
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2002 Instructor: Kurt Meinz 2002-08-16

CS 61A F I N A L

Personal Information

First and Last Name

 Your Login cs61a-__ __ (legibly!)

The First Letter of Your Login (please circle) a b c d e f g h i j k l m n o p q r s t u v w x y z

The Second Letter of your login (please circle) a b c d e f g h i j k l m n o p q r s t u v w x y z

Lab Section Time, TA, & Location You Attend

Discussion Section Time, TA, & Location You Attend

“All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61a who may not have taken it yet.”

 (please sign)

Instructions
• Partial credit may be given for incomplete /

wrong answers, so please write down as much
of the solution as you can.

• Feel free to use any Scheme function that was

described in lecture or sections of the textbook
we have read without defining it yourself.
Unless specifically prohibited, you are
allowed to use helper functions on any
problem.

• Please use “true” instead of #t , and “false”

instead of #f. We have found that handwritten
#t and #f look too much alike.

• Please write legibly! If we can’t read it, we

won’t grade it!

• Please comment your code extensively!

Grading Results

Question
Max.
Points

Points
Earned

1 10

2 12

3 12

4 12

5 12

6 12

Total 70

Name: __________________________ Login: ____________________

Page 2 of 8

Question 1: Quickies

Part A:

a. What would be the result (return value) of typing ‘(define (foo a
b c))’ into the vanilla MCE? If it would be an error, please describe
it.
 __

b. How about if you typed the same into the analyzing evaluator?

 __

Part B:

Imagine that you type the following into the logo evaluator:

make “x 1
make “y 2

to square :x
output :x * :x
end

to erwinize :m :n
output square :x + square :y + :m + :n
end

to janeinate :x :y
output erwinize :x :y
end

What would be the result of evaluating ‘erwinize 2 3’?

If the evaluator uses dynamic
scoping?

If the evaluator uses lexical
scoping?

What about evaluating ‘janeinate 2 3’?

If the evaluator uses dynamic
scoping?

If the evaluator uses lexical
scoping?

Part C: Are Kurt’s shirts ugly or pretty? Circle one only.

Name: _________________________ Login:________________________

Page 3 of 8

Question 2: MCE

Although we have only covered one version of ‘let’ in this class,
standard scheme provides several others: ‘letrec’, ‘let*’, and ‘named
let’. In this question, we would like you to modify the regular MCE
to include support for named lets.

Everyone knows that the regular, vanilla let is just shorthand for a
procedure definition and immediate invocation. Normally, this
temporary procedure does not have a name associated with it. However,
in named lets, a binding of the name of the let to the temporary
procedure is created in the same frame as the other (usual) let
bindings. This name-procedure binding can be used to implement
recursion as follows:

;;; M-Eval input:
(named-let fib ((a 4)) ;; ‘fib’ is the name to bind the proc to.
 (if (< a 2) ;; ‘4’ is the initial value for the argument.
 1
 (+ (fib (- a 1)) (fib (- a 2)))))

;;; M-Eval output: ;; fib of 4 calls fib with a=3 and a=2, etc.
5

The general form of a named let is
 ‘(named-let <name> <bindings> <body>)’

Part A: There are several different ways of constructing the
environments for named lets – we don’t care which one you choose as
long as it behaves correctly. To show us which way you intend to do
it, please use the space below to construct an environment diagram to
simulate the above named-let expression. Note: you don’t have to go
through the recursion – just show us the environment as it exists
right before going into the body of the let.

Global

Name: _________________________ Login:________________________

Page 4 of 8

Question 2: MCE Continued

Part B: Now please define the selectors that you will use to extract
the pieces of named-let expressions:

(define (nl-name expr) __)

(define (nl-bindings expr) ____________________________________)

(define (nl-body expr) __)

Part C: Lastly, please provide a procedure named ‘eval-named-let’
that takes a named-let expression and an environment and evaluates
that expression in that environment. You may assume that we will
modify ‘mc-eval’ itself to test for named-let expressions and pass
them off to your procedure.

