
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2003 Instructor: Kurt Meinz 2003-07-11

CS 61A Midterm #1

Personal Information

First and Last Name

 Your Login cs61a-__ __

Lab Section Time & Location you attend

Discussion Section Time & Location you attend

“All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61a who have not taken it yet.”

 (please sign)

Instructions
• Partial credit may be given for incomplete /

wrong answers, so please write down as much
of the solution as you can.

• Feel free to use any Scheme function that was

described in lecture or sections of the textbook
we have read without defining it yourself. Do
not use functions or constructs that we have
not yet covered. Unless specifically
prohibited, you are allowed to use helper
functions on any problem.

• Please use “true” instead of #t , and “false”

instead of #f. We have found that handwritten
#t and #f unfortunately look too much alike.

• Please write legibly! If we can’t read it, we

won’t grade it!

Grading Results

Question
Max.
Points

Points
Earned

1 6

2 7

3 6

4 7

5 7

6 7

Total 40

Name: __________________________ Login: ____________________

Page 2 of 9

Question 1: Recursion versus Iteration [5 Points]

Consider the function (remove index lst) that returns a new list with the index’th
element (counting from 1) removed from lst as follows:

>(remove 1 ‘(a b c)) (b c)
>(remove 4 ‘(a b c d)) (a b c)

You may assume that remove will always be called with index between 1 and the
size of the non-empty argument list, inclusive.

Part a:

Please write remove so it evolves a recursive process:

(define (remove index lst)

Part b:

Now, please write remove so it evolves an iterative process:

(define (remove index lst)

Name: _________________________ Login:________________________

Page 3 of 9

Question 2: Higher-Order Functions [4 Points]

Please define a procedure called ‘make-keeper’ that takes a unary predicate
function as an argument and returns a procedure that, when invoked on a
sentence argument, will keep only those elements that satisfy the predicate. For
example:

((make-keeper even?) ‘(1 2 3 4 5 6)) (2 4 6)

You may assume that the input to make-keeper will always be a unary function and
that the input to the returned procedure will always be a sentence.

Part a:

Please write make-keeper using higher-order functions but no helpers:

(define (make-keeper func)

Part b:

Now, please re-write make-keeper without using higher-order functions or helpers
(lambda is OK):

(define (make-keeper func)

Name: _________________________ Login:________________________

Page 4 of 9

Question 3: Functions and Higher-Order Procedures [4 Points]

Please write a procedure named ‘find-func’ that works as follows:
O find-func takes three arguments: a set of functions, a domain, and a range, each
of which is represented as a list.
O find-func will return the one function in the argument list that describes the
relation between the given domain and range.
O In other words, find-func will return the one function in func-list that, when
applied to each element in the domain, yields the corresponding element in the
range.

>(find-func (list square double cube) ‘(1 2 3) ‘(2 4 6))
#[Closure for double]
>(find-func (list even? odd? word?) ‘(1 2 3) ‘(#f #t #f))
#[Closure for even?]

You may assume that exactly one function will be a perfect match, and you may
assume that each function will be valid over each element in the domain.

(define (find-func func-list domain range)

Name: _________________________ Login:________________________

Page 5 of 9

Question 4: Abstraction [4 Points]

Our list implementation has a few weaknesses; namely, common operations like
getting the last element of a list and finding the length of a list take linear time. We
would like you to provide a new ADT called ‘superlist’ that will have constant-time
length and last procedures.

This ADT will require you to write four operations:
O a ‘make-superlist’ constructor that takes a non-empty regular list as an argument
and returns a superlist.
O a ‘suplist-car’ procedure that takes a superlist and returns the first element in
constant time.
O a ‘suplist-length’ procedure that takes a superlist and returns the length (# of
elements) of the superlist in constant time.
O a ‘suplist-last’ procedure that takes a superlist and returns the last element of
the superlist in constant time.

(make-superlist ‘(1 2 3 4)) [Whatever]
(suplist-car (superlist ‘(1 2 3 4))) 1
(suplist-length (superlist ‘(1 2 3 4 5 6 7 8))) 8
(suplist-last (superlist ‘(1 2 x))) x

Hints: 1. When you construct a superlist, you’ll want to create a data structure that
maintains some extra bookkeeping information (like the number of elements and
the last element) alongside the original list. 2. Constructing a superlist can take
linear time, and feel free to use the list operations ‘listlast’ and ‘length’ on the
argument list. (‘listlast’ is last for lists)

(define (superlist lst)

(define (suplist-car suplst)

(define (suplist-length suplst)

(define (suplist-last suplst)

Name: _________________________ Login:________________________

Page 6 of 9

Name: _________________________ Login:________________________

Page 7 of 9

Question 5: Winning Subsets [4 Points]

Please write a procedure named ‘adds-to-n?’ that takes a number n and a list of
numbers lst and returns true if and only if there is at least one winning subset of lst
that adds up to exactly n. For example:

(adds-to-n? 7 ‘(3 1 4 2)) #t ; 3 + 4 = 7
(adds-to-n? 7 ‘(1 8 1 4 5)) #t ; 1 + 1 + 5 = 7
(adds-to-n? 3 ‘(1 8 1 4 5)) #f

Hints:
O What should (adds-to-n? 0 <anylist>) return?
O What should (adds-to-n? <anynonzeronumber> ‘()) return?
O Think of the recursive calls as guesses: guess that the first element of the list of
numbers is in the subset, and then guess that it’s not; if either of these guesses are
true, then you know that a winning subset can be formed.

(define (adds-to-n? n lst)

 (cond __

 __

 (else (or (adds-to-n _______________________________

 (adds-to-n _______________________________)…)

Name: _________________________ Login:________________________

Page 8 of 9

Question 6: Find Dat Bug [5 Points]

Greg wanted to write a procedure that would split a non-empty word into a
sentence of consecutive, identical letters as follows:

(split ‘aaabbcdddaa) (aaa bb c ddd aa)
(split ‘abababab) (a b a b a b a b)
(split ‘aaa) (aaa)
(split ‘a) (a)

Here’s what he wrote:

1: (define (split wd)
2: (split-help (first wd) (bf wd)))
3:
4: (define (split-help cur wd)
5: (cond ((empty? wd) (se))
6: ((equal? cur (first wd))
7: (split-help (word cur (first wd)) (bf wd))))
8: (else
9: (se cur (split-help (first wd) (bf wd))))))

There are two bugs in Greg’s code. We would like you to find and fix them. Hint:
None of the bugs are syntax errors (mismatched parens, misspelled arguments, etc.)

Part a:

What does (split ‘abc) return? _____________

On which line number is the bug that causes this error? _______

What should the fixed line say?

 __

Part b:

There is another bug. On which line is this bug? ______________

What should the fixed line say?

Name: _________________________ Login:________________________

Page 9 of 9

 __

