
CS 61A Programming Project #4: A Logo Interpreter
Summer 2005

In Chapter 4 we study a Scheme interpreter written in Scheme, the metacircular evaluator. In this project we modify that
evaluator to turn it into an interpreter for a different programming language. This project is valuable for several reasons:
First, it will make you more familiar with the structure of the metacircular evaluator because you'll have to understand which
procedures to modify in order to change some aspect of its operation. Second, working with another language may help
overcome some of the confusion students often have about talking to two different versions of Scheme at once. In this
project, it'll be quite obvious when you're talking to Scheme and when you're talking to Logo. Third, this project will encourage
you to think about the design of a programming language. Why did Scheme's designers and Logo's designers make different
choices?

This is approximately a two-week project. As in the adventure game project, you'll have a group of two people, person A and
person B. You will do most of the work separately and then meet together for the final steps. After the first part you should
be able to enter instructions using primitive procedures with constant arguments. In the second part you will add variables
and user-defined procedures.

Before you begin working on the project, you have to know something about the Logo programming language. The Logo-in-
Scheme interpreter is structured like the metacircular evaluator, so to run it you say

nova ~ > stk
STk> (load "~cs61a/lib/obj.scm")
STk> (load "~cs61a/lib/logo.scm")
STk> (load "~cs61a/lib/logo-meta.scm")
STk> (initialize-logo)
?

and the question-mark prompt means that you're talking to Logo. (The versions in the library are incomplete; you'll have to do
the project before you can really run it!) Errors in your Logo instructions can cause the interpreter to get a Scheme error
message and return you to the Scheme prompt. If this happens, type (driver-loop) to return to Logo. You should only
use (initialize-logo) once, or else you will lose any Logo variables or procedures you've defined.

>>> NOTE TO MACINTOSH GAMBIT USERS: Before running this project you must tell Gambit to read a line, not a Scheme
expression, in response to the ENTER key. To do this, look in the Edit menu and select Window Styles. Near the bottom
right corner of the window that will appear are three check boxes; the middle one is labelled "Enter = Send Line". Check that
box (so that you see an X in the box), then click OK.

If you want to experiment with a *real* Logo interpreter, to see how it's supposed to work, just say

nova ~ > logo

to the shell. You exit Logo by saying bye.

General Logo

Logo is essentially a dialect of Lisp. That makes it a good choice for this project, both because it'll be easy to teach you the
language and because the modifications to the evaluator are not as severe as they would be for an unrelated language.
However, Logo was designed for educational use, particularly with younger children. Many design decisions in Logo are
meant to make the language more comfortable for a beginner. For example, most Logo procedures are invoked in prefix
form (first the procedure name, then the arguments) as in Lisp, but the common arithmetic operators are also provided in the
customary infix form:

? print sum 2 3
5
? print 2+3
5

(Note: As you work with the Logo-in-Scheme interpreter, you probably won't be impressed by its comfort. That's because our
interpreter has a lot of rough edges. The most important is in its error handling. A real Logo interpreter would not dump you
into Scheme with a cryptic message whenever you make a spelling mistake! Bear in mind that this is only a partial
implementation. Another rough edge is that there is no precedence among infix operators, unlike real Logo, in which (as in
most languages) multiplication is done before addition. In this interpreter, infix operators are carried out from left to right, so
3+4*5 is 7*5 or 35, not 3+20.

Even in the trivial example above, adding two numbers, you can see several differences between Scheme and Logo. The
most profound, in terms of the structure of the interpreter, is that expressions and their subexpressions are not enclosed in
parentheses. (That is, each expression is not a list by itself.) In the metacircular evaluator, eval is given one complete
expression as an argument. In the Logo interpreter, part of eval's job will be to figure out where each expression begins and
ends, by knowing how many arguments are needed by each procedure, for example:

? print sentence last [UPS driver Jeff] word "was "here

Logo must understand that word requires two arguments (the quoted words that follow it) while last requires one, and that
the values returned by word and last are the two required arguments to sentence. (Also, print requires one
argument.)

