
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2003 Instructor: Kurt Meinz August 15, 2003

CS 61A Final

Personal Information

First and Last Name

 Your Login in Clear, Capital Letters cs61a-__ __

Your TA's Name

Your Real Email Address

“All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61a who have not taken it yet.”

 (please sign)

Instructions
• Partial credit may be given for incomplete /

wrong answers, so please write down as much
of the solution as you can.

• Feel free to use any Scheme function that was

described in lecture or sections of the textbook
we have read without defining it yourself. Do
not use functions or constructs that we have
not yet covered. Unless specifically
prohibited, you are allowed to use helper
functions on any problem.

• Please use “true” instead of #t, and “false”

instead of #f. We have found that handwritten
#t and #f look too much alike.

• Please write legibly! If we can’t read it, we

won’t grade it!

• This exam is difficult. Just relax and do the

best you can.

Grading Results

Question
Max.
Points

Points
Earned

1 7

2a 7

2b 7

3 7

4 7

5 7

6 7

7 7

8 14

Total 70

Name: __________________________ Login: ____________________

Question 1: Prove Kurt Wrong!

Kurt wanted to add apply to the MCE as a special form:

> (apply * (list 1 2 3 4)) ;; just like (* 1 2 3 4)
24

He inserted the following in the MCE's eval procedure:

;; MCE eval inserted just before the 'application?' clause:
((tagged-list? exp 'apply)
 (mc-eval (cons (cadr exp) (caddr exp)) env)))

Greg correctly pointed out that, in some cases, this implementation
will crash or produce results different than those of the version of
apply in STk.

Part A:

Please give a simple, well-formed scheme expression that starts with
'apply' and will not work with this implementation of apply. Be sure
that your expression highlights the problem with this implementation
of apply.

;;; MC-Eval Input:

(apply ___)

Part B:

In the best English that you can muster, please give a clear and
concise explanation of why this implementation of apply will not work
as intended. No more than 16 words, please.

Page 2 of 11

Name: _________________________ Login:________________________

Question 2: Dynomite Dynamic Scoping!

Part A: Dynamically Scoped Procedures

Greg has started to add a special form to the lazy evaluator named
'dynamic-lambda'. Its function is to create a procedure that uses
dynamic rather than lexical scoping to evaluate the body.

>(define x 4)
>(define lexical-square-x (lambda () (* x x)))
>(define dynamic-square-x (dynamic-lambda () (* x x)))
>(let ((x 10)) (list (lexical-square-x) (dynamic-square-x)))
(16 100)

Here's what he did:

;; in eval, right before the 'application?' clause:
((tagged-list? exp 'dynamic-lambda)
 (make-procedure (lambda-parameters exp)
 (lambda-body exp)
 'dynamic))

Unfortunately, he got confused about how to invoke these procedures
and gave up. We'd like you to finish the changes to the lazy
interpreter so that these dynamic procedures are invoked correctly and
have the proper scoping. Please write the procedure name and line
numbers of anything that you change. (Should be 4 lines, tops.)

Page 3 of 11

Name: _________________________ Login:________________________

Question 2: Dynomite Dynamic Scoping!, cont.

Part B: Dynamic Promises

Carolen wants to extend the lazy evaluator to support dynamically
scoped promises. In a way similar to the strict/non-strict problem on
exam 3, she plans to extend the formal parameter specifications in the
non-memoizing, lazy interpreter such that parameters are labeled as
either 'lexical' or 'dynamic':

>(define x 4)
>(define foo (lambda ((lexical a) (dynamic b))
 (let (((lexical x) 10))
 (list a b))))
>(foo x x)
(4 10)

The environment of evaluation for a will be its environment at
creation, while the environment for b will be the current environment.
She started to create these dynamically scoped promises as follows:

;; lazy's mc-apply lines 10 and 11 replaced with:
(map cadr (procedure-parameters exp)))
(map (lambda (param arg) (if (tagged-list? param 'dynamic)
 (delay-it arg 'dynamic)
 (delay-it arg env)))
 (procedure-parameters exp)
 arguments)