Your procedure should do all of the necessary work of popping out new
frames, adding bindings, etc. In particular, do not implement named
lets as a syntactic translation to regular lets and definitions!

Please comment your code (so we can give you partial credit)!

(define (eval-named-let expr env)

Name: _________________________ Login:________________________

Page 5 of 8

Question 3: Lazy Streams

Someday, somewhere, you will be overtaken with the desire to
transform an infinite stream of infinite streams into a single
stream. Well, maybe not, but is it best to be prepared.

An infinite stream of streams might be something like this:

(cons-stream ones (cons-stream twos (con-stream threes …

In general, this is not the easiest problem in the world. However, it
is made much easier under the assumption that you are operating with
a normal-order evaluator.

Part A: Assuming that you are using a normal order evaluator, please
fill in the blanks to finish a procedure named ‘flatten’ that takes
an infinite stream of infinite streams and returns a single infinite
stream of all of the elements of each substream. The order of
elements doesn’t really matter as long as each element will
eventually appear in the stream. In particular, your flatten
procedure does not have to be ‘fair’ about how it orders the elements
from streams.

(define (flatten streamostreams)

 (interleave __

 __))

Part B: In 15 words or fewer, please state how the assumption of
normal order evaluation made this procedure simpler. In other words,
what could you not have done if you were using applicative order?

Name: _________________________ Login:________________________

Page 6 of 8

Question 4: Amb From Above

We claim that ‘sqrt’ can be written using only the non-deterministic
language constructs (amb and require) and some of the following
arithmetic primitives: +, -, *, =, <, >, abs.

Please define a procedure ‘amb-sqrt’ that takes in a number (to take
the square root of) and a tolerance. The idea is that your sqrt
procedure should return a number that is within the real square root
plus/minus the tolerance.

For example:
(amb-sqrt 9 0.1) should return a number between 2.9 and 3.0.

The only restrictions are that you must use amb and you are not
allowed to use any mathematical functions other than those listed
above. You may use helpers if necessary. You should aim to make your
algorithm as simple and elegant as possible – we are not interested
in efficiency. This can be done in 3 lines.

You may make reference to this procedure:

(define (a-number-from x step)
 (amb x (a-number-from (+ x step) step)))

Please comment your code.

(define (amb-sqrt val tol)

Name: _________________________ Login:________________________

Page 7 of 8

Question 5: AMB From Below

Kurt loves adding special forms to evaluators – even when they are
unnecessary or redundant. Please indulge him by adding ‘require’ as a
special form to one of the non-deterministic evaluators.

You may assume that we have modified the evaluator to check for the
require special form, and, if found, to call a procedure named
‘ambeval-require’. The return value of a successful require should be
the literal ‘ok’.

Part A: Which evaluator will you use? The one in the book, or the one
used in lecture? (We prefer that you use the one from lecture, but
feel free to use whichever one you are most comfortable with.) Please
circle one:

 The Book’s The one in Lecture

Part B: Indicate all of the changes necessary to implement require as
a regular, non-derived special form. [Don’t forget that the test
clause may contain an amb itself!]

Please comment your code!

(define (ambeval-require exp env succeed fail)

Name: _________________________ Login:________________________

Page 8 of 8

Question 6: Logic Programming

We’re going to build on the representation of number in the logic
language by adding a few new ‘procedures’. In summary, numbers can be
represented as unary lists as follows:
 0 = () 1 = (1) 2 = (1 1) 3 = (1 1 1) 4 = (1 1 1 1) etc.

Part A: Write rules for the relation named ‘count’ that, in essence,
can deduce the length of a given object. The first coordinate to
count can be any list (including the empty list) and the second
coordinate should be the numeral (as defined above) that corresponds
to the length of the first object.

For example,
(count (jeff erwin greg jane) ?x) should find ?x = (1 1 1 1)

Part B: Now, write rules for counting the number of times an element
exists in a given list.

For example,
(count-n jane (jane jane jane) ?x) will find ?x = (1 1 1)
(count-n ilya (ilya greg ilya) ?x) will find ?x = (1 1)

You may find the following rule helpful:

(assert! (rule (equal ?x ?x)))