Another important difference between Scheme and Logo is that in the latter you must explicitly say PRINT to print something:

? print 2+40
42
? 2+40
You don't say what to do with 42

An expression that produces an unused value causes an error message. Unlike Scheme, in which every procedure returns a
value, Logo makes a distinction between operations that return a value and commands that are used for effect. print is a
command; sum is an operation. This distinction means that Logo has less of a commitment to functional programming style,
and it makes the interpreter a little more complicated because we have to keep track of whether we have a value or not. But
in some ways it's easier for the user; we don't keep saying things like "set! returns some value or other, but the value is
unspecified and you're not supposed to rely on it in your programs." Also, Logo users don't see the annoying extra values
that Scheme programs sometimes print because some procedure that was called for effect happens to return () or #f as a
value that gets printed.

One implication for the interpreter is that instead of Scheme's read-eval-print loop

(define (driver-loop)
 (display "> ")
 (print (eval (read) the-global-environment))
 (driver-loop))

Logo just has a read-eval loop without the print.

In Scheme something like 2+3 would be considered a single symbol, not a request to add two numbers. The plus sign does
not have special status as a delimiter of expressions; only spaces and parentheses separate expressions. Logo is more like
most other programming languages in that several characters are always considered as one-character symbols even if not
surrounded by spaces. These include arithmetic operators, relational operators, and parentheses:

+ - * / = < > ()

Remember that in Scheme, parentheses are used to indicate list structure and are not actually part of the internal
representation of the structure. (In other words, there are no parentheses visible in the box-and-pointer diagram for a list.) In
this Logo interpreter, parentheses are special symbols, just like a plus sign, and are part of the internal representation of an
instruction line. Square brackets, however, play a role somewhat like that of parentheses in Scheme, delimiting lists and
sublists. One difference is that a list in square brackets is automatically quoted, so [...] in Logo is like '(...) in Scheme:

? print [hi there]

Logo uses the double quotation mark (") to quote a word, so "foo in Logo is like 'foo in Scheme. Don't get confused --
these quotation marks are not used in pairs (i.e. two at a time), as in Scheme string constants ("error message"); a single one
is used before a word to be quoted. (Note: This will not work in Windows STk)

? print "hello

Just as the Scheme procedure READ reads an expression from the keyboard and deals with parentheses, spaces, and
quotation marks, you are given a LOGO-READ procedure that handles the special punctuation in Logo lines.
One important difference is that a Scheme expression is delimited by parentheses and can be several lines long; LOGO-
READ reads a single line and turns it into a list. If you want to play with it from Scheme, first get out of Logo (if you're in it),
then type the invocation (logo-read) and the Logo stuff you want read all on the same line:

STk> (logo-read)print 2+(3*4)
(print 2 + (3 * 4))
STk> (logo-read)print se "this [is a [deep] list]
(print se "this (is a (deep) list))

Remember that the results printed in these examples are Scheme's print representation for Logo data structures! Don't think,
for example, "logo-read turns square brackets into parentheses." What really happens is that logo-read turns square
brackets into box-and-pointer lists, and Scheme's print procedure displays that structure using parentheses. Note: In the first
of these two examples, the inner parentheses in the returned value
are *not* the boundaries of a sublist! They are parenthesis symbols.

What logo-read returned was a sentence with eight words:
print, 2, +, (, 3, *, 4, and).

This makes it a little tricky to be sure what you're seeing.

If you want to include one of Logo's special characters in a Logo word, you can use backslash before it:

?print "a\+b
a+b

Also, as a special case, a special character other than square bracket is considered automatically backslashed if it's
immediately after a quotation mark:

?print "+
+

All of this is handled by logo-read, a fairly complicated procedure. You are not required to write this, or even to understand
its algorithm, but you'll need to understand the results in order to work on eval.

