�[oZXr{�b^b��r�j=|®j=^bk |�ZX£ij6|C�y[{jIJ��
v ���lZ�¼�½ ¡ j=^bk�[o�lZC4�j=^²j�k4�~j=^�Y:abm{ZXj=a t���*¯j�k4��j6[o�~t=^�j6^lk�ÆRZXk1�~r�j6|'½/Z��+��rXZ@�
v [o�lZ�4�j=^²j=k4��j=^ ¡ [ot�u���rC2�^lZ@mo£�n74�t�^z[omot�|�Y�tij6m{k
v [o�lZ:E�m{te�z��^lr@Z�t����±^z[�j6mo�~t
v [o�lZ.*�j�k1��j=[y�~t�^V*¯Z@£�ab|~j=[o��t�^l�²4�t�uwu��}[o[{Z@Zst=��[o�lZ�4�j=^²j�k4�~j=^ ¡ �o�yt1r���j=[y�~t�^`t��
EI�zn+�y��r@���y[{�

¡ rXr@t�m{k4�}^l£�[{t:8�t�m{k4t�^�º+nzu�t�^bkb�Xqg��mot�u [y�lZ¬4�j=^²j�k1��j=^�Y�*�Æ`½�q=[y�b�~��u�ZXZ�[o�}^l£/\�j=�
��Z@myn��}u�v�t�mo[{j=^z[)[{t	[y�lZ�moZX�ot=|�ab[y�~t�^�t��C[o�lZ¯vbm{t=�b|~Z�u��@q1����^lr@Z�[o�bZ�m{Z@£�ab|~j=[{t�mo�Xqzal�oZ�m{�@q
j6^lk�u�j=^zab�;j�r�[oabmoZ@m¯j=mymo�}�gZXkRj=[¯j«rXt=^l�oZ�^l�yal�¯��^�t�^lZ�klj�n��
¡ [V[o�4�~�V�oZ@rXt�^lk�al�oZ�m�j �¯u�ZXZ�[o�}^l£bq4[y�lZ�v²j=mo[y�~r���v²j=^z[o��r�j=moZ@��ab|}|�n�moZ@�z�~Z�\�Z@k8j=|}|�[o�bZ

���}��¬z^lte\�^«u"jf��t�mI���lZ�m�j�r x��gh�j�rXr��~kbZ�^+[o��[{t�[o�²j=[®klj=[oZ�j=^lk	k4�~�yr@al�y�oZXk«[y�lZ�Z�|~Z@u�Z@^z[o�
t=��[o�lZ�4 ¡ E j=|�t�^l£T\��}[o�¢v�tg�y�y���4|~Z©j=kbk4��[y�~t�^lj=|Vu�t+k4��nbr�j=[y�~t�^l�@����lZ�n¢r�j6u�Z�abv
\��}[o�"j�vbmy�~t�my��[o���XZ@k�|}�~��[Pt=�'u�t+k4�¢nlr�j=[y�~t�^b�)[y�lZ@n�\�j=^z[{Z@k"��^lr�|�alkbZ@k��}^�[y�lZC4 ¡ E j=^bk

291

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ª`0

Z �+vbm{Z@�o�oZ@k©rXt=^lrXZ�mo^l�¯j=��t�ab[�[y�lZ/|�j�r{¬"t��2��^lkbZ�v�Z�^lkbZ�^+[¯Z���j6|�a²j=[y�~t�^ t=��[y�lZ��ot���[]\�j=moZ
j6^lk�[y�lZ�|�j�r{¬�t���j��²j6m{kbr@t�vzn j=alk4�}[�[om{j=��|�[{t�j��o���~�y[��}^�k4��j�£=^ltg�y�}^l£��;j=ab|}[{�@�
���lZ ¡ 2D4�§ÇmoZ@vbmoZX�yZ@^z[�j=[y����Z�q�\��lt`\�j��	[y�lZ ³ a²j6|���[]n�j=�o�ya4m�j=^lr@Z�u�j=^²j�£gZ�m�q�m{Z�x��v�t=^lkbZXk�[o�²j6[�[oZX��[{���²j�k���ZXZ�^Tk4t�^lZwt�^�[y�lZ34 ¡ E-r{�²j=^b£gZX�@q®�bab[�[y�²j=[�[o�lZ�[{Z@�y[o�

\PZ@moZP^lt=[�kbt+r@a4u�Z�^+[oZXk	j=^lks[y�²j=[���^lk4Z@v�Z@^lkbZ�^z[�Z@�=j=|}a²j=[y�~t�^�t��1[o�lZP�ot���[]\�j=m{Z.K�uw�~£��z[
^bt�[)��Z�v�tg�o�����b|�Z��¾Mkh¯ZVr@|�j6��u�ZXk«[o�²j6[:[]\Pt	t=ab[{���~kbZVZ��+v�Z@my[{�P�lj�kwmoZ@�z�~Z�\�Z@k�[o�bZ¯�yt���[yx
\�j=moZ�q4�ba4[��lZ�rXt�a4|~k"^lt�[�vbm{te�z�~kbZ/[y�lZ@�}m�^²j=u�ZX�@��/G^ m{ZX��v�t=^l�oZ/[ot�al�oZ�m¯moZ ³ alZ@�y[{���¥t�mj��²j=m{k�rXt�vzn�j=alk4�}[P[ym�j=�}|�j=^lk�j�r@rXZ@�o��[{ts�ot�a4m{rXZ±rXt+kbZ�q+�lZ±Z �1v4|�j=�}^lZXk�[y�²j=[Pu�Z�u�t�myn
|}��uw��[{j=[o��t�^l��\�t=ab|~k¦^lt�[�v�Z@myu��}[��^br@|�abk4��^l£8��alr{�¢t=vb[o��t�^l�«j=^bk�[y�²j=[��ot=abm{r@Z�r@t1k4Z
\Pt�ab|�k�^lt�[V��Z�u�j�kbZ�j��=j=��|~j=�b|�Z�[{t«al�yZ@mo�X�

�±^�ÆRjen�c�q ¡ 2+4�§����o��alZXkÆ4 ¡ E£*VZ@�z�~���~t�^sª±j=�®j�m{Z@�yab|}[�t��4[y�lZ�¼�½ ¡ rXt=u�u�Z@^z[{�
j6^lk8[o�lZ«al�yZ@m�j ��u�Z@Z@[o�}^l£"��^4vbab[������lZw¼�½ ¡ moZX��v�t�^b�oZwt�^TÆ`j�n���� j=vbvbmote�gZXk%[o�bZ
4 ¡ E ��ab�v��ZXr�[V[{t«�ya4�bu����o���~t�^�t=��[y�lZ�nb^²j6|�[{Z@�y[�vb|~j=^"moZX�ya4|�[{�Vj6^lk j=^ ��^lk4Z@v�Z@^lkbZ�^z[
�oj=�¥Z@[]nTj=^²j6|�n+�y���Xq�k4���y[ymo���4ab[o��t�^Tt=��[o�lZ�k4m�j=��[sm{Z��+���oZ@k�u"j=^za²j6|P[ot©r@al��[{t�u�Z@mo�Xq)j=^bk
r@t�uwvb|~Z�[o�~t=^�t���[y�lZ�4 ¡ ET�zn�_=ab^lZ��`04q²cedgfip+�����lZ�¼�½ ¡ r@t�^lr�|�alkbZ@k��zn«m�j6[o��^b£�[y�b�~�
jz4P|~j��o�5/VmoZXrXj=|�|�GVj�m{ZXrXj=|�|���^`\��b�~r{�%[o�bZ@m{Zs�~��j�moZ�j��yt�^²j=�4|~Z	vbmot��²j=�4��|��}[]n�[o�²j6[±[o�bZ
ab�oZ«t���q�t�m/Z �1v�tg��abm{Z�[otbqCj��z�~t=|�j=[y���gZ�vbmot1k4abr@[/\��}|�|®r�j=al�yZ«�oZ�mo�~t=al��j�k4��Z@mo�oZ��lZXj=|�[y�
r@t�^l�yZ ³ alZ@^brXZX�±t�mVkbZ�j6[o�¤�»cX ?�¡ 2+4�§©�yZ@^z[�u�t�moZ¯��abvbv�t�mo[y��^l£�kbt+r@a4u�Z�^+[{j=[o��t�^w[{t�[o�lZ¯¼�½ ¡ t�^�_=a4^lZ�h1q²ced�fip1q
�}^lr@|}alk4�}^l£8[o�lZV4 ¡ E¸[{Z@�y[wvb|�j6^Cq�j�k4m�j=��[wt�v�Z@m{j=[{t=m�j �wu�j=^za²j=| q�j=^lk¤[o�bZ`k4m{j=��[wt��
[y�lZ�^lZ@\�oj=�¥Z@[]n�j=^lj=|�n+�y���X�����b�~�V[o�}u�Z/[y�lZ	j6^²j=|�n+���~����^lr�|�alk4ZXkR[y�lZ��ot���[]\�j=m{Z���^�[o�bZ
�;j6ab|�[:[omoZXZX�P�bab[�ab�oZXk�j£K�£gZ@^lZ�mo��r��;j=�}|�abmoZVm{j=[{Z<M�t��)c�0#Çs���¥t�mP�ot���[]\�j=m{Z�Z��gZ�^+[o�X�P���b�~�
^zabu	��Z�m�\�j��.��al�y[y��nlZ@k¨j��w��Z���^l£T�lj��oZ@k¨t�^¢[o�bZR�b���y[{t=mo�~rXj=|Vv�Z�mo�¥t�myu"j6^lrXZRt��/[o�bZ
���bZ@m�j=r�x���hs�ot���[]\�j=moZ��:���lZ²n4^²j=|çm{Z@v�t�my[�t�^"[y�lZ±�oj=�¥Z@[]n�j=^²j6|�n+�y���P��[�j=[oZX��[y�²j=[�u�j=^zn
t=��[o�bZs�;j=ab|}[�[omoZXZX�¯�²j�k`j�rXt=u�vba4[{Z@mVu�j=|���a4^lr@[y�~t�^Rj���j�rXj=al�{j6[o����ZsZ��gZ�^+[Xq'j=^bkR[o�bZ
t=ab[{r@t�u�Z:�¥t�m ³ a²j6^+[y��nlrXj=[o��t�^	\�j���[y�lZ@moZ@�¥t�moZ�kbZ@v�Z@^bkbZ@^z[)t�^�[y�lZ��;j=�}|�abmoZ:m{j=[{ZPr{�ltg�yZ@^�¥t=m±[o�bZ«�ot���[]\�j=m{Z=� ¡ �o��abu��}^l£�[y�²j=[�j=|}|��yt���[]\�j=m{Z«Z�mom{t=m{��j=moZ«Z ³ a²j=|}|�n |��}¬gZ�|�n��oZ@Z@u��m{j=[o�bZ@m¯�y[ym�j=^l£�Z��
¡ r@|�tg�oZ��}^l�yv�ZXr�[o�~t=^�t��ç[o�bZ�r@t1kbZ�\�j��Pj=|~�yt�r@t�^lk4abr@[{Z@k�k4a4mo��^b£�[y�b�~�I�oj=�¥Z@[]nwj=^lj=|}x

