
UNIVERSITY of CALIFORNIA at Berkeley
Department of Electrical Engineering and Computer Sciences

Computer Sciences Division

CS61A Kurt Meinz
Course Info Summer 2002

CS61A: The Structure and Interpretation of Computer Programs

General Course Information

1 Introduction

The CS 61 series is an introduction to computer science, with particular emphasis on software and on ma-
chines from a programmer’s point of view. This first course concentrates mostly on the idea of abstraction,
allowing the programmer to think in terms appropriate to the problem rather than in low-level operations
dictated by the computer hardware. The next course, CS 61B, will deal with the more advanced engineering
aspects of software—on constructing and analyzing large programs and on techniques for handling com-
putationally expensive programs. Finally, CS 61C concentrates on machines and how they carry out the
programs you write.

In CS 61A, we are interested in teaching you about programming per se rather than any programming
language in particular. We consider a series of techniques for controlling program complexity, such as
functional programming, data abstraction, object-oriented programming, and deductive systems. Of course,
to get past generalities you must have programming practice in some particular language, and, in this course,
we will use Scheme, a dialect a Lisp. This language is particularly well-suited to the organizing ideas we
want to teach. Our hope, however, is that once you have learned the essence of programming, you will find
that picking up a new programming language is but a few days’ work.

2 Do You Belong Here?

The summer session version of this course is a bit different from the regular semester version. We cover all
of the usual material, but we do it in half the time. This makes the course Very Fast. If you fall behind,
you will find it almost impossible to catch up. At the same time, the summer course has no restrictions on
enrollment. Anyone, regardless of prior experience may enroll in the course (until it fills.) We encourage
anyone who’s curious or interested to take this course, even if they aren’t computer science majors!

This course expects some mathematical sophistication, but does not actually require any prior pro-
gramming experience. During the regular semester, Math 1A is a corequisite for 61A, and there is gen-
erally a placement exam to test whether or not you are familiar with recursion. (For examples, go to
http://www-inst.eecs.berkeley.edu/∼cs61a/misc/entrance.html.)

We have found that 80% to 90% of 61A students have had significant prior programming experience,
and that students without such experience are at a disadvantage. You certainly have adequate background
for this course if you are familiar with the idea of recursion: a procedure invoking itself as a subprocedure.
There is no need for you to be familiar with any particular programming language, although if all of your
experience has been in BASIC then you probably haven’t used recursion. In addition, the computer labs for
the course use UNIX machines. You may find it time-consuming and sometimes difficult to do the labs and
homework without spending time becoming familiar with UNIX.

Therefore, it is up to you to decide if you are prepared for this course. Check out the course materials
yourself, and play around with the labs and homework. My advice is to take the risk and get out as much
as you possibly can! If you are still unsure, you can speak to me about it, however, if you ask my opinion,
I will probably say that you should take it, because the course is wonderful and you will learn a great deal
from taking it regardless of your final grade.

1

If you don’t feel ready for 61A, we recommend that you take CS 3, which is a Scheme-based introductory
programming course, or CS 3S, the self-paced version. CS 3 and 3S are directed primarily at students who
are not Computer Science majors, but are also designed to serve as preparation for 61A. You could then
take 61A next semester. If you are interested in learning how to program specifically in C or Java, there are
engineering courses to teach you these courses, and they will server you better than this course.

If you are not strongly interested in computer programming at all, but instead want to learn how to use
computers as a tool, you should consider IDS 110, a course that presents a variety of personal computer
software along with a brief introduction to programming.

If you have substantial prior programming background, you may feel that you can skip 61A. In most
cases, we don’t recommend that. Although 61A is the first course in the CS sequence, it’s quite different
from most introductory courses. Unless you have used this same textbook elsewhere, I think I can promise
that you won’t be bored. If you’re not convinced, spend some time looking over the book and then come
discuss it with me. Instead, perhaps your prior experience will allow you to skip 61B or 61C, which are more
comparable to courses taught elsewhere. See Mike Clancy in the CS department about this.