Procedures and Variables

Here is a Scheme procedure and an example of defining and using the corresponding Logo procedure:

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (- n 1)))))

? to factorial :n
-> if :n=0 [output 1]
-> output :n * factorial :n-1
-> end
? print factorial 5
120

There are several noteworthy points here. First, a procedure definition takes several lines. The procedure name and formal
parameters are part of the first instruction line, headed by the to special form. (This is the only special form in Logo!) The
procedure body is entered on lines in response to a special -> prompt. These instruction lines are not evaluated, as they
would be if entered at a ? prompt, but are stored as part of the procedure text. The special keyword end on a line by itself
indicates the end of the body.

Unlike Scheme, Logo does not have first-class procedures. Among other things, this means that a procedure name is not
just a variable name that happens to be bound to a procedure. Rather, procedures and variables are looked up in separate
data structures, so that there can be a procedure and a variable with the same name. (This is sometimes handy for names
like list and word, which are primitive procedures but are also convenient formal parameter names. In Scheme we resort
to things like l or lst to avoid losing access to the list procedure.) Variable names are part of a Scheme-like environment
structure (but with dynamic rather than lexical scope); procedure names are always globally accessible. To distinguish a
procedure invocation from a variable reference, the rule is that a word foo without punctuation is an invocation of the
procedure named foo, while the same word with a colon in front (:foo) is a request for the value of the variable with that
name.

A Logo procedure can be either a command (done for effect) or an operation (returning a value). In this example we are
writing an operation, and we have to say so by using the output command to specify the return value.
Once an output instruction has been carried out, the procedure is finished; in this example, if the if in the first line of the
body outputs 1, the second line of the body is not evaluated.

The file ~cs61a/lib/test.logo contains definitions of several Logo procedures that you can examine and test to
become more familiar with the language. You can load these definitions into your Logo interpreter by copying it to your
directory and then using Logo's load command:

? load "test.logo

(Notice that if you want to use a filename including slashes you have to backslash them to make them part of the quoted
word.)

Unlike Scheme's if, Logo's if is not a special form. You probably remember a homework exercise that proved that it had to
be, but instead Logo takes advantage of the fact that square brackets quote the list that they delimit. The first argument to if
must be the word true or the word false. (Predicate functions in Logo always return one of these two words. Logo does
not accept any non-false value as true; anything other than these two specific words is an error.) The second argument is a
list containing instructions that should be run conditionally. Because the list is enclosed in square brackets, the instructions
are not evaluated before if is invoked. In general, anything that shouldn't be evaluated in Logo must be indicated by explicit
quotation, with "xxx or [xxx]. The only special form is to, in which the procedure name and formal parameter names are
not evaluated.

The procedures first, butfirst, etc. that we've been using to manipulate words and sentences were invented in Logo.
The Scheme versions don't quite work as smoothly as the real Logo versions, because Scheme has four distinct data types
for numbers, symbols, strings, and characters; all of these are a single type (words) in Logo. If you evaluate (bf 104) in
Scheme you get "04", not just 04, because the result has to be a Scheme string in order not to lose the initial zero.

Our Logo interpreter does manage to handle this:

? print bf 104
04
? print bf bf 104
4

The interpreter represents 04 internally as a Scheme symbol, not as a number. We can nevertheless do arithmetic on it

? print 7+bf 104
11

because all the Logo arithmetic functions have been written to convert symbols-full-of-digits into regular numbers before
invoking the actual Scheme arithmetic procedure. (This is the job of make-logo-arith.)

Actual Project

You will need these files:

~cs61a/lib/obj.scm object-oriented tools
~cs61a/lib/logo.scm various stuff Logo needs
~cs61a/lib/logo-meta.scm modified metacircular evaluator

These files (or your modified versions of the last two) must be loaded into Scheme in this order; each one depends on the
one before it. Much of the work has already been done for you. (The names logo-eval and logo-apply are used so as
not to conflict with Scheme's built-in eval and apply functions.)

For reference, ~cs61a/lib/mceval.scm is the metacircular evaluator without the modifications for Logo.

