
CS 61A Lecture Notes Second Half of Week 2

Topic: Data abstraction

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (pages 79–106)

• Big ideas: data abstraction, abstraction barrier.

If we are dealing with some particular type of data, we want to talk about it in terms of its meaning, not in
terms of how it happens to be represented in the computer.

Example: Here is a function that computes the total point score of a hand of playing cards. (This simplified
function ignores the problem of cards whose rank-name isn’t a number.)

;;;;; In file cs61a/lectures/2.1/total.scm
(define (total hand)

(if (empty? hand)
0
(+ (butlast (last hand))

(total (butlast hand)) )))

> (total ’(3h 10c 4d))
17

This function calls butlast in two places. What do those two invocations mean? Compare it with a modified
version:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (total hand)

(if (empty? hand)
0
(+ (rank (one-card hand))

(total (remaining-cards hand)) )))

(define rank butlast)
(define suit last)

(define one-card last)
(define remaining-cards butlast)

This is more work to type in, but the result is much more readable. If for some reason we wanted to modify
the program to add up the cards left to right instead of right to left, we’d have trouble editing the original
version because we wouldn’t know which butlast to change. In the new version it’s easy to keep track of
which function does what.

The auxiliary functions like rank are called selectors because they select one component of a multi-part
datum.
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Actually we’re violating the data abstraction when we type in a hand of cards as ’(3h 10c 4d) because
that assumes we know how the cards are represented—namely, as words combining the rank number with
a one-letter suit. If we want to be thorough about hiding the representation, we need constructor functions
as well as the selectors:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (make-card rank suit)

(word rank (first suit)) )

(define make-hand se)

> (total (make-hand (make-card 3 ’heart)
(make-card 10 ’club)
(make-card 4 ’diamond) ))

17

Once we’re using data abstraction we can change the implementation of the data type without affecting the
programs that use that data type. This means we can change how we represent a card, for example, without
rewriting total:

;;;;; In file cs61a/lectures/2.1/total.scm
(define (make-card rank suit)

(cond ((equal? suit ’heart) rank)
((equal? suit ’spade) (+ rank 13))
((equal? suit ’diamond) (+ rank 26))
((equal? suit ’club) (+ rank 39))
(else (error "say what?")) ))

(define (rank card)
(remainder card 13))

(define (suit card)
(nth (quotient card 13) ’(heart spade diamond club)))

We have changed the internal representation so that a card is now just a number between 1 and 52 (why?
maybe we’re programming in FORTRAN) but we haven’t changed the behavior of the program at all. We
still call total the same way.

Data abstraction is a really good idea because it helps keep you from getting confused when you’re dealing
with lots of data types, but don’t get religious about it. For example, we have invented the sentence data type
for this course. We have provided symmetric selectors first and last, and symmetric selectors butfirst
and butlast. You can write programs using sentences without knowing how they’re implemented. But it
turns out that because of the way they are implemented, first and butfirst take O(1) time, while last
and butlast take O(N) time. If you know that, your programs will be faster.

• Pairs.

To represent data types that have component parts (like the rank and suit of a card), you have to have
some way to aggregate information. Many languages have the idea of an array that groups some number of
elements. In Lisp the most basic aggregation unit is the pair—two things combined to form a bigger thing.
If you want more than two parts you can hook a bunch of pairs together; we’ll discuss this more next week.

The constructor for pairs is CONS; the selectors are CAR and CDR.
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The book uses pairs to represent many different abstract data types: rational numbers (numerator and
denominator), complex numbers (real and imaginary parts), points (x and y coordinates), intervals (low and
high bounds), and line segments (two endpoints). Notice that in the case of line segments we think of the
representation as one pair containing two points, not as three pairs containing four numbers. (That’s what
it means to respect a data abstraction.)

Note: What’s the difference between these two:

(define (make-rat num den) (cons num den))
(define make-rat cons)

They are both equally good ways to implement a constructor for an abstract data type. The second way
has a slight speed advantage (one fewer function call) but the first way has a debugging advantage because
you can trace make-rat without tracing all invocations of cons.

• Data aggregation doesn’t have to be primitive.