3 Course Materials

The textbook for this course is Structure and Interpretation of Computer Programs by Abelson, Sussman,
and Sussman, second edition. It should be available in the textbook section of the ASUC bookstore and
other local textbook sellers. You must get the 1996 second edition! Don’t buy a used copy of the
first edition. A paperback version containing all necessary chapters of version 2 may also be available used
at the same books stores. If you cannot afford to buy the book, copies of it are on reserve at the Engineering
Library. Also, the entire book is readable online. The URL is given later in this document.

In addition to the textbook, there is a reader containing necessary materials, including all assignments
and material on our computing facilities in general and about the Scheme language. You can buy the reader
at CopyCentral, 2483 Hearst Avenue (at Euclid.) The summer’s reader is unlike the normal term’s readers,
so don’t borrow your housemate’s old copy. All of the most important material in the reader will also be
available on the course website, so, if you really don’t want to buy the reader, you don’t have to. However,
it has been our experience that most students prefer to purchase the reader.

If you haven’t used Unix before, you should also get the User’s Guide to Unix and the EECS Instructional
Facilities also available at CopyCentral.

We have also listed optional texts for the course. These really are optional! Don’t just buy them because
you see them on the shelf. One is the instructor’s manual for the required text. It includes the authors’
second thoughts about which ideas proved to be complicated and how to explain them, along with additional
exercises. (It doesn’t have solutions to exercises.) You may want this manual if you are excited by the course
and want to get to know the authors and their ideas better, although it has been partly replaced by a web
page about the book. The second optional text is Simply Scheme, by Harvey and Wright. This is sometimes
used as the textbook for CS 3; it gives a slower and gentler introduction to the first five weeks of 61A, for
people who feel swamped here. Most of you won’t need these books.

If you have a home computer, you may want to get a Scheme interpreter for it. The Computer Science
Division can provide you with free versions of Scheme for Linux, Windows, or MacOS. The distribution also
includes the Scheme library programs that we use in this course. For more information on how to get your
home computer to work well with the course materials, check the web site.

The course reader includes the lecture notes. What this means is that you should be able to devote your
effort during lecture to thinking, rather than to frantic scribbling.

4 Enrollment—Laboratory and Discussion Sections

Summer session is 8 weeks, with every week packing in two standard course weeks. This course is normally
structured so that there is one discussion and one lab meeting each week; but we must pack in both into the

2

first two days of the week, and again, both into the last two days of the week. Generally, the lab portion occurs
some time between Monday and Tuesday’s lectures, and again between Wednesday and Thursday’s lecture.
The discussion section meets between Tuesday and Wednesday’s lecture, and again between Thursday and
the next Monday’s. You will also need to spend additional time working on the computers in the Soda Hall
labs. Most weeks, the first meeting will be in our laboratory room, 271 Soda Hall; the second meeting will
be in the classroom listed in the Schedule of Classes. Occasionally there may be two lab sessions and no
classroom sessions. For example, all meetings this week will be in the lab.

An updated list of discussion times and rooms is attached and the most recent copy will always
be on the course website; don’t believe the printed schedule of classes or your enrollment form unless it
agrees with this.

The discussion and lab sections are run by Teaching Assistants; each TA will handle enrollment and
grading for his or her sections. We anticipate some rearrangements during the first week in response to
oversubscribed or undersubscribed sections. If you are waitlisted or your section has been cancelled,
you should communicate via email with the TA who is in charge of the sections that you would like to move
into but be prepared to be flexible if your first choice is full. Please be in a definite discussion section by
the end of this week, though, because much of the coursework will be done in groups of two to four students
(the number depends on the activity); these groups will be set up by the TAs within each section.

You must have a computer account on the 61A course facility. You must set up your account
before Noon on Wednesday, June 26 because that is how we know who is really in the class. Account forms
will be distributed in the LAB SECTIONS. The first time you log in, you will be asked to type in your name
and reg card number, if you have one. Please follow the instructions carefully. You must get your account
and log into it no later than 12:01 PM Wednesday so that we have an accurate class count. Everyone
MUST log in by Wednesday Noon (or have made special arrangements with their TA) OR YOU WILL
BE DROPPED from the course!

Some of you have personal computers and may want to do the course work at home. This is fine with us,
although you’ll have to be careful to install the class Scheme library on your home computer to make your
computer’s version of Scheme behave like the modified one we use in the lab. In any case, though, you must
get a class account even if you intend never to use it.

