
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2002 Instructor: Kurt Meinz 2002-08-09

CS 61A Midterm #3

Personal Information

First and Last Name

 Your Login cs61a-__ __ (legibly!)

The First Letter of Your Login (please circle) a b c d e f g h i j k l m n o p q r s t u v w x y z

The Second Letter of your login (please circle) a b c d e f g h i j k l m n o p q r s t u v w x y z

Lab Section Time, TA, & Location You Attend

Discussion Section Time, TA, & Location You Attend

“All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61a who have not taken it yet.”

 (please sign)

Instructions
• Partial credit may be given for incomplete /

wrong answers, so please write down as much
of the solution as you can.

• Feel free to use any Scheme function that was

described in lecture or sections of the textbook
we have read without defining it yourself. Do
not use functions or constructs that we have
not yet covered. Unless specifically
prohibited, you are allowed to use helper
functions on any problem.

• Please use “true” instead of #t , and “false”

instead of #f. We have found that handwritten
#t and #f unfortunately look too much alike.

• Please write legibly! If we can’t read it, we

won’t grade it!

Grading Results

Question
Max.
Points

Points
Earned

1 6

2 10

3 12

4 12

Total 40

Name: __________________________ Login: ____________________

Page 2 of 9

Question 1: Stream Warm-up [6 Points]

Please define a procedure ‘wave-maker’ that takes two arguments (a
lower and an upper bound) and returns an infinite stream that counts
from lower to upper, then upper to lower, then lower to upper, ad
infinitum.

E.g. (ss (wave-maker 1 4) 25)
 (1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1 1 2 3 4 4 3 2 1 2 …)

You may further assume that wave-maker will always be called with
lower < upper. Since this is a relatively easy question, your aim
should be elegance.

Name: _________________________ Login:________________________

Page 3 of 9

Question 2: Conc-urrrrrrrwin-cy [10 Points]

Consider the following:

(define jeffs-list ‘(1 1 1))

(define (inc-list-by-one! lst) ;; add 1 to all elements of lst
 (cond ((null? l) ‘okay)
 (else (set-car! lst (+ (car lst) 1))
 (inc-list-by-one! (cdr l)))))

(define (inc-list! lst n)
 (cond ((= n 0) ‘okay)
 (else (inc-list-by-one! lst)
 (inc-list! lst (- n 1)))))

(parallel-execute (lambda () (inc-list! jeffs-list 10)))
 (lambda () (inc-list! jeffs-list 10))))

Part A: Does inc-list! have concurrency issues? If so, give concise
and specific examples.

Part B: Kurt tries to correct inc-list! as follows:

(define (inc-list! lst n)
 (let ((my-mutex (make-mutex)))
 (my-mutex ‘acquire)
 (cond ((= n 0) ‘okay)
 (else (inc-list-by-one! lst)
 (inc-list! lst (- n 1))))
 (my-mutex ‘release)))

In 20 words or less, why does this not solve the problem?

Part C: Now re-write inc-list! so that it does not suffer from
concurrency issues. [You should use the mutex abstraction.]

Name: _________________________ Login:________________________

Page 4 of 9

Question 3: Mutable Structures [12 Points Total]

We would like you to implement a ‘filter!’ procedure that acts like
the usual filter but mutates its argument list.

Part A: Please define ‘filter!’ It should take a predicate function
and a list as arguments and mutate the list so that it contains only
the elements for which the predicate function is true. You may assume
that the list will be non-null and (importantly) that the predicate
function will always return true on the first element of any list
given to filter!. (Filter! itself may return any value you choose.)

Part B: Is it possible to implement filter! if we do not make any
assumptions about the predicate function or the input list? Briefly
explain why or why not. [Hint: we are looking for an insurmountable
difficulty.]

Name: _________________________ Login:________________________

Page 5 of 9

Question 3: Mutable Structures --- Continued ---

Part C: We want you to create a new abstract data type for mutable
lists such that it is possible to build a new filter! that will
operate all lists made from this new ADT and will work with any
predicate function. [You don’t have to write the new filter!, just
the new abstraction.]