Unfortunately, she also got confused and gave up before implementing
compound procedure application – so help her out. Again, write the
proc name and line numbers of anything you change. [Can be done in 3
enerous lines.] g

Page 4 of 11

Name: _________________________ Login:________________________

Question 3: (adds-to-n? 70 (your-subscores)) #t

Use vambeval to solve adds-to-n?. You may assume that we have defined
a procedure named 'subsets' that will return all of the sublists
(including the empty list) of a given list:

>(subsets '(1 2 3)) (() (1) (2) (3) (1 2) (2 3) (1 3) (1 2 3))

In case you forgot, here is the regular-scheme solution to adds-to-n?:

> (define (adds-to-n? n nums)
 (cond ((= n 0) true)
 ((null? nums) false)
 (else (or (adds-to-n? (- n (car nums)) (cdr nums))
 (adds-to-n? n (cdr nums))))))
> (adds-to-n? 5 '(2 10 3)) #t
> (adds-to-n? 5 '(2 10 4)) #f

Your solution must use 'amb' and 'require', and you are NOT allowed to
use any helpers other than subsets, an-integer-starting-from, an-
integer-between, an-element-of, map, filter, accumulate, and/or basic
arithmetic primitives (all of which may be used without definition).

Your version of adds-to-n? should return the "winning subset" if
found. 'try-again' should result in the next winning subset being
found. If there are no more winning subsets, your definition should
cause vambeval to print "No more values …":

;; Ambeval input
(adds-to-n? 6 '(3 6 3)) (6)
try-again (3 3)
try-again "No more values …"

Hint: Your solution should be 3 lines tops, and will not follow the
form of the regular scheme solution. Take advantage of amb! Your
procedure can return the winning subsets in any order, as long as it
finds all of them.

(define (adds-to-n? n nums)

Page 5 of 11

Name: _________________________ Login:________________________

Question 4: Et Fail2, Brutus?

Alex was messing around with vambeval, and, just for giggles, inside
of eval-sequence he replaced exactly one of the occurrences of 'fail2'
with 'fail':

;;new eval-sequence:
(define (eval-sequence exps env succeed fail)
 (define (loop first-exp rest-exps succeed fail)
 (if (null? rest-exps)
 (ambeval first-exp env succeed fail)
 (ambeval first-exp
 env
 (lambda (first-value fail2) ;; unchanged
 (loop (car rest-exps)
 (cdr rest-exps) succeed fail)) ;; was fail2
 fail)))
 (if (null? exps)
 (error "Empty sequence")
 (loop (car exps) (cdr exps) succeed fail)))

Part A:

Please give a well-formed scheme expression that uses 'amb' and
highlights why fail2 is necessary in order to get eval-sequence to
behave properly.

;; Ambeval Input

(begin

Part B:

In your best English, please give a clear and concise explanation of
why this implementation of eval-sequence will not work correctly. No
more than 32 words, please.

Page 6 of 11

Name: _________________________ Login:________________________

Question 5: We liked the problem so much that we copyrighted it…

If you're not sick of seeing adds-to-n? yet, you will be after doing
this problem. We'd like you to re-write adds-to-n?, this time in the
query language. You must use the unary number language that we have
been doing in class, and you can assume that we have pre-defined the
plus relation as usual. Your adds-to-n? definition should work for the
following sample calls:

(adds-to-n? (1 1 1) ((1) (1 1 1 1) (1 1)) Provable.
(adds-to-n? (1 1 1) ((1) (1 1 1 1) (1)) Not provable.

Hint: Your definition should follow the outlines of the regular scheme
definition of adds-to-n?. The trickiness comes from representing (- n
(car nums)) and (cdr nums) in the logic language.

(define (adds-to-n? n nums)
 (cond ((= n 0) true)
 ((null? nums) false)
 (else (or (adds-to-n? (- n (car nums)) (cdr nums))
 (adds-to-n? n (cdr nums))))))

As a courtesy for working so hard this summer, we'll start you out
with the base case. (There is no false base case because everything
that is not provably true in the system is considered false.)

(rule (adds-to-n? () ?any))

Fill in the following to finish the definition. Our solution is 3
lines.