Please do not sign up for a computer science course just to get a computer account, with the intention
of dropping later. (Instead, come see a faculty member to discuss sponsorship of a non-class account for
independent study, or you can get a free Unix account from the Open Computing Facility.) Accounts of
students who are not doing the course work will be turned off by the second week of classes. Also, if you get
a class account and then decide to drop the course, please let me know immediately so that we can admit
another student. Thank you.

Students sometimes ask whether attendance is required or optional. Our expectation is that you will
attend all class sessions, but you are adults and we will not police your attendance. However, if you take
this to mean you can skip 6 weeks of section and then receive help from the TAs and instructor right before
the final, you will be sorely mistaken. You will find that we are busy helping students that we have seen
working hard all summer. Recognize that by not attending section or lecture, you are missing out on excellent
opportunities to learn from the TAs and other students, as well as from the lecturer. Much of the learning in
this course comes from lab activities, and later assignments (including exam questions) may build on those
activities. Further, the TAs find it easier (and more enjoyable!) to help the students that they have gotten
to know throughout the term. If you are missing school due to illness or some other emergency, inform your
TA immediately.

5 How to get the most from this course

We recognize that everyone’s style of learning is unique. Some students are excellent at studying–they work
hard, and are extremely diligent. They do all the readings conscientiously, and work all the problems. Some
students are incredibly quick, and get by doing little of the reading, even less of the homework, and still
ace the tests. Some students learn best by listening to lecture, and discussing it with their friends and TAs.

3

Some students are aiming for the A+, others just to get by with a passing grade. Usually, students are some
of each of these pieces, or are sometimes one, sometimes another. Since everyone’s style is their own, we try
to have as many opportunities to learn this material as possible. Therefore, use them all, and learn what
works best for you.

That said, we do enforce certain types of interaction. In this course, we encourage and REQUIRE that
you learn to work together in groups. This means you will need to learn how to work with people whose
strengths are not your own. (This is of course the best thing a group can provide!) It also means you will
learn how to work with people whose style you find difficult. But overall, you will learn best by learning to
collaborate, and helping each other when one is not getting the material.

Different people solve problems differently; there are often many right answers to the problems in this
course. And of course, What you find easier, your friend may find hard, and vice versa. Therefore, the best
way to learn is to talk with other people, and ask them questions when you are stuck. Even if you think you
understand everything, you will learn the material better if you have to try to explain it to someone else. In
addition, learning how to think about the problems many different ways will solidify your understanding of
this material.

Finally, is it possible that some of you feel uncomfortable telling others when you don’t understand
something. Many of us find it hard to ask questions–all the more reason to overcome this fear early! The
ability to ask for help is a wonderful strength that will serve you well in life. Throughout this course, we
will try to encourage you to ask each other, and the TAs and myself for help.

6 Information Resources

Your first and most important resource for help in learning the material in this course is your fellow students.
Your discussion section TA will assign you to a group of four students, and you will do many course activities
with this group. You are responsible for helping each other learn.

The Teaching Assistants who teach the discussion sections are also available to answer questions. You may
drop in during office hours, make appointments for other times, or communicate with them by electronic
mail. Feel free to visit any of the TAs–not just your own! You may find that hearing different people’s
explanations helps you if at first you do not understand some material.

For technical questions about the homework or projects, or administrative questions such as missing
homework grades, send electronic mail to your particular TA or reader. You can also send mail about
intellectual questions to me, but if it’s about grades I’ll just refer you to your TA.

In addition, there is an electronic bulletin board system that you can use to communicate with other
61A students and staff. To do this, subscribe to the ucb.class.cs61a newsgroup by saying

rn -q ucb.class.cs61a

The ucb newsgroup can be read only from machines in the berkeley.edu domain, so if your net connection is
though a commercial ISP then you must log into a lab machine to read the newsgroup or try this:

http://www-inst.eecs.berkeley.edu/connecting.html

Please do not send electronic mail to every student individually! That would waste a lot of disk
space, even for a small message. Use the newsgroup instead. Electronic mail is for messages to individuals,
not to groups.

