
CS 61A Lecture Notes First Half of Week 5

Topic: Mutable data, queues, tables, vectors

Reading: Abelson & Sussman, Section 3.3.1–3

Play the animal game:

> (load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")
#f
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Is it a rabbit? nonono

I give up, what is it? gorillagorillagorilla

Please tell me a question whose answer is YES for a gorilla
and NO for a rabbit.
Enclose the question in quotation marks.
"Does it have long arms?""Does it have long arms?""Does it have long arms?"
"Thanks. Now I know better."
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Does it have long arms? nonono
Is it a rabbit? yesyesyes
"I win!"

The crucial point about this program is that its behavior changes each time it learns about a new animal.
Such learning programs have to modify a data base as they run. We represent the animal game data base
as a tree; we want to be able to splice a new branch into the tree (replacing what used to be a leaf node).

Changing what’s in a data structure is called mutation. Scheme provides primitives set-car! and set-cdr!
for this purpose.

They aren’t special forms! The pair that’s being mutated must be located by computing some expression.
For example, to modify the second element of a list:

(set-car! (cdr lst) ’new-value)

They’re different from set!, which changes the binding of a variable. We use them for different purposes, and
the syntax is different. Still, they are connected in two ways: (1) Both make your program non-functional,
by making a permanent change that can affect later procedure calls. (2) Each can be implemented in terms
of the other; the book shows how to use local state variables to simulate mutable pairs, and later we’ll see
how the Scheme interpreter uses mutable pairs to implement environments, including the use of set! to
change variable values.

The only purpose of mutation is efficiency. In principle we could write the animal game functionally by
recopying the entire data base tree each time, and using the new one as an argument to the next round of
the game. But the saving can be quite substantial.

Identity. Once we have mutation we need a subtler view of the idea of equality. Up to now, we could just
say that two things are equal if they look the same. Now we need two kinds of equality, that old kind plus
a new one: Two things are identical if they are the very same thing, so that mutating one also changes the
other. Example:

> (define a (list ’x ’y ’z))
> (define b (list ’x ’y ’z))
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> (define c a)
> (equal? b a)
#T
> (eq? b a)
#F
> (equal? c a)
#T
> (eq? c a)
#T

The two lists a and b are equal, because they print the same, but they’re not identical. The lists a and c
are identical; mutating one will change the other:

> (set-car! (cdr a) ’foo)
> a
(X FOO Z)
> b
(X Y Z)
> c
(X FOO Z)

If we use mutation we have to know what shares storage with what. For example, (cdr a) shares storage
with a. (Append a b) shares storage with b but not with a. (Why not? Read the append procedure.)

The Scheme standard says you’re not allowed to mutate quoted constants. That’s why I said (list ’x ’y ’z)
above and not ’(x y z). The text sometimes cheats about this. The reason is that Scheme implementations
are allowed to share storage when the same quoted constant is used twice in your program.

Here’s the animal game:

;;;;; In file cs61a/lectures/3.3/animal.scm
(define (animal node)

(define (type l) (car l))
(define (question l) (cadr l))
(define (yespart l) (caddr l))
(define (nopart l) (cadddr l))
(define (answer l) (cadr l))
(define (leaf? l) (eq? (type l) ’leaf))
(define (branch? l) (eq? (type l) ’branch))
(define (set-yes! node x)

(set-car! (cddr node) x))
(define (set-no! node x)

(set-car! (cdddr node) x))

(define (yorn)
(let ((yn (read)))
(cond ((eq? yn ’yes) #t)

((eq? yn ’no) #f)
(else (display "Please type YES or NO")

(yorn)))))
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(display (question node))
(display " ")
(let ((yn (yorn)) (correct #f) (newquest #f))

(let ((next (if yn (yespart node) (nopart node))))
(cond ((branch? next) (animal next))

(else (display "Is it a ")
(display (answer next))
(display "? ")
(cond ((yorn) "I win!")

(else (newline)
(display "I give up, what is it? ")
(set! correct (read))
(newline)
(display "Please tell me a question whose answer ")

(display "is YES for a ")
(display correct)
(newline)
(display "and NO for a ")
(display (answer next))
(display ".")
(newline)
(display "Enclose the question in quotation marks.")
(newline)
(set! newquest (read))
(if yn

(set-yes! node (make-branch newquest
(make-leaf correct)
next))

(set-no! node (make-branch newquest
(make-leaf correct)
next)))

"Thanks. Now I know better.")))))))

(define (make-branch q y n)
(list ’branch q y n))

(define (make-leaf a)
(list ’leaf a))

(define animal-list
(make-branch "Does it have wings?"