You should provide implementations for ‘list’, ‘car’, ‘cdr’, ‘set-
car!’, ‘set-cdr!’ and ‘null?’. [Hint: for the ‘list’ constructor, use
the dotted-tail notation.]

(define (list . elements)

Name: _________________________ Login:________________________

Page 6 of 9

Question 4: MCEs Ouch! [12 Points]

Kurt would like to add the ‘map’ procedure as a primitive to the MCE,
but doesn’t want to do it himself. So he asks all the TAs to do it,
and they each try to do it in a different way. For each attempt,
please say whether it is correct or not. If not, please explain, as
concisely as possible, why not. Changes or additions to the existing
code have been boxed.

a. Ilya’s Attempt: The following clause is added to the cond in the

mc-eval function. (This clause appears before the application?
clause.)

((map? exp) (map (mc-eval (cadr exp) env) ;; map added here
 (mc-eval (caddr exp) env))

Where map? is defined as (define (map? exp) (tagged-list? exp
‘map)), and map is the underlying Scheme higher-order function.

I think this will or will not (circle one) work because

b. Jane’s Attempt: The following addition is made to the list of

primitives:

(define primitive-procedures
 (list ‘car car)

 (list ‘map ‘(procedure (func lst) ;; map added here
 ((if (null? lst)
 ‘()
 (cons (func (car lst))
 (map func (cdr lst)))))
 the-global-environment))

 . . .
)

I think this will or will not (circle one) work because

Name: _________________________ Login:________________________

Page 7 of 9

Question 4: MCEs Ouch! Continued

c. Jeff’s Attempt: Modify the setup-environment function as follows:

(define (setup-environment)
 (let ((initial-env
 (extend-environment (primitive-procedure-names)
 (primitive-procedure-objects)
 the-empty-environment)))
 (define-variable! 'true true initial-env)
 (define-variable! 'false false initial-env)

 (define-variable! 'map '(procedure ;; map added here
 (func lst)
 ((if (null? lst)
 '()
 (cons (func (car lst))
 (map func (cdr lst)))))
 the-global-environment)
 initial-env)

 initial-env))

I think this will or will not (circle one) work because

d. Greg’s Attempt: Modify the setup-environment function in a
different way:

(define (setup-environment)
 (let ((initial-env
 (extend-environment (primitive-procedure-names)
 (primitive-procedure-objects)
 the-empty-environment)))
 . . .

 (define-variable! 'map (make-procedure ;; map added here
 ‘(func lst)
 ‘((if (null? lst)
 '()
 (cons (func (car lst))
 (map func (cdr lst)))))
 initial-env)
 initial-env)

 initial-env)

Name: _________________________ Login:________________________

Page 8 of 9

I think this will or will not (circle one) work because

Name: _________________________ Login:________________________

Page 9 of 9

Question 4: MCEs Ouch! Continued

e. Greg’s Second Attempt: The mce function is modified as follows:

(define (mce)
 (set! the-global-environment (setup-environment))

 (define-variable! 'map ;; map added here
 (map-procedure)
 the-global-environment)

 (driver-loop))

Where the map-procedure function is defined as:

(define (map-procedure)
 (make-procedure '(func lst)
 '((if (null? lst)
 '()
 (cons (func (car lst))
 (map func (cdr lst)))))
 the-global-environment))

I think this will or will not (circle one) work because

f. Erwin’s Attempt: The extend-environment function is modified:

(define (extend-environment vars vals base-env)
 (if (= (length vars) (length vals))

 (let ((new-env (cons (make-frame vars vals) base-env)))
 (define-variable! ‘map
 (list ‘procedure
 ‘(func lst)
 ‘((if (null? lst)
 '()
 (cons (func (car lst))
 (map func (cdr lst))))
 the-global-environment)
 new-env)
 new-env)

 (if (< (length vars) (length vals))
 (error "Too many arguments supplied" vars vals)
 (error "Too few arguments supplied" vars vals))))

I think this will or will not (circle one) work because