There is a class web page, with online versions of some of the documents we hand out:
http://www-inst.eecs.berkeley.edu/~cs61a

The web page for the textbook, with additional study resources, is
http://www-mitpress.mit.edu/sicp/sicp.html

There are also web pages for the Scheme programming language:
http://swissnet.ai.mit.edu/scheme-home.html

http://www.schemers.org/

Tutoring services are provided by Eta Kappa Nu (HKN), the EECS honors society, and Upsilon Pi
Epsilon, the Computer Science honors society. They share an office in 345 Soda; call them at 2-9952 or send

4

e-mail to hkn@hkn or to upe@cory.
Additional information to help you in studying, including hints from the course staff and copies of

programs demonstrated in lectures, is available at the course website.

7 Computer Resources

The computing laboratory in 271 Soda Hall consists of about 35 SunRay terminals connected to a Sun
Solaris server. This is our primary lab room, although the CS 61A accounts can be used from any EECS
Instructional lab in Soda or Cory Hall.

The lab in 271 Soda Hall is normally available for use at all times, but you need a card key for access to
the lab; to get a card key, stop by the 3rd floor office of Soda Hall and fill out a form for a card key. You will
need a $20 deposit to get the card key. The card key will give you access to the 2nd and 3rd floor of Soda
Hall so that you may enter at any time, day or night. Do this today! During scheduled lab sessions, only
students enrolled in that particular section may be in the lab. Since lab sections run from early morning
until late evening, you might need to use the other Soda Hall labs to work on homework outside of class. In
particular, 273 Soda Hall should be at your disposal at all times. When sections are not in session, any 61A
student may use any of the 2nd floor labs on a drop-in basis. If there are no free workstations, please feel
free to ask anyone who is not doing course work to leave. In particular, game playing is not permitted. We
are relying on social pressure to discourage abuse (such as stealing the chairs or monopolizing a workstation
for six hours during prime time to play chess). Therefore, do not feel embarrassed to apply such pressure.

These machines use the Unix operating system, a timesharing system that is quite different from the
microcomputer systems you have probably seen elsewhere. The course readers include introductory docu-
mentation about Unix and about Emacs, the text editing program we are recommending for your use. (It is
one of several Unix text editors; you’ll find that everyone has his or her own favorite editor and hates all the
others.) Although the use of Unix is not extensively taught in 61A lectures, it will be extremely worthwhile
for you to spend some time getting to know how the system works. Each homework assignment includes a
suggested “feature of the assignment” for you to explore. These are entirely optional, and there is nothing
to hand in about them. Do the real homework first, but if you have time, you will enjoy learning about the
software tools available here.

The Computer Science Undergraduate Association (CSUA), Open Computing Facility (OCF), and Ex-
perimental Computing Facility (XCF) usually offer introductory Unix training sessions. Details will be
announced when we have them.

If you have a home computer and a modem, you may wish to use your class account remotely. If so, you
are encouraged to use a commercial Internet Service Provider to connect to the campus; several companies
offer student rates. Again, check out

http://www-inst.eecs.berkeley.edu/connecting.html

8 Computer Community Spirit

If you have lived in a dorm or other concentrated student housing, you have already learned that any facility
shared by a large group of people is fertile ground for practical jokes. You’ve also learned that selfishness in
the use of common facilities can lead to a lot of bad feeling. Computers are no different. For example, there
is only a finite amount of file storage space. If you fill it up with digitized pictures of all your friends, other
people can’t get their homework done.

In the dorm, people generally have a good sense of perspective about what’s funny and what isn’t. Filling
up your friend’s room across the hall with balloons is funny. Filling it up with water balloons or live crickets
or a 400 pound toilet is on the edge. Filling it up with epoxy isn’t funny at all. But, for some reason, some
people seem to lose that sense of perspective when it comes to computers. Perhaps it’s because the damaged
property is intangible; perhaps it’s because with a computer you don’t have to be physically near the victim.
Whatever the reason, try to overcome it. It’s not funny if someone can’t complete the course work because