n+���~�s[otûKyt��4[�j=�}^Tu�t�m{Z���^b�¥t=mou�j=[o��t�^�t�^�\��b��r{��[{t`�lj��oZ"k4ZXr@���y��t�^l�X�¾M ¡ ^¤t�ab[{���~kbZ
r@t�^l��ab|�[{j=^z[�v�Z�mo�¥t�myu�Z@k [y�lZ/��^b�yv�ZXr@[y�~t�^'q4\��b�~r{� �}^lr@|}alkbZXk�j«kbZ�[�j=�}|~ZXk�Z �4j=u��}^²j=[y�~t�^
t=�±[o�bZR��uwvb|�Z@u�Z@^z[�j=[y�~t�^¤t=�/Z�j=r{�¢��ab^lr�[o�~t=^Cq�j��oZ�j6m{r{�¢�¥t�m�rXt+k4�}^l£�Z�momot�m{�@q�j=^lk·j
³ a²j6|���[{j=[o�}�gZ�j=�o�oZ@�o��u�Z�^+[�t��¯[o�lZ �ot=��[]\�j=moZ1j �wmoZ@|}��j=�b�}|��}[]ng�kA�t8��^b�¥t=mou�j=[o��t�^T����vbm{t=x�z��kbZXk���^T[y�lZ�n4^²j=|:�{j=�¥Z�[]n%m{Z@v�t�my[«j=��t�ab[�\��lZ�[o�lZ�m�j=^zn%v²j=mo[y�~r�ab|�j=m�u�Z@[y�lt+kbt�|~t�£�n
t=m/[{t+t�|~�¯\�Z�m{Z«al�yZXk8��^8[y�lZ«�ot���[]\�j=moZ���^l��v�Z@r@[o��t�^%t�m/\��bZ@[o�bZ@m��ot=u�Z@t�^lZ5��al��[�m{Z�j=k
[y�lZ�rXt+kbZ�|~t+t�¬z��^l£s�¥t�mVZ@mym{t�mo�X�

292

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ª4c

¡ 2+4�§�vb|�j=^4^lZXkwj�nb��[o�wm{Z��z�~�y��t�^�t��ç[o�lZ¬4 ¡ E�[{t��}^lr@|}alkbZ�[o�bZ�[{ZX��[o�}^l£�j=^lk?nb^²j=|
�oj=�¥Z@[]n8j=^²j=|}n1���~�/moZX�ya4|�[{�@�?*¯Z��¥Z@mymo��^b£ [ot�[o�lZ«[{Z@�y[�vb|~j=^�j=[�[o�4�~�Xq'[y�lZ�nb^²j=|)��[�j�£�Z«t��
[y�lZ�4 ¡ E v4m{t+rXZX�y�Xqçj=^`¼�½ ¡ m{Z@�z��Z@\PZ@m��{j=��k'q

¡ u�j1�@�}^l£�|�n�q�[o�lZ8[{Z@�y[klj6[�j�vbm{Z@�oZ�^+[oZXk [ot¤�y�lte\ [y�²j=[�[y�lZ%�ot���[]\�j=m{Z
r{�²j=^l£gZ@��[{t«�²j=^lk1|~Z±[y�lZ�ZXk4�}[�vbm{t=�b|~Z�u����}^�[o�lZ����lZ�m�j�r x��gh«j=moZ�j=vbvbmot=x
vbmo�~j=[{Z�vbmot���Z¯[y�lZ¯Z��4j�r@[�t�vbv�tg�y�}[{Z�m{Z@�yab|}[�� ¡ moZ@�z�~Z�\¨t���[y�lZ¯klj=[�j�[�j=�4|~Z
��^�[o�lZ�[{Z@�y[±moZX��ab|�[o�¯�}^lk4�~rXj=[{Z@��[o�²j=[¯[o�bZ:nb^lj=|2��ZXj=uE[]nzv�Z	j=^lk`Z�^lZ@mo£�n
¾?ZXk1��[/r{�lj=^l£gZ ¿ �²j��/^lt�Z<J�ZXr@[�t=^©[o�lZ��}^b��[y��j=|���ZXj=u []nzv�Z�j=^lk8Z�^lZ@mo£�ng�
/PrXj=^ t�^b|}n�j��y�yabu�Z/[o�²j6[�Z@�}[o�lZ�m�[o�lZ�n4���~��^bt�[�mo��£��z[�t�m�[y�lZ�klj=[{j	\�j��
Z@^z[{Z�m{ZXk ��^brXt�mym{ZXr�[o|}ng�I���lZ�u�j=^zab�;j�r�[oabmoZ@m����lt�ab|�k ��Z�j�k1u�t�^4�~�y�bZXk"�¥t�m
[o�b����Z@mym{t�mX��´¨�lZ@moZ��~�P[y�lZ��@4 ���±a²j=|}��[]n34�t�^z[omot�|� çm{Z��z�~Z@\A�¥t�m�[y�lZ±[oZX�y[
vbm{tg£=m�j=u}_ ¡ 2D4�§¦u�al��[�G�¾�c ¿ r�|�j=my����n"[y�b�~�¯�y�}[oa²j=[y�~t�^'q®¾ � ¿ r{�²j=^l£gZ�[o�lZ
[{ZX��[)vbm{t�[ot1r@t�|b[ot�vbmoZ@��Z@^z[P[y�b�~�I[]nzv�Z¯t=��Z�mom{t=m:��mot�u¸t+rXr�abmomy��^l£4qzj=^lkR¾ � ¿
�oZ@[Vabv`j=vbv4m{t�vbmy��j=[oZ��@4ArXt=^+[ym{t�|'t�^`kbj=[�j�m{Z��z�~Z@\��

¡ ��abmy[o�lZ�m¯¼�½ ¡ u�Z@u�t���^bk4�~rXj=[{Z@k¤G
� ���lZ ¡ 2D4�§ ³ a²j6|���[]n"j��o��abm�j6^lrXZ�u"j6^²j�£gZ�mo Cr@t�ab|~k ^lt�[V£=���gZ�j=^�Z �1v4|�j6x^²j=[o��t�^¤j=^bk�\���|�|Pr{�lZ@r{¬¦��^z[{t`[y�lZ�r@�}m{r�abu���[�j=^brXZX�@�¥h¯Z��yab�b�oZ ³ alZ�^z[o|�nr�j=|}|~ZXk©�lj�r{¬%j=^lk8��Z@mo�¢nlZXk%[o�lj=[�[o�lZ�[oZXr{�b^4�~r@�~j=^�rXt�uwvb|�Z@[{Z@k8[o�lZ��¥t�myu
��^lr@t�momoZXr@[y|�n���4�t�momoZXr�[Vt�v�Z�m�j=[y�~t�^�\�j=��\���[o^bZX�o�yZXk��zn��b�}u��yZ@|}�2j=^lk"t=[o�4x
Z@m{�@�:���lZ@n�\��}|�|�moZ@v�Z�j=[�j=^bkR�yZ@^lk al�V[o�lZ�rXt=mom{Z@r@[¯klj=[{j«�y�lZ@Z@[��

¡ [�[o�lZ ¡ u�Z@my�~r�j6^ ¡ �o�yt1r���j=[y�~t�^�t��9E��zn+�y��r@�~��[{����^�ÆRZXk4��r@�}^lZwu�ZXZ�[o�}^l£��}^¦_=a4|�n
c�dgfip1qCj�[y�b��mok©al�oZ�m�j ��u�ZXZ�[o�}^l£�\�j����lZ@|�k'�����lZ ¡ 2+4�§¤m{Z�vbm{Z@�oZ@^z[{j=[o�}�gZwkbZX�yr@mo�}��Z@k
[y�lZ���[�j=[yal��t��I[o�bZ�|�j=[oZX�y[C4 ¡ E j=^lk8Z��+vb|~j=��^bZXk`[y�²j=[/[y�lZ«¼�½ ¡ �²j�k8£=���gZ�^8�gZ�mo�²j=|
j6vbvbm{te�=j=|zj6^lk�[y�²j=[C�lZ)Z �1v�ZXr�[{Z@ks��ab|}|���uwvb|�Z@u�Z@^z[�j=[y�~t�^±�+n±[o�lZ)Z@^bkst�� ¡ ab£�al�y[:ced�fip1�
h¯Zw\PZ@^z[«t=^T[{t m{Z��z�~Z@\ j6^lkTr@t�u�u�Z@^z[�t�^�[o�lZ�vbmo��t�mo�}[o���XZXk%r@t�^lrXZ�mo^l�	t���[y�lZ�|~j��y[
u�ZXZ�[o�}^l£b�����bm{Z@Z�t��P[o�lZ�al�yZ@myx m{Z ³ abZX�y[oZXk��²j6m{k4\�j=m{Zwr{�²j=^b£gZX���²j�k%��Z@Z@^T�}^lr@|}alkbZ@k�}^�[y�lZC4 ¡ E®�v4P�²j=^l£�ZX�P[ots[{j=v�ZV|~tgj�k�Z�momot�m)u�Z@�o�{j=£gZX��j=^lk"r{�lZ@r{¬+�yabu���t�^�[o�lZ¯|~tij�k
kbj=[�j�\�t�a4|~k�\�j=�}[Pab^z[y��|�j=��[{Z�m�[y�lZC4 ¡ E¦\�j��Pkbt�^lZ=�:º1t���[]\�j=m{Z�kbt1r�abu�Z@^z[�j=[y�~t�^�\�j=�
k4ZX�or�mo�}��Z@k�j��sj |�te\�Z�msvbmy�~t�my��[]nR[�j���¬8[o�²j=[�^lZ@ZXkbZ@k¦kbZ<n4^b��[y�~t�^�j=^lk�\�t=ab|~k%^lt�[���Z
j��=j=�}|�j=�b|�Z�[ot�[y�lZ�¼�½ ¡ ��^Rj=^zn"�¥t�myu��¥t�mVte�gZ�m±j«ngZXj=m��

�±^ _=ab|�n·�4q�cedgfip+q ¡ 2D4�§ �oZ�^+[�j�|�Z@[o[oZ@m"[ot¤j=|�|�al�oZ�m{�"[ot¤a4v�klj6[{Z©[o�bZ@u t=^
[y�lZ�¼�½ ¡ jÔ���gZ�mo�²j6|�j=v4vbm{te�=j=|:t���[y�lZ34 ¡ Ej=^lk%[{tRkbZ@|}��^lZXj=[{Z«�lte\ ¡ 2+4�§¢\Pt�ab|�k
v4m{t+rXZXZ@k'�¤¼®�}^²j=|�|}ngq�t=^¢_=a4|�n¤�+cgqVcedgfip1q ¡ 2+4�§A�~�o��alZXk¦[y�lZBnb^²j=|Vj6^lkøn4��[o�F4 ¡ E
moZ@�z�~���~t�^'�)���lZ�u"j���t=m��¥Z�j=[yabm{Z@�¯t=�®[y�lZCnb^²j=|�4 ¡ E¨j=m{Z/[y�lZX�yZ1G

293

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªi�

v ¡ |�|+��^z[oZ@momyabvb[y�~t�^l�®m{Z@|~j=[{Z@k	[{t/[y�lZ�kbt��y��u�Z@[ymons�yn+�y[oZ@u \���|�|1£gt/[ot�j±[omoZ�j=[yu�Z�^+[�yal��v�Z�^lk'q�^lt�[`j¤[ym{ZXj=[ou�Z@^z[v²j=al�yZ�� �±v�Z@m�j6[{t�mo� \��}|�|/^bt�[R��Z�j=|�|�te\�Z@kA[ot
m{ZX��[�j=my[V[o�lZ�u�j�r{�b��^bZ/\���[o�bt�ab[�m{Z@Z@^z[{Z�mo�}^l£�j6|�|�vlj=m�j=u�Z@[oZ@mo�X�

v ¡ �ot���[]\�j=m{Z��y�}^l£�|�Z�xGv4ab|~�yZ/�y�zab[okbte\�^©\���|}|���Zsj=kbkbZXk��
v ¡ ^���^lkbZ�v�Z�^lkbZ�^+[V�²j6m{k4\�j=m{Z��y�}^l£�|�Z�xGv4ab|~�yZ/�y�zab[okbte\�^©\���|}|���Zsj=kbkbZXk��
v ÆRt�^b�}[{t�my��^l£�|~t�£��~r��¥t�m:[oabmy^z[�j=�b|�Z¯v�tg����[o��t�^w\���|�|l��Z��}u�v4m{te�gZ@k�[{tsZ@^l��abm{Z�[o�²j=[[o�lZ�[oa4mo^z[�j=�4|~Z/�~���}^�t�^lZ�t���[o�lZ�[o�4m{ZXZ�|�ZX£ij=|�v�tg����[y�~t�^l�@�
v ¡ v�t�[{Z�^+[y�~t�u�Z@[oZ@mP\���|�|²��Z�j�kbk4ZXk"[{ts[o�lZ±[yabmo^z[{j=�b|~Z=�)���lZ�t�ab[yvbab[P�~�Pab�oZXk�[otu�t�^4��[{t=m±Z �bj=r@[�[oabmy^z[�j=�b|�Z	|~t+r�j6[o�~t=^8j=^lk8vbmote�+��kbZ�j��z�~�����b|�Z	v�t��y��[y�~t�^`�y��£�^²j=|
[{t«[o�lZ�t�v�Z@m{j=[{t=m��

v /G^+[oZ@my|~t+r{¬+�}^l£�\���[o��[o�bZ��gpI06x]kbZ@£�m{Z@Z���Z@^bk4��^l£�u�j�£�^lZ�[¯\��}|�|'��Zsj�kbkbZ@kR[{t�Z@^4x
�yabmoZ�[y�²j=[w[o�lZ [�j=mo£gZ@[�j=^bk���Z�j=u �lj=[o[oZ@^lZ�m"j=moZ��}^ v�tg����[o��t�^¦����[o�lZz-�x m�j�n
u�t+kbZ/�~���yZ@|�ZXr@[oZXk'�

v Y�Z�j=u�x]t=^©\���|}|®��Z�vbm{Z��gZ�^+[oZXk����I[o�bZ�[oabmy^+[{j=�b|�Z	�~�±�}^©[o�bZÆnlZ@|�k©|��~£=�+[±t�m�j=^zn��^z[{Z�mou�ZXk4�~j=[{Z±v�tg����[o��t�^C�
v 4Pmonzvb[o��r�u�j=|���ab^br@[o��t�^�u�Z@�o�{j=£gZX��\��}|�|)��Z�m{Z@v4|�j�r@ZXk�\���[y�¦u�ZXj=^b�}^l£���ab|)u�ZX��x
�{j�£gZ@�¯j=^lk �b�~£��4|��~£=�+[oZXk�kbt��oZ�x m�j=[oZ/u�Z@�o�oj�£gZX�@�

v 2)k1��[o�}^l£ ¬gZ@n+�	\��}|�|I��Z�|}��uw��[{Z@k©[{t4�©m��X�W��3©�Q�qUT%¦�����X'Qª¦��%P�q�j=^bk¿��PR�©)�"¨l� ¡ |�|
t�[o�lZ�mV¬gZ@n+�V\���|}|���Z��}^lt�v�Z@m{j=[o�}�gZ��

v ¡ u�t�[o��t�^4x]Z�^²j=�b|�Z��¥t1t�[o�y\��}[{r{��¾ j�[]n+v�Z/t���kbZXj�k4u�j=^���\���[{r{� ¿ \���|}|ç��Z�j�k4kbZXk'����lZ�t�v�Z@m{j=[{t�m¯\���|}|C��Z�m{Z ³ a4��m{Z@k©[{tw�lt�|~k�[o�b���±��\���[{r{�%r�|~tg�yZXk©k1abmo�}^l£�u�te�gZ�xu�Z�^+[�t��4rXZ�mo[�j6��^�v²j=mo[o�®t=�1[y�lZ:u�j�r{�b�}^lZI[{tVvbm{Z��gZ�^+[®ab^z\�j6^+[oZXk�u�t�[o��t�^l�'\��lZ�^
[o�lZ�t�v�Z@m{j=[{t�m�����^lt�[��}^Rr@t�^z[omot�|G�

v ��\�Z�^+[]n�[y�bm{Z@Z¯t=[o�lZ�m)r{�²j=^l£gZ@�:\��}|�|1��Z�u�j�kbZ�[ot�[y�lZ��ot=��[]\�j=moZ¯[ot/��uwvbm{te��Z���[{�t�v�Z�m�j=[y�~t�^`j=^lkRm{Z@|}��j=�4��|��}[]ngq+��^lr�|�alk4�}^l£wk4�~�oj=�b|��}^l£�t���ab^zal�yZXk8¬gZ�n+�Xq'r{�²j6^l£���^b£
[o�lZVt�v�Z@m{j=[o��t�^�t��ç[o�lZCX�PRlj=^lk���P%X�PRlrXt�uwu�j=^lkb�@qgvbm{Z��gZ@^z[y��^l£�rXt�vznz��^b£st��ç[o�bZ
rXt�^z[omot�|�vbmotg£�m{j=u t�^�����[{Z=qCr{�²j=^l£=��^l£�[o�bZ�\�j�n8�=j=mo��t�al�/k4Z@[{Z@r@[oZXk��lj=m{k4\�j=moZ
�;j=ab|�[o��j6m{Z)�²j=^lk4|�ZXk'q�Z@|��}u��}^²j=[y��^l£�Z�momot�m{����^	[y�lZ��yt���[]\�j=m{Z�[y�²j=[�\�Z�m{Z�k4Z@[{Z@r@[oZXk
k4abmo�}^l£�[o�lZ)m{Z��z�~Z@\Tvbm{t+rXZ@�o�Xq�j�kbk4�}^l£V�oZ��gZ@m{j=|4j�kbk4�}[o�~t=^²j=|g�yt���[]\�j=m{Z:��^z[{Z�mo|~t+r{¬+�Xq
k4�~�oj=|�|�t�\��}^l£�r{�²j6^l£gZX�2��^�[y�lZP�yZ@my�+��rXZ)u�t+kbZ�\��b�}|~Z)j�[omoZ�j=[yu�Z�^z[����C��^�vbm{t�£�m{Z@�o�Xq
j=^lk�j�kbk4�}^l£«u�ZXj=^b�}^l£���ab|CZ�momot�m�u�Z@�o�oj�£gZX�@�

v ���lZ�¬z^lte\�^¦�yt���[]\�j6m{Z�v4m{t��b|�Z@u���j��o�yt1r���j=[oZXk�\��}[o��[o�lZ��)nz|�Z@m	j=^lk�ïPj6¬+�}u"jj�rXr��~kbZ�^+[o��\���|�|���Z�n4�1Z@k'�
v ���lZ�u"j=^za²j6|~��\���|}|���ZCn4�1ZXkR[ot«m{Z<�bZXr@[¯[o�bZ�r{�lj=^l£gZ@�X�
¼®��£�abmoZ�hR���lte\V��j�[]n+v4�~r�j6|����lZ�m�j�r x��ghR�}^l�y[{j=|�|~j=[o��t�^�j=��[{Z�m�[o�lZB4 ¡ Er{�²j=^l£gZ@�

\PZ@moZ�u�j�kbZ=�

294

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªg�

Beam
on/off light

Motion
power switch

Treatment table

Intercom

Therac-25 unit

Turntable
position monitor

Control

Printer

Display

TV Monitor

footswitch

Room
Emergency
Switches

Door
Interlock
Switch

Motion enable
terminal

console

TV camera

¼®�~£=abm{Z�h)G ¡ []nzvb��r�j=|����bZ@m�j=r�x���h«�;j�r���|}��[]n�j=��[{Z�mV[o�lZCnb^²j6|�4 ¡ E��

295

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ª�ª

2Ik�Æ��}|�|~Z�m�qi[o�bZ/k4��moZXr�[{t�m�t=�C[o�lZ�½±�}�z�~�y��t�^�t��®º+[�j6^lklj=mokb�92�^b�¥t�morXZ@u�Z@^z[Xq�4�Z@^z[{Z�m
�¥t=m¯½/Z@�z�~r@ZX�¯j=^lk7*�j=k4�~t�|�tg£���r�j=|Sh�ZXj=|�[y�Rj=[�[o�lZ�¼�½ ¡ q1\�m{t�[oZ��}^�cedgfipmG

¼�½ ¡ �²j=�sv�Z@mo�¥t=mou�ZXkTZ �+[{Z@^b�y����Z�m{Z��z�~Z@\¸t���[o�bZ"���lZ�m�j�r x��gh �ot���[]\�j=m{Z
j=^lk©�²j=mok4\�j=m{Z��oj=�¥Z@[]n`�yn+�y[oZ@u��X��´�Z�r�j=^4^lt�[��ojenR\���[y�%j=�l�yt�|�ab[oZ�rXZ�myx
[�j=�}^+[]n`[o�²j=[j=|}|)�ot���[]\�j=m{Z�vbmot��b|~Z�u���[y�²j=[�u���£��z[�m{ZX��ab|�[���^%�}u�vbmot�v�Z@m
kbtg�oZ��²j��gZ���Z@Z@^��¥t�a4^lk j=^lk�Z�|���uw��^lj=[{Z@k'�Yh¯te\�Z��gZ@mXql\�Z�j=moZ±r@t�^ªnlkbZ�^z[
[o�²j=[�[o�lZR�²j=m{k1\�j=moZ%j=^lk¢�yt���[]\�j=m{Z8�oj=�¥Z@[]n��¥Z�j=[yabm{Z@�"m{Z@rXZ@^z[y|�n·j�kbkbZ@k
\���|�|�vbm{Z��gZ�^+[���ab[oa4m{Z�r�j=[{j��y[ym{t�v4�b�~r�r@t�^l�oZ ³ alZ@^lr@ZX�/t=�®�;j=�}|�abmoZ��

A¯t"���lZ�m�j�r x��ghwj�rXr��~kbZ�^+[o���²j���Z	��Z@Z@^©moZ@v�t�mo[oZXkR�y��^brXZ�[o�lZ:nb^²j=|�rXt=mom{Z@r@[y���gZ	j�r�x
[y�~t�^�v4|�j=^ \�j��¯�}u�v4|~Z@u�Z@^z[oZXk'�

� �EÂwS£ÐIÂ�.�8Â«UVM)OwNlÐ
ÆRj=^zn"|~Z@�o�ot=^l�Vr�j=^���Z/|�Z�j=my^lZXk���mot�uµ[y�b�~���yZ@mo��ZX�Vt���j�rXr��~kbZ�^z[{�X� ¡ �¥Z�\j=moZ�rXt�^l���~k1x
Z�m{Z@k��lZ�m{Z=�

��*Sx#q��`{}r�wYÂ_xmr��`xÉ~�r.g�{���sjiÆtªqfx�� ¡ r@t�u�u�t�^"uw�~��[�j=¬�Z/��^ Z�^l£���^bZXZ@my��^l£4q1��^�[y�b�~�
rXj��oZ�j6^lk8��^8u�j=^zn`t�[y�lZ@mo�Xq'���±[{t�vbab[±[{t+t"u�alr{��rXt�^vnlkbZ@^brXZ«��^%�yt���[]\�j6m{Z������lZ@moZ
�yZXZ�u���[ot	��Z/js�¥ZXZ�|���^b£«j=u�t�^l£s^bt�^l�ot=��[]\�j=moZ/vbm{t=�¥ZX�o���~t�^lj=|~�:[o�²j=[��ot���[]\�j=m{Z�\���|�|ç^lt�[
t=m"r�j6^b^lt�["�;j6��|Gq:\��b�~r{�¨|�Z�j�k4��[{t¦r@t�uwvb|�j�r@Z@^lr�n j=^lk¨te�gZ�mom{Z�|��~j=^lrXZRt�^ÇrXt=u�vba4[{Z@m
��a4^lr@[y�~t�^l�@�
¡ moZ@|~j=[{Z@k	[{Z�^lkbZ@^br@n�j=u�t�^l£±Z@^l£��}^lZXZ�m{�����®[ot/�~£�^lt=m{Z:�ot���[]\�j=m{Z=�)���lZlnbmo�y[)�oj=�¥Z@[]n

j6^²j=|�n+���~� t�^A[o�lZ����lZ@m{j�r�x��gh¦k4�~kÇ^lt�[��^br@|�abkbZ%�ot���[]\�j=m{Z%�Aj=|}[o�lt=al£��Ç^lZ�j6mo|�n¨��a4|�|
moZX��v�t�^b�y���4��|��}[]n8�¥t�ms�{j=�¥Z�[]nTm{Z@�y[oZXk¦t�^��}[���´¨�lZ@^¦vbmot��b|�Z@u��s��[�j=my[{ZXk¦t+rXr�abmomy��^l£4q���[
\�j���j��y�yabu�ZXk8[y�²j=[/�²j6m{k4\�j=m{Z��lj�k%r�j=al�yZXk8[o�bZ@uRqCj=^lk©[y�lZ���^z�gZ@�y[y�~£ij=[y�~t�^`|~t+t�¬gZ@k
t=^b|�n"j=[�[o�lZ��²j6m{k4\�j=m{Z=�

� {}r_�®p�|�~�r_�z� x)w�~>tªu�~�w�~>s"Å[i�~Usf��g¤tª��x#s"Å�� ���4�~���yt���[]\�j6m{Z�\�j��I�b�~£��4|�n�m{Z�|��~j=�b|~Z=��/G[
\Pt�my¬gZXkw[{Z�^l�It��ç[o�lt�ab�{j=^lk4�:t=��[y��u�ZX����Z@�¥t�moZ�te�gZ@mokbtg����^l£�j=^zngt=^lZ�q1j=^lk�t+rXr@a4mom{Z�^lrXZ@�
t=�IZ@mym{t�^lZ@t�al�±��Z@�lje�z��t�m�\PZ@moZ	�¥Z@\ j=^bk`�;j=m¯��Z�[]\�Z@Z@^C� ¡ 2D4�§�j=�o�ya4u�Z@k©[o�²j=[¯[o�bZ@��m
�yt���[]\�j=m{Z�\�j=�¯�oj=�¥Z���Z@r�j=ab�oZ���[�\�j��Vm{Z@|}��j=�4|~Z�q4j=^lk�[o�4�~��|~Z@k�[ot�rXt�uwvb|�j=rXZ@^br@ng�

� t����Ä{���qzx#�'x)r�|�~�*}x�qzx)|�~��}r�� ���lZw�ot=��[]\�j=moZ�k1�~k%^lt�[�rXt�^z[{j=��^��oZ�|��~x]r{�bZXr{¬+�	t�m
t=[o�lZ�m	Z�mom{t=myx]k4Z@[{Z@r@[y�~t�^Tj=^lk�Z@mym{t�m�xG�²j=^bk4|��}^l£��¥Z�j=[yabm{Z@��[y�²j=[�\�t�a4|~k%�²j��gZ�k4Z@[{Z@r@[oZXk

296

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªih

[y�lZ���^lr@t�^l�y���y[oZ@^lr��~ZX�	j=^lk�rXt+k4��^l£�Z@mym{t�mo�X� ¡ alk4��[�[om{j=��|��/\�Z�m{Z�|}��uw��[oZXk©��ZXr�j6al�oZ�t��
j"|~j�r{¬©t��)u�Z@u�t�mon��Æh¯t�\PZ@��Z@mXq�[ot1klj�n©|~j=m{£�Z@m±u�Z@u�t�my�~ZX�/j=m{Z�j��=j=��|~j=�b|�Z	j=^bkTj=abk4��[
[ym�j=�}|~��j=^lk¨t�[y�lZ@m�kbZX���~£�^¨[oZXr{�b^4� ³ alZX��u�ab�y[���Z©£��}�gZ�^¨�b�~£��·vbmo��t�mo�}[]n¦��^¢u�j=¬z��^l£[ym�j�k4ZXt1J8k4ZXr@���y��t�^l�X�

E®j=[o��Z@^z[±moZ�j�r�[o�~t=^l��\PZ@moZ	[o�lZst�^b|}n�moZ�j=|���^bk4�~rXj=[o��t�^l�Vt���[y�lZ	�yZ@mo��t�al��^lZX�y��t���[o�bZ
v4m{t��b|�Z@u���\���[y�«[o�lZV���bZ@m�j=r�x���hm,i[o�lZ�m{Z�\PZ@m{Z�^lt��}^lkbZ@v�Z@^bkbZ@^z[)r{�lZ@r{¬1�:[o�²j6[�[o�lZ�u�j6x
r{�4��^lZ	j=^lkR�}[{�¯�ot���[]\�j=moZ	\�Z�m{Z�t=v�Z�m�j=[y��^l£wrXt�mym{Z@r@[o|}ng��º+alr{�8��Z@my��nlrXj=[o��t�^©rXj=^b^lt�[���Z
j=�o�y��£�^lZ@k [ot«t�v�Z@m�j6[{t�mo��\���[y�lt�ab[�v4m{te�z�~k4�}^l£�[o�lZ�uµ\��}[o� �ot=u�Z±u�Z�j6^l��t���kbZ@[oZXr�[o��^b£
Z�momot�m{�<G®���bZ����lZ�m�j�r x��ghV�ot���[]\�j=m{Z.K�|}�~ZXkvMV[ot�[y�lZPt=v�Z�m�j=[ot�m{�@q�j=^bks[o�bZ:u�j�r{�b�}^lZI��[{�yZ@|}�
\�j���^lt�[�r�j=v²j6�b|~Z/t=��kbZ�[{Z@r@[o�}^l£�[o�lj=[¯j	u"j=�o�y�}�gZ�te�gZ�m{kbt��oZ��²j�k t+rXr@a4mom{Z@k'�:���lZ��~t�^
r{�lj=u���Z@m{��t=^�[y�lZ����lZ�m�j�r x��gh"rXt=ab|~k©^lt=[/�²j=^lk1|~Z�[o�bZ��b�~£��%k4Z@^l����[]n©t=�:��t�^b����j=[y�~t�^
��mot�uE[o�bZ�ab^b�or�j6^b^lZXk8Z�|~Z@r@[omot�^���ZXj=u j=[V�b�~£�����Z�j=u r�abmomoZ@^z[�,ç[o�lZ�n�[y�zal����ZXrXj=u�Z
�oj=[oa4m�j=[oZXk8j=^bk`£ij��gZ	j=^`�}^lk4��r�j=[y�~t�^�t��)j�|~te\kbt��{j�£gZ=�¬2I^b£���^lZ@Z@mo��^lZ@ZXk`[ot�kbZ@�y�~£=^
�¥t=m�[o�lZ�\Pt�m{��[�rXj��oZ=�

� t�~�w�p�qfxFs�{ yCw�~�+=~�r�tms�x4� {¤{�s � t�p�|�x)|1� �±^lZ t��¯[o�lZ�|�ZX�o�yt�^l�«[{t8��Z�|~Z�j6mo^lZ@k
��mot�u [o�lZV���lZ�m�j�r x��gh/Z �1v�Z@my�~Z�^lrXZ@�)����[o�lj=[I�¥t1r�al�y�}^l£�t�^«v²j6mo[o��r@ab|~j=m��yt���[]\�j=m{ZVkbZ@�y�~£=^
Z�momot�m{�¯�~�V^lt�[¯[o�lZ�\�j�n�[{t�u�j=¬�Z�j���n+�y[{Z�u �oj=�¥Z��O;±�}mo[ya²j=|�|}n�j=|}|�rXt�uwvb|~Z ���ot���[]\�j=moZ
rXj=^¨��ZRu�j�kbZR[otT��Z@�²j��gZ8�}^¨j=^¨ab^bZ��+v�Z@r@[oZXk¨�;j��y�4�~t�^¢a4^lkbZ@m"�ot�u�Z©rXt=^lk4��[y�~t�^b��G
���bZ@m{Z©\��}|�|±j=|�\�j�n+�"��Z8j6^lt�[o�bZ@m �ot=��[]\�j=moZ©�bal£b� _=al��[j���Z@^b£���^lZ@Z@mo�"\�t�a4|~k¢^lt�[
moZ@|}n%t�^¤jRk4ZX�y��£�^�\��}[o�¦j��²j=m{k1\�j=moZ�����^l£�|�Zwv�t��}^+[�t����;j6��|�a4m{Z�[o�lj=[�r@t�ab|~k�|~ZXj�k�[ot
rXj=[�j=�y[omot�vb�lZ=qb[o�lZ�n �y�lt=ab|~k�^lt�[¯kbt��ytw�}��[y�²j=[¯�y�}^l£�|�Z±v�t=��^z[Vt����;j=��|}abm{Z±�����ot���[]\�j=moZ��
���lZ/���lZ@m{j�r�x��10sr@t�^z[�j=�}^lZXk�[y�lZ±�oj=u�Z��yt���[]\�j6m{Z±Z�momot�m��}u�vb|}�~rXj=[{Z@k��}^�[y�lZ/�Inz|~Z�m

k4Z�j=[y�l�Xq��ba4[�[o�4�~��u"j�r{�4��^lZ ��^lr�|�alk4ZXk �lj=m{k4\�j=moZR��^z[oZ@mo|�t1r{¬+��[o�²j6[�uw��[o��£ij=[oZXk�[o�bZ
r@t�^l�yZ ³ alZ@^brXZX�Vt���[o�lZ/Z�momot�m���E�mot�[{Z@r@[o��t�^�j=£ij=��^b�y[P�ot���[]\�j=m{Z±Z@momot�m{�Pr�j=^�j=^lk"���lt�ab|�k��Z��bab�}|�[���^z[{t"��t�[o�%[y�lZ«�yn+�y[oZ@u j=^bk%[y�lZ«�ot=��[]\�j=moZ«��[{�yZ@|}����´�Z�r�j=^b^bt�[�Z@|}��uw��^²j=[oZ
j6|�|2�ot=��[]\�j=moZ	Z�mom{t=m{�Xq²�bab[¯\PZ	r�j6^8t���[{Z�^`vbmot�[{Z@r@[±j�£ij=�}^l�y[V[y�lZ@�}m�\Pt�m{��[/ZJ�Z@r@[{�@q'j=^bk
\PZ�r�j=^ m{Z@rXtg£=^b���@Z�[y�lZ@�}m�|��}¬gZ@|}���lt+t+k���^ t�a4m�k4ZXr@���y��t�^ u"j=¬z�}^l£b�

�±^lZ�t��®[o�lZ��oZ�mo��t�al��u����y[{j=¬gZ@�V[y�²j=[V|~Z@k�[{t«[o�lZ�u�ab|}[o�}vb|~Z±���lZ@m{j�r�x��ghwj=rXr@��kbZ@^z[o�
\�j���[o�lZw[{Z@^bkbZ@^lr�n�[otR��Z@|}�~Z@��Z�[y�²j=[�[o�lZ�r�j=al�yZ�t���j=^¦j�r@r@��kbZ@^z[�lj�k���ZXZ�^¤kbZ@[oZ@myx
uw��^bZXkR¾?Z�� £b�Ùqbj�u���r@m{t��y\���[or{���;j=�}|�abmoZ���^�[o�lZ�r�j��yZ±t��_h�j=uw��|�[ot�^ ¿ \��}[o�lt�a4[�j�k4Z ³ a²j=[oZZ��z�~kbZ�^lrXZ�[{t�rXt=u�Z/[otw[y�b�~��r@t�^lr@|}al�y��t�^Rj=^lk \���[y�lt�ab[�|�t1t�¬z�}^l£«j=[�j=|}|�v�tg�o�����b|�Z�rXt�^4x
[ymo�}�bab[o�}^l£��;j=r@[{t=m{�X� ´¨��[o�bt�ab[�j�[o�lt=m{t�al£=�¢��^z�gZ@�y[y�~£ij=[y�~t�^'q���[w�~��^bt�[�v�tg�o�����b|�ZR[ot
k4Z@[{Z�mouw��^lZ�\��lZ�[o�lZ�m"j%�oZ�^l�ot=m�vbmot��z��kbZXk¤[o�lZ \�m{t=^l£��}^b�¥t�myu"j=[y�~t�^'q�[o�lZ��ot���[]\�j=moZ
v4m{te�z�~kbZ@k©j=^���^lr@t�momoZXr�[�r@t�uwu"j=^bk'qbt�mV[o�bZ	j�r�[oa²j6[{t�mV�²j�kRj«[om�j6^l�y��Z@^z[V�;j=��|}abm{Z�j=^bk
k1�~k¤[o�lZ \�m{t�^b£�[y�b��^l£�t�^���[o�wte\�^C�F/G^·[o�bZRrXj��oZ�t��/[y�lZ�h±j=uw��|}[{t�^�j�r@r@��kbZ@^z[�q�j

297

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªg�

[ym�j=^b�y�~Z�^z[/u���r@motg�y\��}[{r{�8�;j=�}|�abmoZ�\�j���j��y�yabu�ZXk8[{t"��Z	[y�lZ«r�j=ab�oZ«Z@��Z@^�[o�lt=al£��8[o�bZ
Z�^l£��}^lZXZ�m{��\PZ@moZ�ab^²j=�b|�ZP[ot�m{Z�vbm{t+k4alr@Z�[o�lZ:�;j=��|}abm{Z:t�m®[{t5nb^bk�j=^zn+[y�b��^b£±\�m{t�^b£±\���[y�
[y�lZ�u���r@motg�y\��}[{r{�C�

/G^�£gZ�^lZ@m{j=|Gq��}[��~�«j`uw�~��[�j=¬�Z�[{t©vlj=[{r{�£��al��[�t�^lZ�r�j6al�{j=|��;j�r@[ot�m ¾?��alr{�·j��	[o�bZ
�yt���[]\�j=m{Z ¿ j=^lk·j��o��abu�Z�[y�²j=[w��ab[oabmoZ`j=rXr@��kbZ@^z[o��\���|}|���Z�Z@|}��uw��^²j6[{ZXk�� ¡ rXr��~kbZ�^+[o�
j6m{Z�ab^b|��}¬gZ�|�n8[{tRt1r@r@abms��^TZ��4j�r@[y|�n%[o�bZ��oj=u�Zw\�j�nTj�£ij=�}^C� /G��\PZ�v²j6[{r{�¦t�^4|�n8[o�bZ
��nzu�vb[ot�u��"j=^lk¢��£�^lt�moZR[y�lZ©kbZ@Z@v�Z@m�ab^lk4Z@mo|}nz��^l£�rXj=al�yZX�Xq¯t�m"�}�/\PZÉn4�¢t=^b|�n¤[o�bZ
��v�Z@r@�¢nlrsrXj=al�yZ	t���t�^lZ�j�rXr��~kbZ�^z[�q²\�Zsj=m{Z�ab^b|}��¬�Z@|�n�[{t��²j��gZsu	alr{�©ZJ�Z@r@[�t�^R��a4[oabmoZ
j=rXr@��kbZ@^z[o�X�:���lZ±�yZ@my�~ZX��t��2j�r@r@�~k4Z@^z[{���}^z�gt�|}�+�}^l£s[y�lZ/���bZ@m�j=r�x���h��~��js£gt+t1k�Z��4j=uwvb|~Z
t=�CZ��4j�r�[o|�nw[o�4�~�)vbm{t��4|~Z@u7G�¼��}�+��^l£�Z�j=r{����^lk4�}�z�~k4a²j6|²�ot���[]\�j=m{Z²�²j�\ j=�P��[:\�j����¥t�ab^bk
k1�~k�^lt�[V�yt�|���Z�[y�lZ��{j=�¥Z�[]n�vbm{t=�b|~Z�u���t���[o�bZ�k4Z@�z�~r@Z��

� {I+¥��w�tª�`xmr��1Å�� �±��[oZ@^T�}[�[�j=¬�ZX��j6^¦j�r@r@�~k4Z@^z[s[ot©j=|�Z@my[�v�ZXt=vb|~Z«[{t�[o�lZwklj=^b£gZ@mo�
�}^z�gt�|}�gZXk"�}^�[{Z@r{�b^lt�|�tg£�ng� ¡ u�Z@k4�~rXj=|�v4�+n+���~r@���y[�\�mot�[{Z�j6��t�a4[�[o�bZ����lZ@m{j�r�x��gh�j�rXr��}x
k4Z@^z[{�<G

/G^¨[o�lZ©v²j=�y[�kbZ@r�j�k4Z�t=m"[]\�t4q¯[y�lZ©u�Z@k4�~rXj=|±j�rXr@Z@|~Z�m�j=[ot�møK��}^lk4al��[omynmM
�²j��s��ZXr@t�u�Z�v�Z�mo�²j6vl�«jR|}��[o[y|~Z�rXt=u�vb|~j�rXZ�^z[�j=��t�ab[�{j=�¥Z�[]ng�©´�Z��²j��gZ
j��o��abu�Z@kT[o�lj=[[y�lZ�u�j=^zab�;j�r�[oabmoZ@m{���²j��gZ�j6|�|)¬z��^lkb�st����oj=�¥Z@[]n�kbZX���~£�^
Z��+v�Z�mo��Z@^lr@Z�����^lr@Z�[o�lZ�nSj �gZ ��ZXZ@^���^¦[y�lZ��bal����^lZ@�o�wj©|~t�^l£©[y��u�Z��%´TZ
¬+^bt�\�[o�lj=[�[y�lZ@moZVj=m{Z�u�j=^zns�{j=�¥Z�[]n	r@t1kbZ@�Xqz£�ab��kbZX�@qij=^lk�moZX£�a4|�j=[y�~t�^l�2[{t
£�ab�~k4Z�[o�bZ@uµj=^lk�\PZ±�²j��gZ/��ZXZ�^�m{ZXj��o��abm{Z@k �znw[o�lZ��b��[y�lZ@my[{t	Z �1rXZ@|}|~Z�^+[
m{ZXr@t�m{kwt��²[o�bZX�oZVu�j�r{�b��^bZX�X�Y2��4r@Z@vb[:�¥t�m:j/�¥Z@\ ��^lr��~kbZ�^z[{����^�[y�lZ�cedg�`0mjÔ�
¾?Z�� £b�Ùqzj=[�h�j=u�u�Z@mo�yuw��[y�Cq1h�j=u��ba4m{£ ¿ [y�lZ�al�yZVt��lu�Z@k4�~rXj=|lj=rXrXZ�|~Z�m�j=[ot�m{�
�²j�����ZXZ@^wm{Z�u"j6mo¬=j=�b|}ns��moZXZVt����oZ@my�~t�ab��m�j�k4�~j=[o��t�^�j�r@r@��kbZ@^z[{�Iab^z[y��|b^lte\��
E®Z@my�²j=vl�@ql[o�lt�ab£��R\PZ��²j��gZ���Z@Z@^R�yv�t���|�ZXk��zn"[o�4�~�V�yalr@rXZ@�o�w� �= ?�

���4�~��vbm{t=�b|~Z�u��oZ@Z@u��¯[ot«��Z�rXt=u�u�t�^���^Rj=|}|�nlZ�|~kb�@�

-�r_qfx)tªw�~�|<sf~��E� ~�|¡� ÃB|�|�x)|�|`+kxmr}sf|1� ���bZ�nbmo�y[�²j1�Xj=m{kAj=^lj=|�n+�oZ@����^b�}[o��j6|�|�nT�~£=x
^bt�m{Z@k��ot���[]\�j=moZ�qIj=^bk�[o�bZ@^�[y�lZ@n�[omoZ�j=[oZXk��}[��abv�Z@m!nbr@��j6|�|�n`�+n�j��y�yabuw��^b£R[o�lj=[�j6|�|
�yt���[]\�j=m{Z�Z@mym{t�mo��\�Z�m{Z�Z ³ a²j6|�|�nw|��}¬gZ�|�ng�����lZ/vbm{t=�²j=�b�}|��~��[o��r¯my�~�y¬�j��y�oZX�y�yu�Z@^z[{��£gZ@^bZ@myxj6[{ZXk�ab^lk4abZ�rXt=^ªnlkbZ�^lrXZ:��^�[o�lZ)u"j=r{�b��^lZPj=^lk���^�[o�bZPm{Z@�yab|}[{��t��4[y�lZ)mo�~��¬�j��o�yZX�y�yu�Z@^z[
[y�lZ@u��oZ�|���ZX�X�®´¨�lZ@^�[y�lZ+n4m{�y[�ïPj=¬z��u�j�j=rXr@��kbZ@^z[®\�j��®m{Z@v�t�my[{ZXk�[{t ¡ 2D4�§)q�[o�bZ�rXt=uwx
vlj=^zn%k4�~k8^lt�[��}^+��ZX��[o�~£gj=[{Z=�����bZ@��m�Z��+��kbZ@^brXZ��¥t=m�[o�lZ���m���Z@|���Z@�:[o�²j6[�[y�lZ«m�j�k1��j=[y�~t�^
�4abmo^�rXt�a4|~k8^lt�[��²j���Zw��ZXZ�^TrXj=al�oZ@k��zn8[y�lZ@�}m�u"j�r{�4��^lZ	�}^lr@|}alkbZ@k�j�vbmot��²j=�b�}|����y[o��r
my�~��¬	j=�o�oZ@�o��u�Z�^+[��y�lte\���^b£±[o�²j6[��{j6�¥Z@[]n��²j�ks�}^lr@moZ�j��yZXk��zn@nb�gZ�t�m{kbZ�m{��t=�bu"j=£�^b��[yalkbZ
j=��j�moZX�ya4|�[¯t���[o�lZ�uw�~r@motg�y\��}[{r{�Bn4���

298

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªip

���lZs��Z�|��~Z��®[y�²j=[±�{j=�¥Z�[]n��lj�k`��ZXZ@^`��^lr�m{Z�j=�oZXkR�+n���alr{��jw|~j=m{£gZ�j=u�t�ab^z[��oZ@Z@u��
�lj=m{k�[{tB��al�y[y����ng�¿E®Z@my�²j=vl����[�\�j=���²j��yZXk t�^·[y�lZRvbmot��²j=�4��|��}[]nTt=�/�;j=��|}abm{Z�t=�±[o�bZ
uw�~r�m{tg��\���[or{�%¾;[]nzvb��r�j=|}|�n c�0)Ç�¢ ¿ ±�¶_ú'xGZXk"\���[y�"[o�bZ/t�[o�bZ@m��}^+[oZ@my|~t+r{¬1�@�)���lZ±vbmot��b|�Z@u
\��}[o� j=|}|��yabr{�¢j=^lj=|�n+�oZ@�«�~��[o�lj=[«[o�lZ�n�[]nzvb�~rXj=|�|}n�u�j=¬�Z"u"j=^zn���^lkbZ�v�Z�^lkbZ�^lrXZRj���x
��abuwvb[o��t�^l�¯j=^lk�Z��1r@|}alkbZsj��yv�ZXr�[{�¯t���[o�lZ�vbm{t=�b|~Z�u?�¢��^�[o�4�~��r�j=�oZ�q²�yt���[]\�j6m{Z"�¢[o�²j6[
j6m{Z	k1��°wr@ab|}[V[{t ³ a²j6^+[y����n �bab[�\��b�~r{�`u"j�n �²j��gZ«j�|�j=mo£gZ@mV�}u�v²j=r@[�t�^©�oj=�¥Z@[]n�[o�²j6^[y�lZ ³ a²j=^z[o�¢n²j=�b|�Z/�;j�r@[ot�m{��[o�lj=[¯j=m{Z��}^lr@|}alkbZXk��

�<r_t�Â�x�£¤p_tvs�x��<rQ*}xm|sf~���tvs�~�{}rg{�q � {}w�w�{�i�p���{}ròÃB�	�	~�Â_xmr}s^� x#��{�q�sf|1� 2���Z@mon
r@t�uwv²j=^zn/�bab�}|~k4�}^l£��{j6�¥Z@[]nix]r�mo��[y�~rXj=|i�yn+��[{Z@u����y�lt�a4|~k��²j��gZPj=alk4�}[C[om�j6��|~�'j=^lk���^lr��~kbZ�^+[
j6^²j=|�n+���~��vbmot1r@ZXk4abmoZX�I[o�lj=[Pj=m{ZVj=v4vb|���ZXk�\��lZ�^lZ@��Z@m�j6^+n	�b��^z[)t���j�v4m{t��b|�Z@u �~���¥t�ab^bk
[y�²j=[wu���£��z[«|~ZXj�k�[ot�j=^¢j�rXr��~kbZ�^z[��¨���lZ�nbm{��[�vb�bt�^lZ�r�j=|}|��+n ���}u º+[o�}|�|����lt�ab|�k
�lje��Z�|~Z@k�[{t�j=^�Z �1[oZ@^l������ZV�}^z�gZX��[o��£ij=[o��t�^�t=�ç[y�lZ�Z��gZ@^z[o��j=[�î�Z�^b^lZ@�y[{t=^lZ���4�Z�mo[{j=��^b|}ngq
|�Z�j=my^b��^b£/j=��t�ab[�[y�lZlnbmo�y[I|~je\V��ab��[��y�lt=ab|~k��²j���ZV[ymo��£g£gZ@moZXk«j6^«��uwu�Z@k4��j=[oZIm{ZX��v�t=^l�oZ=�

�<r_t�Â�x�£¤p_tvs�x¤g�{}��s�i.tªqfxzyCr��}~�r�x#x#q�~�r_�£y:q�tª�1sf~��`x)|1� º1t�u�Z��lj��y��r±�ot=��[]\�j=moZ�Z@^4x
£=��^lZ@Z@mo�}^l£�vbmy��^lr���vb|�ZX�'[o�lj=[�j=vbv²j6m{Z@^z[y|�n/\PZ@moZ:�z�~t=|�j=[oZXk/��^�[y�lZ)r�j��yZPt��+[o�bZP���bZ@m�j=r�x���h
�}^lr@|}alkbZ/[y�lZ��¥t�|�|�t�\��}^l£ªG

v º1t���[]\�j=m{ZI��v�Z@r@��nbr�j=[y�~t�^l�2j6^lk�kbt1r�abu�Z@^z[�j=[y�~t�^����lt�ab|�k/^lt�[C��Z)j=^�j=��[oZ@mo[y�lt�al£=�+[X�
v *V��£gt�m{t=al�P�yt���[]\�j=m{Z ³ a²j=|}��[]nwj��y�yabm{j=^lr@Z/vbm�j�r�[o��rXZX��j=^lk��y[{j=^lklj6m{kb�����lt�ab|�k"��ZZX�y[{j=�b|}�~�y�bZXk'�
v ½/ZX�y��£�^l�I���lt�ab|�kw��Z�¬gZ�vb[�����uwvb|~Z�j=^lkwklj=^l£gZ�m{t�ab�:r@t1k1��^l£/vbm{j�r@[y�~r@ZX�:j��gt���kbZXk'�
v ´�j�n+�«[{t%kbZ@[oZXr�[�Z�mom{t=m{�wj=^lk�j=^lk�£gZ�[w�}^b�¥t�myu"j=[y�~t�^�j=��t�ab[«[o�bZ@uRqP��alr{�¨j���ot���[]\�j=m{Z©j=alk4�}[�[ym�j=�}|~�XqP�y�lt=ab|~k·��Z`k4ZX�y��£�^lZ@k¢��^z[{t�[o�lZ©�yt���[]\�j=m{Z`��mot�u [o�bZ
��Z@£���^b^4��^l£b�

v ���lZ±�yt���[]\�j6m{Z±���lt�ab|�k���Z���ab�v��Z@r@[{Z@k"[{tsZ��+[{Z�^l�y�}�gZ±[oZX�y[y��^l£	j=^lkw�¥t�mou�j=|²j=^lj=|}xn1���~�¯j=[V[o�bZ�u�t+k4ab|~Z�j6^lkR�yt���[]\�j=m{Z�|~Z��gZ�|',l�yn+��[{Z@u [oZX�y[y��^l£�j=|�t�^lZ/�~��^bt�[�j�kbZ�x
³ alj=[{Z=��*¯Z@£�m{Z@�o�y��t�^w[{ZX��[o�}^l£s���lt�ab|�k���Z�v�Z�mo�¥t�myu�Z@k�t�^�j=|}|²�ot���[]\�j=m{Z¯r{�²j=^b£gZX�@�

v 4�t�u�v4ab[{Z�m	k4���yvb|~j�n1��j=^bk�[o�bZwvbmoZX�yZ@^z[�j=[y�~t�^Tt����}^b�¥t�mou�j=[y�~t�^©[ot�[y�lZ�t=v�Z�m�j6x
[{t�mo�Xql�yabr{�8j��VZ@mym{t�m�u�ZX�y�{j�£�ZX�Xqçj=|�t�^l£�\��}[o� al�oZ�m�u�j=^za²j=|��Vj=^lk t�[y�lZ@m¯kbt+r@a4x
u�Z�^+[{j=[o��t�^�^lZ@ZXkR[ot«��Z�r�j6m{Z@��a4|�|�n�kbZ@�y�~£=^lZXk'�

���lZ�u�j=^zab�;j�r�[oabmoZ@mV�{j6�~k"[o�lj=[�[o�lZ/�lj=m{k4\�j=moZsj6^lk �ot���[]\�j=m{Z�\PZ@moZVK�[{ZX��[{Z@k`j=^bk
Z �1Z@m{r��~�yZXk �yZ@v²j6m�j=[oZ@|�nÇt=m�[{tg£gZ�[o�lZ�m�t���Z@m�u"j6^+n·ngZ�j6m{�X�¾M /G^A�b�~� kbZ�v�tg����[y�~t�^¨�¥t�m
t=^lZRt=�±[o�bZ�|~je\V��ab��[o�Xq:[o�lZ ³ a²j=|��}[]n¤j��y�yabm{j=^lrXZRu"j=^lj�£gZ@m�Z �+vb|�j=�}^lZXk�[o�²j6[w[oZX��[o��^b£\�j���kbt�^lZ«�}^�[]\PtRvlj=mo[o�X� ¡ K��yu�j=|�|�j=u�t=ab^z[�M t����yt���[]\�j=m{Z�[{Z@�y[o�}^l£ \�j���kbt=^lZ�t=^

299

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªgf

j��y��u	ab|�j=[ot�m�q²�bab[±u�tg��[/t��)[y�lZ	[{Z@�y[y��^l£�\�j���kbt=^lZ«j���j"��n+�y[{Z�u`�@/G[�j6vbv�ZXj=m{��[o�²j=[
a4^b��[)j6^lk«�ot���[]\�j=moZ�[{ZX��[o�}^l£/\�j=��u��}^b��u�j=|Gqe\��}[o�«u�tg�y[�t��²[o�lZ�ZJ�t�my[Ik4�}m{ZXr�[{Z@k�j=[�[o�bZ
�}^z[{ZX£=m�j=[oZXk��yn+��[{Z@u [{Z@�y[�� ¡ [Vj«���bZ@m�j=r�x���hsal�oZ�m�j ��u�Z@Z@[o�}^l£bqz[o�lZ±�{j=u�Z±u�j=^��y[{j=[{Z@k
[y�²j=[�[y�lZ����lZ@m{j�r�x��gh"�ot���[]\�j=moZ�\�j��/[oZX�y[oZXk%�¥t�ms�1qÍp10`0��lt=abm{�@�«¹¯^lk4Z@m ³ alZX��[o��t�^b��^b£�zn�[y�lZ�al�oZ�m{�@qP�lZ�r�|�j=my��nlZ@k�[o�b����j���u�ZXj=^b�}^l£°K{�gp1010`�lt�abmo�wt=�¯ab�oZ��¾M ���lZ�¼�½ ¡
k1��°wr@ab|}[]n ��^8£gZ�[o[y��^l£�j6^�j�kbZ ³ a²j6[{Z	[oZX�y[±vb|�j=^©t�ab[�t��I[y�lZ�r@t�u�vlj=^zn©j=^bk©[o�lZ	|~j�r{¬t=�®moZX£�moZX�o���~t�^�[{Z@�y[y��^l£wj=moZ�Z��z�~kbZ�^lrXZ�[o�²j6[�[{ZX��[o�}^l£«\�j��V^lt�[Vk4t�^lZ�\�Z�|�| �
���lZ¤kbZ@�y��£�^�~�`ab^4^lZXr@ZX�o�oj=mo�}|�nr@t�uwvb|~Z �-�¥t�m8��alr{� r@mo�}[o��r�j=|	�ot���[]\�j=m{Z=� /G[8�~�

a4^+[oZX��[�j=�b|�Z/��^"[y�lZ/�yZ@^l�yZ�[y�²j=[�[y�lZ/kbZ@�y��£�^ Z@^l��abm{Z@k�[o�²j=[�[o�lZ/¬z^lte\�^�Z@mym{t�mo��¾;[y�lZ@moZ
u�j�n��gZ�mon�\�Z�|�|V��Z�u�t�m{Z�[y�²j=[��²j��gZ?��al�y[w^lt�[w��Z@Z@^ �¥t�ab^lk ¿ \Pt�ab|~k�u�t��y[�|��}¬gZ@|}n
^bt�[I�²j��gZV��Z@Z@^��¥t�ab^lk«al����^l£��y[{j=^lklj=mokw[oZX��[o��^b£sj6^lkw��Z@my��nlrXj=[o��t�^�[{ZXr{�4^b� ³ alZ@�X�:���b�~�k4t1Z@��^lt�[wu�Z�j=^¢[y�²j=[��ot���[]\�j=moZ`[{Z@�y[o�}^l£����w^bt�[��}u�v�t�my[�j=^z[�qPt�^b|}n¦[o�²j=[��ot���[]\�j=moZ
u	al�y[V��Z�k4ZX�y��£�^lZ@kR[{t«��Z�[{ZX��[�j=�4|~Z�j=^lk [o�²j6[�����uwvb|~Z±kbZX���~£�^l�Vu�jen�vbm{Z��gZ�^+[±Z@mym{t�mo�
�}^ [o�lZCnbmo�y[Vvb|�j=rXZ��

g�{���sjiÆtªqfx¥� x)p�|<x}� /Gu�v�t�mo[{j=^z[�|~Z@�o�yt�^l�Vj=��t�ab[��yt���[]\�j=m{Z/moZ@al�yZ�rXj=^���Z/�¥t�ab^lk���^
[y�lZX�yZ8j�r@r@�~k4Z@^z[{�@� ¡ ^²j=�}�gZ`j��o��abu�v4[o�~t=^·�~��t���[{Z�^¢u�j�kbZR[y�²j=[�m{Z@ab�y��^b£��ot���[]\�j=moZ
t=m�al����^l£�rXt�uwu�Z@m{r���j=|�t1Jçx [o�lZ x]���lZ@|}���ot���[]\�j=moZR\���|}|���^lr�m{ZXj��oZ��{j=�¥Z�[]n ��ZXrXj=al�yZR[o�bZ
�yt���[]\�j=m{Z�\��}|�|+�²j��gZ���Z@Z@^wZ��1Z�m{r@���oZ@k�Z �1[oZ@^l������Z@|�n���*¯Z�al�y�}^l£��ot=��[]\�j=moZ�u�t+k4ab|�ZX��k4t1Z@�
^bt�[«£�a²j6m�j=^z[{Z@Z"�{j6�¥Z@[]nT�}^�[o�bZ�^lZ@\ ��n1��[{Z�u�[{t`\��4�~r{�¤[o�lZ�n�j6m{Z�[ym�j=^l���¥Z@mym{ZXk�j=^bk
�yt�u�Z@[o�}u�Z@��|~Z�j=kb��[ot©j�\�¬z\�j6m{k¤j=^lk�klj=^l£�Z@m{t=al�	kbZ@�y��£�^l�X��º1j=�¥Z@[]n%�~�sj ³ a²j6|���[]n©t��[y�lZ���n1��[{Z�u ��^R\��b�~r{�%[o�bZ��ot���[]\�j=moZ	�~�±ab�oZXk�,'��[±����^lt=[�j ³ a²j=|}��[]n t��)[o�bZ��ot���[]\�j=moZ�}[{�yZ@|����Y*¯Z�\�mo�}[o��^b£�[y�lZVZ@^z[o�}m{Z¯�ot���[]\�j=moZ¯�}^�t�mokbZ@m)[ots£gZ�[Pj�r�|~Z�j6^�j=^lkw�y�}u�v4|~Z�kbZ@�y�~£=^
u�j�n���Z��{j=�¥Z�m¯�}^ u"j=^zn�r�j��yZX�X�

g�tª�'x¦*}x#qI|�p�| � q�~�x)r�Â�wUÅu-�|�x#q���r}s�x#q���t��`x)|1� Æ`j=¬z�}^l£�[y�lZ	u�j�r{�b��^bZ	j���Z�j���n8j��
v�tg�y�y���4|~Z	[ot ab�oZ«u"j�n`rXt�^ª�4�~r@[�\��}[o�%�oj=�¥Z@[]n8£�tij=|~�@��4�Z�mo[�j6��^b|}ngq�[y�lZ«al�oZ�m��}^z[{Z@my�;j�rXZ
k4ZX�y��£�^8|~Z���[±u�abr{��[ot���Z�kbZX����moZXk'q'�ba4[�Z@|}��uw��^²j=[y��^l£«u�a4|�[o�}vb|~Z�klj6[�j"Z@^z[ymon8j6^lk%j���x
��abuw��^l£�[o�lj=[�t�v�Z�m�j=[ot�m{�/\Pt�ab|�k�r{�bZXr{¬�[o�lZ«�=j=|�abZX��r�j=moZ@��ab|}|�nR��Z��¥t�m{Z«vbmoZX�o����^l£ [o�bZ
moZ@[yabmo^�¬gZ�n�\�j��Vab^bmoZ�j=|}�~��[o�~r=�

-�|�x#q?t�r�ÂZ) {�*}x#q�rt+¥x)rSs��G*}x#qI|�~��}�Ss�t�r�Â.gSs�t�r�Â�tªq�Â�|1� �±^lrXZ�[o�lZ±¼�½ ¡ £gt�[
�}^z�gt�|}�gZXkA��^A[o�lZ����lZ�m�j�r x��gh1q/[y�lZ@�}mRmoZX��v�t�^b�oZ�\�j�� ��uwvbm{Z@�o�����gZ=q�ZX��v�Z@r@��j6|�|�n¢rXt�^4x
���~kbZ�mo�}^l£"�lte\ |}��[o[y|~Z�Z��+v�Z@mo��Z@^lr@Z«[o�lZ�n©�²j�k8\���[y���y��uw��|~j=m¯vbm{t��4|~Z@u��±�}^%rXt�uwvbab[oZ@myx
r@t�^z[omot�|�|�ZXk"u�ZXk4��r�j=|�kbZ@�z�~r@ZX�@��ºz��^lr@Z/[o�lZ����lZ�m�j�r x��gh�Z��gZ@^z[o�Xql[o�lZ�¼�½ ¡ �²j=��u�te�gZ@k
[ot��}u�v4m{te�gZ�[y�lZ¯moZ@v�t�mo[y��^l£���n+�y[{Z�u j=^lk�[{tsj=al£�u�Z@^z[)[o�lZ���mIvbmot1r@ZXk4a4m{ZX��j=^lkw£�ab��kbZ�x

300

þ�ÿbÿ��Iþ � �����	��
������������
������������������! "�#
%$'&)(ªgd

|}��^lZ@�/[{t���^br@|�abkbZ«�ot���[]\�j=moZ������lZw�}^bvbab[�j6^lk�v4m{ZX�y�yabmoZ���mot�u [y�lZwab�oZ@m�£�mot�abv�\�j=�
j6|~�ot���uwv�t�my[�j=^z[���^�£gZ�[o[y��^l£±[y�lZ�u�j�r{�b��^bZ+n4�1ZXk�j=^lk�v4m{te�z�~kbZ@�)j=^«��uwv�t=mo[�j6^+[�|~Z@�o�yt�^
[ot«al�oZ�m{�V��^�t�[o�bZ@mV��^lk1al�y[ymo�~Z@�X�

§ Ï^¨1Ï�N+Ï	L8U5Ï@Ð
�ÍcX .4±� ¡ �PY�te\V�y�lZ�m��ÆRZ@k4�~rXj=|�kbZ@�z�~r@Z`m{Z@r�j=|}|~�<G£2��bj6u��}^²j=[o��t�^ t����oZ�|~Z@r@[{Z@k¨r�j��yZX�@�
�2ZXr{�b^b��r�j=|¤*¯Z�v�t=mo[�8 ¡ � *VZ@v�t�mo[98 ¡ �@»1E�2:Æ`½�x�d106x��4q+¹��»º��ª8�te��Z@mo^4u�Z�^+[¡ r�x
rXt=ab^z[o��^b£3�±mo£ij=^b����j=[y�~t�^Cqv�/r@[ot���Z�m�cedgd`04�

� �6 .4±� ¡ �:Y�te\V�y�lZ�m��ÇÆ�ZXk4��r�j=|¯kbZ��+��rXZ@��G©���bZRvbab�4|��~r"�bZ�j=|}[o�·j=[�mo�~��¬ç�¢�2ZXr{�b^b��r�j=|
VZ@v�t�mo[�8 ¡ �Ü¯Z�v�t�my[98 ¡ �@»��PxðE�2:Æ`½�x]d`06x��+q1¹��»ºç�v8�te�gZ�mo^bu�Z@^z[¡ rXr@t�ab^z[o�}^l£
�±m{£ij6^b���Xj=[o��t�^Cqçcedgd`04�

� �= 	Æ��9î/�}�gZ@| q±Z@k4��[ot�m��=©O¦	N1 �Wª{�W�&1 B�!¦({�«.P!¦({ R>T¬¬©�{|{�PR� U¨lq���t�|�abu�ZÉ-5-.GÍf1��4�Z@^z[{Z�m
�¥t�mR½/Z@�z��rXZX�`j=^lkÄ*�j�k1�~t�|�tg£��~rXj=|Ch¯Z�j=|}[o�Cq�¼lt+t1k j=^lk ½±moal£ ¡ k4uw��^4�~�y[ym�j=[y�~t�^'q
*Vt1r{¬z�z��|}|~Z�qbÆ`j=myn+|~j=^lk'qb½/ZXrXZ�u���Z@m�cedgfg�1�

� ª� �A±j6^lr@n.8«�=§CZ��gZX�yt�^wj=^lk�4P|�j=my¬sº��6�2abmy^lZ@mX� ¡ ^���^z�gZ@�y[y�~£ij=[y�~t�^st��b[y�lZ����bZ@m�j=r�x���h
j�r@r@�~k4Z@^z[{�@�;®2¯#¯°¯²±+W�§²QS©)RðP� q²�=�b¾Gp ¿ G}c�f�³+ªbcgqb_=ab|�n`cedgdg�1�

� h6 �2Ik%Æ��}|�|~Z�m��¯���lZ«���bZ@m�j=r�x���h�Z��+v�Z�mo��Z@^lr@Z���/G^.±+W�¨�ó�P��P¨´�%P?Wðó�µ�R'¦1R®P!©O¦	N1 �¦1R� �W�¨
±+W�¨�R��%Wª{·¶9��W�&1�¼¦1§=¸� U��P��R®W���X�q'cedgfip+�

� �= 	_4� ¡ ��*�j�\�|}��^l�yt�^C�z*VZ@v�t�mo[st�^T[y�lZ����lZ@m{j�r�x��gh1�z/G^º¹�±¼»Q©�½�¾t¹�±�®�¶+T�¿fX B� �XRUX
À¥P%PR� U¨�&�q�î/�}^l£g�y[ot�^Cq��±^z[�j6mo�~t4q²Æ`j�n8cedgfgp1�

� p6 �*��²º4j=|}[{tg�@�)Æ`j=^�¬z��|�|�ZXk��zn j=rXr@��kbZ@^z[V\���[y� u�Z@k4�~rXj=|�m{j�k4��j6[o�~t=^C��¬@W�XR®W�¨�ÁK{�W(TP�q
_=ab^lZs�10�ced�fg�4�

301