Start by examining logo-eval. It has two parts: eval-prefix, which is comparable to the version of eval in the text,
handles expressions with prefix operations similar to Scheme's syntax. The result of evaluating such an expression is then
given as an argument to handle-infix, which checks for a possible infix operator following the expression. For now, we'll
ignore handle-infix, which you'll write later in the project, and concentrate on eval-prefix. Compare it with the
version of eval in the text. The Scheme version has a cond clause for each of several special forms. (And the real Scheme
has even more special forms than the version in the book.) Logo has only one special form, used for procedure definition, but
to make up for it, eval-prefix has a lot of complexity concerning parentheses. An ordinary application (handled by the
else clause) is somewhat more complicated than in Scheme because we must figure out the number of arguments required
before we can collect the arguments. Finally, an important subtle point is that the Logo version uses let in several places to
enforce a left-to-right order of evaluation. In Scheme the order of evaluation is unspecified, but in Logo we don't know where
the second argument expression starts, for example, until we've finished collecting and evaluating the first argument
expression.

PART I.

There are four problems: one per person, two together. The ones done separately must be completed before you'll be able to
run the Logo interpreter at all. It’s important that you understand each other’s parts because you will be building off them in
the future.

PERSON A:

A1. As explained above, eval can't be given a single complete expression as its argument, because expressions need not
be delimited by parentheses and so it's hard to tell where an expression ends. Instead, eval must read through the line, one
element at a time, to figure out how to group things. logo-read, you’ll recall, gives us a Logo instruction line in the form of a
list. Each element of the list is a "token" (a symbol, a number, a punctuation character, etc.) and eval reads them one by
one. You might imagine that eval would accept this list as its argument and would get to the next token by cdring down,
like this:

(define (eval-prefix line-list env)
 ...
 (let ((token (car line-list)))
 ...
 (set! line-list (cdr line-list))
 ...)
 ...)

but in fact this won't quite work because of the recursive invocation of eval-prefix to evaluate subexpressions.

Consider a line like:

print sum (product 2 3) 4

One invocation of eval-prefix would be given the list

(sum (product 2 3) 4)

as argument. It would cheerfully cdr down its local line-list variable, until it got to the word "product"; at that point,
another invocation of eval-prefix would be given the ENTIRE REMAINING LIST as its argument (since we don't know in
advance how much of that list is part of the subexpression).

When the inner eval-prefix finishes, the outer one still needs to read another argument expression, but it has no way of
knowing how much of the list was read by the inner one.

Our solution is to invent a line-object data type. This object will be used as the argument to logo-eval, which in turn
uses it as argument to eval-prefix; the line-object will remember, in its local state, how much of the line has been
read. The very same line-object will be the argument to the inner eval-prefix. When that finishes, the line object
(still available to the outer invocation of eval-prefix) has already dispensed some tokens and knows which tokens remain
to be processed.

Your job is to define the line-object class. It has one instantiation variable, a list containing the text of a line. Objects in
the class should accept these messages:

(ask line-obj 'empty?) should return #T if there is nothing
left to read in the line-list, #F if
there are still tokens unread.

(ask line-obj 'next) should return the next token waiting
to be read in the line, and remove
that token from the list.

(ask line-obj 'put-back token) should stick the given token at the
front of the line-list, so that the
next NEXT message will return it.
This is used when EVAL has to read
past the end of an expression to be
sure that it really is the end, but
then wants to un-read the extra
token.

There are several places in logo-meta.scm that send these messages to the objects you'll create, so you can see
examples of their use. You'll get ask from obj.scm and should use its syntax conventions.

Also write a short procedure (make-line-obj text) that creates and returns a line object instance with the given text.
This procedure is invoked in several places within the Logo interpreter.

**** When you've finished, you must combine your work with that of person B. When you've
**** done that, you should be able to run the interpreter and carry out instructions involving only primitive
**** procedures and constant (quoted or self-evaluating) data. (You aren't yet ready for variables, conditionals,
**** or defining procedures, and you can only use prefix arithmetic operators.)