(make-leaf ’parrot)
(make-leaf ’rabbit)))

(define (animal-game) (animal animal-list))

Things to note: Even though the main structure of the program is sequential and BASIC-like, we haven’t
abandoned data abstraction. We have constructors, selectors, and mutators—a new idea—for the nodes of
the game tree.
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• Tables. We’re now ready to understand how to implement the put and get procedures that A&S used
at the end of chapter 2. A table is a list of key-value pairs, with an extra element at the front just so that
adding the first entry to the table will be no diffferent from adding later entries. (That is, even in an “empty”
table we have a pair to set-cdr!)

;;;;; In file cs61a/lectures/3.3/table.scm
(define (get key)

(let ((record (assoc key (cdr the-table))))
(if (not record)

#f
(cdr record))))

(define (put key value)
(let ((record (assoc key (cdr the-table))))

(if (not record)
(set-cdr! the-table

(cons (cons key value)
(cdr the-table)))

(set-cdr! record value)))
’ok)

(define the-table (list ’*table*))

Assoc is in the book:

(define (assoc key records)
(cond ((null? records) #f)

((equal? key (caar records)) (car records))
(else (assoc key (cdr records))) ))

In chapter 2, A&S provided a single, global table, but we can generalize this in the usual way by taking an
extra argument for which table to use. That’s how lookup and insert! work.

One little detail that always confuses people is why, in creating two-dimensional tables, we don’t need a
*table* header on each of the subtables. The point is that lookup and insert! don’t pay any attention
to the car of that header pair; all they need is to represent a table by some pair whose cdr points to the
actual list of key-value pairs. In a subtable, the key-value pair from the top-level table plays that role. That
is, the entire subtable is a value of some key-value pair in the main table. What it means to be “the value
of a key-value pair” is to be the cdr of that pair. So we can think of that pair as the header pair for the
subtable.
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• Memoization. Exercise 3.27 is a pain in the neck because it asks for a very complicated environment
diagram, but it presents an extremely important idea. If we take the simple Fibonacci number program:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fib n)

(if (< n 2)
1
(+ (fib (- n 1))

(fib (- n 2)) )))

we recall that it takes O(2n) time because it ends up doing a lot of subproblems redundantly. For example,
if we ask for (fib 5) we end up computing (fib 3) twice. We can fix this by remembering the values that
we’ve already computed. The book’s version does it by entering those values into a local table. It may be
simpler to understand this version, using the global get/put:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fast-fib n)

(if (< n 2)
n ; base case unchanged
(let ((old (get ’fib n)))

(if (number? old) ; do we already know the answer?
old
(begin ; if not, compute and learn it
(put ’fib n (+ (fast-fib (- n 1))

(fast-fib (- n 2))))
(get ’fib n))))))

Is this functional programming? That’s a more subtle question than it seems. Calling memo-fib makes a
permanent change in the environment, so that a second call to memo-fib with the same argument will carry
out a very different (and much faster) process. But the new process will get the same answer! If we look
inside the box, memo-fib works non-functionally. But if we look only at its input-output behavior, memo-fib
is a function because it always gives the same answer when called with the same argument.

What if we tried to memoize random? It would be a disaster; instead of getting a random number each time,
we’d get the same number repeatedly! Memoization only makes sense if the underlying function really is
functional.

This idea of using a non-functional implementation for something that has functional behavior will be very
useful later in the course when we look at streams.
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• Vectors So far we have seen one primitive data aggregation mechanism: the pair. We use linked pairs to
represent sequences (an abstract type) in the form of lists.

The list suffers from one important weakness: Finding the nth element of a list takes time O(n) because you
have to call cdr n−1 times. Scheme, like most programming languages, also provides a primitive aggregation
mechanism without this weakness. In Scheme it’s called a vector ; in many other languages it’s called an
array, but it’s the same idea. Finding the nth element of a vector takes O(1) time.

• Vector primitives

Some of the procedures for vectors are exact analogs to procedures for lists:

(vector a b c d ...) (list a b c d ...)
(vector-ref vec n) (list-ref lst n)
(vector-length vec) (length lst)

Most notably, the selector for vectors, vector-ref, is just like the selector for lists (except that it’s faster).

What about constructors? There’s a vector procedure, just like the list procedure, that’s good for situa-
tions in which you know exactly how many elements the sequence will have, and all of the element values,
all at once. But there are no vector analogs to the list constructors cons and append, which are useful for
extending lists. In particular, cons is the workhorse of recursive list processing procedures; we’ll see that
vector processing is done quite differently.

The weakness of vectors is that they can’t be extended. You have to know the length of the vector when
you create it. So instead of cons and append we have

(make-vector len)

which creates a vector of length len, in which the element values are unspecified. (You then use mutation,
discussed below, to fill in the desired values.) Alternatively, if you want to create a vector in which every
element has the same initial value, you can say

(make-vector len value)

Because vectors are created all at once, rather than one element at a time, mutation is crucial to any useful
vector program. The primitive mutator for vectors is

(vector-set! vec n value)

This procedure is comparable to set-car! and set-cdr! for pairs. (It’s interesting to note that Scheme
doesn’t provide a mutator for the nth element of a list; this is because most list processing is done using
functional programming style, and pair mutation is mainly for special cases such as tables.)