5

you deleted their files.
The operating system we use provides enough security so that nothing you do will mess up another user

by accident if you’re minding your own business. It is certainly possible to mess up the system deliberately.
Many of you are familiar with the personal computer environment, in which some people consider it a mark of
sophistication to write “virus” programs that interfere with other people’s computers. You are now entering
a different culture with different values. Our research work, as at any university, depends on collaboration
both within our department and with colleagues elsewhere. Our computer systems are deliberately set up
to encourage collaboration among their users, and that means encouraging easy access to one another’s
systems. This policy requires some degree of trust among the participants. If you’ve ever taken anything out
of a safe deposit box at a bank, you know that it’s possible to design a high-security shared facility, but that
the cost is making it a big pain in the neck to use the secured data. Some computer systems are designed
to have bank-level security, and everyone will think you’re very clever if you figure out how to mess up such
a system. Nobody will think you’re clever if you mess up the 61A system.

The form you sign when you get your computer account says that it is for your use only and for course
work only. We are not unreasonably strict in enforcing this rule. Nobody minds if you occasionally play
a computer game late at night if it’s the kind that doesn’t wreck the keyboards or mice through repeated
high-speed banging on one button. Nobody will object even if you occasionally bring a friend to play the
game with you or if you write an occasional English paper on this facility instead of the official English
Department computers. But if you are asked to give up the terminal by someone who wants to do course
work and refuse, that’s unacceptable. Remember, you and your fellow students are the ones who suffer from
such obnoxiousness; the faculty and staff have other computers to work on.

In addition, you should know that, on occasion, our file servers go on the blink. You can detect this
situation by noticing that your terminal has suddenly stopped typing characters or you get a message along
the lines of ”NFS server not responding...”. If this happens to you (and it will at least once!), don’t
panic; usually the server is back within minutes or hours with your data intact. Please do not put yourself in
a situation where a couple-hour server crash will prevent you from completing your project on-time. ”How
can I avoid such a horrible situation?” you may ask. By starting (and finishing) your projects early!

9 Network Etiquette

Our computer facility is part of a worldwide network that lets you communicate with other users both by
electronic mail and by immediate connection if you’re both logged on at the same time. You may find that
the Internet, much like amateur radio, is a good way to make friends.

However, please remember that the network is not exactly like amateur radio, in that most of the people
on our network are trying to get work done and don’t want to spend time talking with you. Therefore, please
do not send mail or talk requests to people whom you don’t know. For example, if your best friend from
home went to college somewhere else and you don’t know his or her e-mail address, do not ask randomly
chosen people at that college to locate your friend for you. (You can send mail to postmaster at most sites.)

The best way to get to know people on the net is to join newsgroups. The same program that you use
for the class newsgroup will also let you subscribe to groups on an enormous range of topics, both technical
and recreational. Most participants in these groups will welcome individual communication that’s relevant
to the newsgroup topic.

Here are a few rules of newsgroup etiquette: (1) Do not post to a group until you’ve read it for a couple
of weeks, so you’ll know what people consider appropriate topics for that group. (2) Do not post messages
in which you quote all of someone else’s long message and then add ”Me too!” at the bottom. (3) Don’t be
sarcastic. If you’re angry, wait until tomorrow to post your message. Remember, too, that the other person
isn’t necessarily just like you; he or she may be eight years old, or eighty. (4) Do not post, mail, or forward
chain letters! You will certainly lose your Berkeley computer account and may find yourself under arrest for
fraud.

It is strongly encouraged that you subscribe to the group news.announce.newusers for more information
about posting to newsgroups.

6

10 Homework and Programming Assignments

Every week there will be problems assigned for you to work on, most of which will involve writing and
debugging computer programs. These assignments come in three forms:

• Laboratory exercises are short, relatively simple exercises designed to introduce a new topic. Most
weeks you’ll do these during the scheduled lab meeting following Monday and Wednesday’s lecture.
You are encouraged to do these exercises in groups of three or four students. They are NOT graded.

• Homework assignments consist mostly of exercises from the textbook; you’ll do these whenever
you can schedule time, either in the lab or at home. You may be accustomed to textbooks with huge
numbers of boring, repetitive exercises. You won’t find that in our text! Each assigned exercise teaches
an important point.

There are two homework assignments per week, but both are due on the Monday after they are assigned.
These assignments are included in the course reader. (The first assignment is also attached to this
handout.) You are encouraged to discuss the homework with other students. You should write up the
solutions in groups of 2. Specific Homework requirements and grading policies are below.