(There are some suggestions for things to test at the end of person B's problems for this week.)

PERSON B:

B1. A Logo line can contain more than one instruction:

? print "a print "b
a
b
?

This capability is important when an instruction line is given as an argument to something else:

? to repeat :num :instr
-> if :num=0 [stop]
-> run :instr
-> repeat :num-1 :instr
-> end
? repeat 3 [print "hi print "bye]
hi
bye
hi
bye
hi
bye
?

On the other hand, an instruction line used as argument to something might not contain any complete instructions at all, but
rather an expression that provides a value to a larger computation:

? print ifelse 2=3 [5*6] [8*9]
72
?

In this example, when the ifelse procedure is invoked, it will turn the list [8*9] into an instruction line for evaluation. (Note:
This example is here to explain to you why you need to handle an "instruction line" without a complete instruction. You can't
actually type this into your Logo interpreter yet; you haven't invented infix notation or predicates.)

logo-eval’s job is to evaluate one instruction or expression and return its value. (An instruction, in which a command is
applied to arguments, has no return value. In our interpreter this is indicated by logo-eval returning the symbol =NO-
VALUE= instead of a value.) We need another procedure that evaluates an entire line, possibly containing several
instructions, by repeatedly invoking logo-eval until either the line is empty (in which case =NO-VALUE= should be returned) or
logo-eval returns a value (i.e., a value other than =NO-VALUE=), in which case that value should be returned. You will
write this procedure, called eval-line, like this:

(define (eval-line line-obj env)
 ...)

You'll find several invocations of eval-line in the interpreter, most importantly in driver-loop where each line you type after
a ? prompt is evaluated.

**** When you've finished, you must combine your work with that of person A. When you've done that, you
**** should be able to run the interpreter and carry out instructions involving only primitive procedures and
**** constant (quoted or self-evaluating) data. (You aren't yet ready for variables, conditionals, or defining
**** procedures, and you can only use prefix arithmetic operators.)

TESTING: PART I

Try these examples and others:

? print 3
3
? print sum product 3 4 8
20
? print [this is [a nested] list]
this is [a nested] list
? print 3 print 4
3
4
? print equalp 4 6
false
?

COMMON EXERCISES: PART I

2. Ordinarily, each Logo procedure accepts a certain fixed number of arguments. There are two exceptions to this rule. First,
some primitive procedures (but only primitives) can accept variable numbers of arguments, just as in Scheme. In Logo, such
a procedure has a "default" number of arguments -- this is the number that logo-eval will ordinarily look for. If you want to
use a different number of arguments, you must enclose the entire expression in parentheses as you would in Scheme:

? print sum 2 3
5
? print sum 2 3 4 ; this is an error
5
You don't say what to do with 4
? print (sum 2 3 4)
9
?

Second, certain primitive procedures need access to the current environment in order to do their job. For example, make,
which is Logo's equivalent to set!, takes two arguments, a variable name and a new value, but the procedure that
implements it requires a third argument, the current environment, since the job is done by modifying that environment. In the
Scheme metacircular evaluator, this problem is less noticeable because set! is a special form anyway -- its first argument
isn't evaluated -- and so it is handled directly by eval itself. In Logo we have no special forms except for to, so make is an
ordinary procedure handled by logo-apply, but we still need to indicate that it needs the environment as an extra "hidden"
argument.

In this interpreter a procedure is represented as a four-element list:

(name type-flag arg-count text)

• name is the procedure's name. (Unlike Scheme's first-class procedures which can be created by lambda without a
name, every Logo procedure must have a name in order to exist at all.)

• type-flag is a symbol, either primitive or compound. The former means that the procedure is written in
Scheme (or is a Scheme primitive); the latter means that the procedure was defined in Logo, using to.

• arg-count is the number of arguments that the procedure expects. For most procedures, this is a straightforward
nonnegative integer. In this part of the project, we are going to deal with the exceptions discussed above. For a
procedure that accepts variable numbers of arguments, ARG-COUNT will be a negative integer, the negative of the
default number of arguments. For a procedure that requires the environment as an extra argument, ARG-COUNT
will be a list whose only element is the number of visible arguments, before the environment is added. (No
procedure is in both categories.)