In most languages the data aggregation mechanism (the array or whatever) seems to be a necessary part of
the core language, not something you could implement as a user of the language. But if we have first-class
functions we can use a function to represent a pair:

;;;;; In file cs61a/lectures/2.1/cons.scm
(define (cons x y)

(lambda (which)
(cond ((equal? which ’car) x)

((equal? which ’cdr) y)
(else (error "Bad message to CONS" message)) )))

(define (car pair)
(pair ’car))

(define (cdr pair)
(pair ’cdr))

This is like the version in the book except that they use 0 and 1 as the messages because they haven’t
introduced quoted words yet. This version makes it a little clearer what the argument named which means.

The point is that we can satisfy ourselves that this version of cons, car, and cdr works in the sense that if
we construct a pair with this cons we can extract its two components with this car and cdr. If that’s true,
we don’t need to have pairs built into the language! All we need is lambda and we can implement the rest
ourselves. (It isn’t really done this way, in real life, for efficiency reasons, but it’s neat that it could be.)
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• Big idea: abstract data type sequence (or list).

We want to represent an ordered sequence of things. (They can be any kind of things.) We implement
sequences using pairs, with each car pointing to an element and each cdr pointing to the next pair.

What should the constructors and selectors be? The most obvious thing is to have a constructor list that
takes any number of arguments and returns a list of those arguments, and a selector nth that takes a number
and a list as arguments, returning the nth element of the list.

Scheme does provide those, but it often turns out to be more useful to select from a list differently, with a
selector for the first element and a selector for all the rest of the elements (i.e., a smaller list). This helps us
write recursive functions such as the mapping and filtering ones we saw for sentences earlier.

Since we are implementing lists using pairs, we ought to have specially-named constructors and selectors for
lists, just like for rational numbers:

(define adjoin cons)
(define first car)
(define rest cdr)

Many Lisp systems do in fact provide first and rest as synonyms for car and cdr, but the fact is that this
particular data abstraction is commonly violated; we just use the names car, cdr, and cons to talk about
lists.

This abstract data type has a special status in the Scheme interpreter itself, because lists are read and printed
using a special notation. If Scheme knew only about pairs, and not about lists, then when we construct the
list (1 2 3) it would print as (1 . (2 .(3 . ()))) instead.

• Lists vs. sentences.

We started out the semester using an abstract data type called sentence that looks a lot like a list. What’s
the difference, and why did we do it that way?

Our goal was to allow you to create aggregates of words without having to think about the structure of their
internal representation (i.e., about pairs). We do this by deciding that the elements of a sentence must be
words (not sublists), and enforcing that by giving you the constructor sentence that creates only sentences.

Example: One of the homework problems for this problem set asks you to reverse a list. You’ll see that this
is a little tricky using cons, car, and cdr as the problem asks, but it’s easy for sentences:

(define (reverse sent)
(if (empty? sent)

’()
(se (reverse (bf sent)) (first sent)) ))
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To give you a better idea about what a sentence is, here’s a version of the constructor function:

;;;;; In file cs61a/lectures/2.2/sentence.scm
(define (se a b)

(cond ((word? a) (se (list a) b))
((word? b) (se a (list b)))
(else (append a b)) ))

(define (word? x)
(or (symbol? x) (number? x)) )

Se is a lot like append, except that the latter behaves oddly if given words as arguments. Se can accept
words or sentences as arguments.

• Box and pointer diagrams.

Here are a few details that people sometimes get wrong about them:

1. An arrow can’t point to half of a pair. If an arrowhead touches a pair, it’s pointing to the entire pair,
and it doesn’t matter exactly where the arrowhead touches the rectangle. If you see something like

(define x (car y))

where y is a pair, the arrow for x should point to the thing that the car of y points to, not to the left half
of the y rectangle.

2. The direction of arrows (up, down, left, right) is irrelevant. You can draw them however you want to
make the arrangement of pairs neat. That’s why it’s crucial not to forget the arrowheads!

3. There must be a top-level arrow to show where the structure you’re representing begins.

How do you draw a diagram for a complicated list? Take this example:

((a b) c (d (e f)))

You begin by asking yourself how many elements the list has. In this case it has three elements: first (a b),
then c, then the rest. Therefore you should draw a three-pair backbone: three pairs with the cdr of one
pointing to the next one. (The final cdr is null.)

Only after you’ve drawn the backbone should you worry about making the cars of your three pairs point to
the three elements of the top-level list.
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