(rule (adds-to-n? ?n (?car . ?cdr))

Page 7 of 11

Name: _________________________ Login:________________________

Question 6: Double Bubble Time!

Consider this expression typed in at the prompt:

(let ((a 5))
 ((let ((a a))
 (lambda (b)
 (set! b (* a 3))
 b))
 (let ()
 (set! a (+ a 1))
 (+ a 1))))

Part A:

Please draw the complete environment diagram for the evaluation of
this expression. Don't forget to draw all double-bubbles (even unnamed
ones) and label each frame in creation order.

G

Part B:

What is the return value of the expression? _____________

Page 8 of 11

Name: _________________________ Login:________________________

Question 7: M U T A T I O N!

Part A:

Please examine this sequence of expressions:

>(define a (list 'everyone 'likes 'logo))
>(define (make-true x)
 (let ((y (cdr x)))
 (set! y (cons 'temp (cdr y)))
 (set-car! y 'greg)))
>(make-true a)

Please draw a box-and-pointer diagram for a after evaluation of the
foregoing expressions.

Part B:

Now, take a look at this expression:

(let ((y (list 'hello 'nurse)))
 (let ((x (cdr y)))
 (set-cdr! (cdr x) '(betty))
 (cdr y)))

If this expression were evaluated in STk, what would the return value
be? If you think it would be an error, please give an approximation of
the reason for the error (i.e. what would STk say for the error
message).

Page 9 of 11

Name: _________________________ Login:________________________

Question 8: And you thought you wouldn't have to do a tree problem!

Consider a binary tree whose interface is as follows:

(define (make-node datum left-child right-child)
 (list datum left-child right-child))
(define (make-leaf datum)
 (make-node datum nil nil))
(define get-datum car)
(define get-left-child cadr)
(define get-right-child caddr)
(define (is-leaf? node)
 (and (eq? (get-left-child node) nil)
 (eq? (get-right-child node) nil))

So, to construct the tree at right, you would call

(define my-tree
 (make-node 'a
 (make-node 'b
 (make-leaf 'd)
 (make-leaf 'e))
 (make-leaf 'c)))

 a
 / \
 b c
 / \
 d e

The distance between two nodes in the tree is the number of branches
(up and down) that must be crossed to form a path between the two
nodes. Thus, in my-tree, the distance between d and c is 3, d and b is
1, and d and e is 2.

We'd like you to write a 'distance' procedure that takes a tree and
two values and returns the distance between the nodes that contain
those values as data. You may make these assumptions:

1. all the data in the tree will be distinct
2. distance will be called with values that are in the tree
3. distance will be called with distinct (non-equal) values

To make things easier, we'll give you two big hints:

1. If the two target nodes are in different subtrees of a given
node, then the distance between them is the sum of their depths
from the current node. E.g. since d and c are in different
subtrees of a, the distance between d and c is the sum of their
depths from a.

2. You'll probably want to write [and we'll give you partial credit
for] procedures that compute 'is-in-tree?' and 'depth-of'
(starting at 0) for these binary trees.

Put your solution on the next page.

Page 10 of 11

Name: _________________________ Login:________________________

Page 11 of 11

Question 8: And you thought you wouldn't have to do a tree problem!

If you use 'is-in-tree?' and/or 'depth-of' in your solution, you need
to provide definitions for them here. Remember that these are binary
trees – not the regular trees.

(define (is-in-tree? value node) [optional]

(define (depth-of value node) [optional]

(define (distance value1 value2 node) [required]

	University of California, Berkeley – College of E
	CS 61A Final
	Instructions
	Grading Results
	
	
	Question 1: Prove Kurt Wrong!

	Question 2: Dynomite Dynamic Scoping!
	
	Question 3: (adds-to-n? 70 (your-subscores)) (#t
	Question 4: Et Fail2, Brutus?
	Question 5: We liked the problem so much that we
	Question 6: Double Bubble Time!
	Question 7: M U T A T I O N!
	Question 8: And you thought you wouldn't have to do a tree problem!
	Question 8: And you thought you wouldn't have to do a tree problem!