Examples:

(list 'type 'primitive 1 logo-type) ;ordinary case
(list 'word 'primitive -2 word) ;variable # of args
(list 'make 'primitive '(2) make) ;2 visible args plus env

These lists are generated by the add-prim procedure that you can see in logo-meta.scm along with entries for
all the existing primitives.

• text is either a Scheme procedure, for a primitive, or a list whose first element is a list of formal parameters and
whose remaining elements are instruction lines making up the body of the procedure, for a user-defined Logo
procedure.

The actual collection of argument values, corresponding to list-of-values in the metacircular evaluator, is called
collect-n-args in the Logo interpreter. It has an extra argument, n, which is the number of arguments to be collected
from the line-object. If that argument is negative, then collect-n-args will keep evaluating argument expressions
until it sees a right parenthesis. (Remember that we allow a variable number of arguments only if the expression is in
parentheses.)

Your job is to modify the invocation of collect-n-args to handle both of the special cases described here.

• If the arg-count in the procedure is a list, call collect-n-args with its car as the number, and cons the
current environment onto the front of the resulting argument list.

• If the arg-count is negative, you should use its absolute value as the number unless this invocation is inside
parentheses. (There is a local variable paren-flag that will be #T in this situation, #F otherwise.)
The function abs takes the absolute value of its input argument

[Important Note: You will be modifying the invocation of collect-n-args. You do not have to modify the definition of
collect-n-args at all] Once you've done this, modify the primitive table entries for sum, product, word, sentence, and list
so that they can accept variable numbers of arguments.

**** Then test your work:

? ifelse equalp 2 3 [print "yes] [print "no]
? ifelse equalp 3 3 [print "yes] [print "no]
? print (sum 4 5 6 7 8)
? print (word "a "b "c)
? print (sum 4 5 product 6 7 8)

3. We are going to invent variables. Most of the work has already been done, because the environment structure is exactly
like that of the Scheme metacircular evaluator. There are two things left for you to handle: First, eval-prefix uses data
abstraction procedures variable? And variable-name to detect and process a variable reference. In Scheme, any
symbol is a variable reference, since procedure names are variables too. In Logo, a variable reference is a symbol whose
first character is a colon (:) and the actual variable name is all but the first character of that symbol. First, write these
aforementioned procedures.

Second, Scheme provides two different special forms, define and set!, for creating a new variable binding and for
changing an existing binding. In Logo there is one procedure, make, that serves both purposes. If there is already a binding
for the given name in the current environment, then make acts like set!. If not, then make creates a new binding in the
global environment. (Note, this is not necessarily the current frame.) Make the make procedure in logo.scm call the right
logo-meta.scm procedures to accomplish this, modifying those procedures if necessary.

**** Test your work:

? make "foo 27
? print :foo
27
?

(Why the quotation mark? Remember, make isn't a special form. The value of its first actual argument expression has to be
the name we want to bind.)

Note: You can't fully test this yet, because you won't know if it does the right thing for local variables until we can define and
invoke procedures. For now, just test that it works for global variables.

PART II.

There are five problems: one per person and three common ones. When you're done with them, the Logo interpreter will be
complete. The common problems are hard, so don't wait until the last minute to merge your work!

PERSON A:

A4. Infix arithmetic. logo-eval calls eval-prefix to find a Scheme-style expression and evaluate it. Then it calls

(handle-infix value line-obj env)

We have provided a "stub" version of handle-infix that doesn't actually handle infix, but merely returns the value you give
it. Your task is to write a version that really works. The situation is this. We are dealing
with the instruction line

? print 3 + 2

We are inside the logo-eval that's preparing to invoke print. It knows that print requires one argument, so it
recursively called logo-eval. (Actually logo-eval calls eval-prefix, which calls collect-n-args, which calls
logo-eval.) The inner logo-eval called eval-prefix, which found the expression 3, whose value is 3. But the
argument to print isn't really just 3; it's 3 + 2.