The printed format of a vector is

#(a b c d)

You can quote this to include a constant vector in a program. (Note: In STk, vectors are self-evaluating, so
you can omit the quotation mark, but this is a nonstandard extension to Scheme.)

Scheme also provides functions list->vector and vector->list that let you convert between the two
sequence implementations.
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• Vector programming style

Let’s write a mapping function for vectors; it will take a function and a vector as arguments, and return a
vector.

For reference, here’s the map function for lists:

(define (map fn lst)
(if (null? lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

To do the same task for vectors, we must first create a new vector of the same length as the argument vector,
then fill in the values using mutation:

;;;;; In file cs61a/lectures/vector.scm
(define (vector-map fn vec)

(define (loop newvec n)
(if (< n 0)
newvec
(begin (vector-set! newvec n (fn (vector-ref vec n)))

(loop newvec (- n 1)))))
(loop (make-vector (vector-length vec)) (- (vector-length vec) 1)))

This is a lot more complicated! It requires a helper procedure, and an extra index variable, n, to keep track
of the element number within the vector. By contrast, the list version of map never actually knows how long
its argument list is.

• Strengths and weaknesses

Of course, if we wanted, we could write our own equivalent to cons for vectors:

;;;;; In file cs61a/lectures/vector.scm
(define (vector-cons value vec)

(define (loop newvec n)
(if (= n 0)
(begin (vector-set! newvec n value)

newvec)
(begin (vector-set! newvec n (vector-ref vec (- n 1)))

(loop newvec (- n 1)))))
(loop (make-vector (+ (vector-length vec) 1)) (vector-length vec)))

If we wrote similar procedures vector-car and vector-cdr, we could then write vector-map in a style
exactly like map. But this would be a bad idea, because our vector-cons requires O(n) time to copy the
elements from the old vector to the new one.

operation lists vectors

nth element list-ref, O(n) vector-ref, O(1)
add new element cons, O(1) vector-cons, O(n)

This is why there isn’t one best way to represent sequences. Lists are faster (and allow for cleaner code) at
adding elements, but vectors are faster at selecting arbitrary elements.

(Note, though, that if you want to select all the elements of a sequence, one after another, then lists are just
as fast as arrays. It’s only when you want to jump around within the sequence that arrays are faster.)
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• Example: Shuffling

Suppose we want to shuffle a deck of cards — we want to reorder the cards randomly. We’ll look at three
solutions to this problem.

First, here’s a solution using functional programming with lists. Because we aren’t allowing mutation of
pairs, this version does a lot of recopying:

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle1 lst)

(define (loop in out n)
(if (= n 0)
(cons (car in) (shuffle1 (append (cdr in) out)))
(loop (cdr in) (cons (car in) out) (- n 1))))

(if (null? lst)
’()
(loop lst ’() (random (length lst)))))

This is a case in which functional programming has few virtues. The code is hard to read, and it takes O(n2)
time to shuffle a list of length n. (There are n recursive calls to shuffle1, each of which calls the O(n)
primitives append and length as well as O(n) calls to the helper function loop.)

We can improve things using list mutation. Any list-based solution will still be O(n2), because it takes O(n)
time to find one element at a randomly chosen position, and we have to do that n times. But we can improve
the constant factor by avoiding the copying of pairs that append does in the first version:

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle2! lst)

(if (null? lst)
’()
(let ((index (random (length lst))))

(let ((pair ((repeated cdr index) lst))
(temp (car lst)))

(set-car! lst (car pair))
(set-car! pair temp)
(shuffle2! (cdr lst))
lst))))

(Note: This could be improved still further by calling length only once, and using a helper procedure to
subtract one from the length in each recursive call. But that would make the code more complicated, so I’m
not bothering. You can take it as an exercise if you’re interested.)

Vectors allow a more dramatic speedup, because finding each element takes O(1) instead of O(n):

;;;;; In file cs61a/lectures/vector.scm
(define (shuffle3! vec)

(define (loop n)
(if (= n 0)
vec
(let ((index (random n))

(temp (vector-ref vec (- n 1))))
(vector-set! vec (- n 1) (vector-ref vec index))
(vector-set! vec index temp)
(loop (- n 1)))))

(loop (vector-length vec)))
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The total time for this version is O(n), because it makes n recursive calls, each of which takes constant time.

• How it works

One handwavy paragraph on why vectors have the performance they do:

A pair is two pointers attached to each other in a single block of memory. A vector is similar, but it’s a block
of n pointers for an arbitrary (but fixed) number n. Since a vector is one contiguous block of memory, if you
know the address of the beginning of the block, you can just add k to find the address of the kth element.
The downside is that in order to get all the elements in a single block of memory, you have to allocate the
block all at once.

If you don’t understand that, don’t worry about it until 61B.
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