The job of handle-infix is to notice that the next token on the line is an infix operator (one of + - * / = < >), find the
corresponding procedure, and apply it to the already-found value (in this case, 3) and the value of the expression after the
infix operator (in this case, 2). Remember that this following expression need not be a single token; you have to evaluate it
using eval-prefix. If the next token isn't an infix operator, you must put it back into the line and just return the already-
found value. Remember that there may be another infix operator after you deal with the first one, as in the instruction

? print 3 * 4 + 5
17

We've provided a procedure called de-infix that takes an infix operator as argument and returns the name of the
corresponding Logo primitive procedure.

To further your understanding of this problem, answer the following question: What difference would it make if your handle-
infix invoked logo-eval instead of eval-prefix as suggested above? Think of an example instruction for which this
change would give a different result.

By the way, don't forget that we are not asking you to handle the precedence of multiplication over addition correctly. Your
handle-infix will do all infix operations from left to right, unless parentheses are used. (You
don't have to deal with parentheses in handle-infix. logo-eval already knows about them.)

**** Now skip over person B's problem to get to the common problems 5, 6, and 7. You must merge
**** the results of A4 and B4 before you can solve the common problems.

PERSON B:

B4. Time to define procedures! You are going to write eval-definition, a procedure that accepts a line-obj as
argument. (The corresponding feature in the metacircular evaluator also needs the environment as an argument, but recall
that in Logo procedures are not part of the environment; they go in a separate, global list.) The line-obj has just given out
the token to, and is ready to provide the procedure name and formal arameters.

Your job is to read those, then enter into an interactive loop in which you read Logo lines and store them in a list, the
procedure body. You keep doing this until you see a line that contains only the word end. You put together a procedure
representation in the form

(list name 'compound arg-count (cons formals body))

and you prepend this to the procedure list in the (Scheme) variable the-procedures.

• The arg-count is the number of formal parameters you found.

• formals is a list of the formal parameters, without the colons.

• body is the list of instruction lines, not including the end line.

Do not turn the lines into line-objects; that'll happen when the procedure is invoked.

To print the prompt, say (prompt "-> ").

It's going to be a little hard to test the results of your work until you can invoke user-defined procedures, which requires one
more step. Meanwhile you could leave Logo, and ask Scheme to look at the first element of the-procedures to see if
you've done it right.

**** You must merge the results of A4 and B4 before you can solve the common problems 5, 6, and 7.

COMMON EXERCISES: PART II

5. Evaluating procedure bodies. In the metacircular evaluator, apply sets up an environment and uses eval-sequence to
evaluate each expression in the procedure body. The Logo interpreter does the same, except that the job of eval-
sequence is different. Its argument is a list of instruction lists. Each of those lists must be turned into a line-object
before it can be evaluated. Also, we must take into account the fact that instructions are different from expressions; the
instruction lines in the procedure body should generally return =NO-VALUE= when evaluated. If not, eval-sequence must
signal the error "You don't say what to do with" the value.

The exceptions are the two primitive commands that can end a procedure invocation early, stop (for commands) and
output (for operations). If stop is invoked, it will return the symbol =STOP=; if output is invoked, it will return a pair
whose car is =OUTPUT= and whose cdr is the desired return value:

(add-prim 'stop 0 (lambda () '=stop=))
(add-prim 'output 1 (lambda (x) (cons '=output= x)))

If eval-sequence evaluates a stop, it should immediately return =NO-VALUE=. If it gets an output, it should
immediately return the value provided (the cdr of that pair).

6. Dynamic scope. In the metacircular evaluator, mc-apply handles compound (user-defined) procedures by setting up an
environment and evaluating the procedure body (using eval-sequence) in that environment.
logo-apply must do the same thing, but instead of Scheme's lexical scope, in which the new environment extends the one
in which the procedure was created, it must follow Logo's dynamic scope, in which the new environment extends the current
environment.

The version of logo-apply we give you doesn't handle compound procedure calls. Modify it as needed, along with any
other changes required to go along with this one. (Hint: Start by looking at the mc-apply version.)

**** Once you've solved these problems, you should be able to define and invoke procedures:

? make "x 3
? to scope :x
> helper 5
> end
? to helper :y
> print (sentence :x :y)
> end
? scope 4

7. Local. Add local to your Logo interpreter. This procedure creates local variables. That does not say “local state”
variables, the kind that persist across procedure calls; that would be much, much harder in a dynamically scoped language.
(Why?) This procedure takes either a single word, or a list of words. A variable is created in the current environment for each
of these words, with that word as its name. Unlike make, a variable made by local is not immediately assigned a value. The
value must subsequently be assigned with make. It is an error to use a variable made by local before it has a value.

? local [fluffy buffy love] ;; creates three variables,
? print :fluffy ;; but they are uninitialized
*** Error: fluffy has no value
? make "fluffy "pink
? print :fluffy
pink
? print :buffy
25
*** Error: buffy has no value
? make "love "green
? print :love
green

Here is a more useful example of local in action:

? to factorial :n
-> local "result make "result 1
-> fact.help
-> output :result
-> end
factorial defined
? to fact.help
-> if equalp :n 0 [stop]
-> make "result product :result :n
-> make "n difference :n 1
-> fact.help
-> end
fact.help defined
? print factorial 6
720
? print :result
*** Error: result has no value ;; result was never a global variable

The tricky part will be to figure out what to make the initial value of the variable, the value it is given immediately after the call
to local, before it is set with make. It must be a special kind of value that denotes the lack of any real value. Importantly, there
should not be a way of creating this value from the Logo side. That is, it must not be possible to do the following:

? make "x <some Logo expression>
? print :x
*** Error: x has no value

[Hint: thing eq?]

**** The interpreter is now complete. Congratulations!

Miscellaneous

• We need to be able to print the results of Logo computations. Logo provides three primitive procedures for this
purpose:

? print [a [b c] d] ; don't show outermost brackets
a [b c] d
? show [a [b c] d] ; do show outermost brackets
[a [b c] d]
? type [a [b c] d] ; don't start new line after printing
a [b c] d?

Normally, you are asked to write these functions, but we have provided them for you.

• The Logo primitives if and ifelse require as argument the word true or the word false. Of course our
implementation of the Logo predicates will use Scheme predicates, which return #t and #f instead.

Thus, we’d like a higher-order function logo-pred whose argument is a Scheme predicate and whose return value
is a Logo predicate, i.e., a function that returns true instead of #t and false instead of #f. This higher-order
function is used in the table of primitives like this:

(add-prim 'emptyp 1 (logo-pred empty?))

That is, the Scheme predicate empty? becomes the Logo predicate emptyp. (The "P" at the end of the name
stands for "Predicate," by the way. Some versions of Logo use this convention, while others use ? at the end the
way Scheme does. The educational merits of the two conventions are hotly debated in the Logo community.)

The spiffiest way to do this is to create a logo-read that works for predicate functions of any number of arguments.
To do that you have to know how to create a Scheme function that accepts any number of arguments. You do it with
(lambda args (blah blah)). That is, the formal parameter name args is not enclosed in parentheses. When the
procedure is called, it will accept any number of actual arguments and they will all be put in a list to which args is
bound. (This is discussed in exercise 2.20.)

Again, you are normally asked to write these functions, but we have provided it for you as well.

Project Submission

This project is due at 3:00 am on Sunday, August 14.

You need to turn in the following files:

• logo.scm – with all your changes

• logo-meta.scm – with all your changes

• testing.txt – contains testing of all your code – in isolation as well as running the entire interpreter

Please clearly indicate which person is Partner A and which person is Partner B.

You must also turn in a paper copy to 283 Soda. On the paper copy, please HIGHLIGHT all changes you made so that we
can easily find and grade your work.