Some of the homework assignments include problems labeled as “Extra for Experts.” These problems
are entirely optional; do them only if you have finished the regular assignment and want to do something
more challenging. There is no extra credit for these problems; people who need more credit shouldn’t
even be trying them, and people who are doing well in the course should be motivated by the desire
to learn.

You should try to complete the reading assignment for each week before the lecture. For example,
you should read section 1.3 of the textbook by Wednesday. (Read section 1.1 as soon as possible this
week!) You will have four class meetings (two lectures and two discussion/lab sections) to help you
understand the assignment. Ideally, you would work in lab and afterward on the exercises, and then
complete them the next day after section. If you’re efficient, you’ll then have that night to read the
next reading assignment.

• Projects are larger assignments intended both to teach you the skill of developing a large program
and to assess your understanding of the course material. There are four projects during the term, and
you’ll work on them in groups. Specific Programming project requirements and grading policies are
below.

Everything you turn in for grading must show your name(s), your computer account lo-
gin(s), and your working group number for group assignments. Please cooperate about this; make
sure they’re visible on the outside of the paper you turn in, not buried in a comment in a listing.

11 Testing and Grading

If it were up to me, we wouldn’t give grades at all. Since I can’t do that, the grading policy of the course has
these goals: it should provide a reasonably accurate measure of your understanding of the material; it should
minimize competitiveness and grade pressure, so that you can focus instead on the intellectual content of
the course; and it should minimize the time I spend arguing with students about their grades. To meet these
goals, your course grade is computed using a point system with a total of 300 points:

3 midterms 3 * 40 120 15 homeworks 15 * 2 30
final 70 4 projects 4 * 20 80

There will be three midterms (tentatively set for the end of the third, fifth, and seventh weeks of the
term) and a final. The midterms will be open book, open notes. (You may not use a computer during the
exam.) In the past, some students have complained about time pressure, so we’ll hold the midterms on
Fridays round Noon, (Room TBA) instead of during the lecture hour. My goal will be to write one-hour
tests, but you’ll have two hours to work on them. The relatively large number of midterms is meant to help

7

you learn to take tests, and to reduce your anxiety about ruining your grade by having a bad day. In general,
midterms concentrate on the material that has been covered up to and including the day before the test. In
this course, the later topics depend on the early ones, so you mustn’t forget things after each test is over!

Each letter grade corresponds to a range of point scores: 280 points and up is an A+, 270–279 is A, and
so on by steps of ten points to 170–179 points for a D−.

A+ 280-300 A 270-279 A- 260-269
B+ 250-259 B 240-249 B- 230-239
C+ 220-229 C 210-219 C- 200-209
D+ 190-199 D 180-189 D- 170-179

If you make the effort to do the assigned work, you will do well on the weekly homework, since those
points are awarded for effort and general understanding rather than for specific correct results. The projects
do require correct solutions for full credit, but since the work is done in groups, if your group cooperates
you’re very likely to do well. Finally, the tests are meant to be easy for anyone who truly understands the
material; they will require creative leaps, but leaps that you will be well-equipped to make if you have a
solid foundation.

This grading formula implies that there is no curve; your grade will depend only on how well you (and,
to a small extent, your partners) do, and not on how well everyone else does. (If everyone does exceptionally
badly on some exam, I may decide the exam was at fault rather than the students, in which case I’ll adjust
the grade cutoffs as I deem appropriate. But I won’t adjust in the other direction; if everyone gets an A,
that’s great.)

If you believe we have misgraded an exam, return it to your TA with a note explaining your complaint.
Only if you are unable to reach an agreement with the TA should you bring the test to me. The TA
will carefully regrade the entire test, so be sure that your score will really improve through this regrading!
By University policy, final exams may not be regraded. They may be viewed at times and places to be
announced.

Incomplete grades will be granted only for dire medical or personal emergencies that cause you to miss
the final, and only if your work up to that point has been satisfactory.

12 Homework and Project Policies and Grading

Homework must be done in groups of exactly 2. That means, one assignment is turned in with both
students names and logins on the first page. Additionally, for the first 6 assignments, you must
CHANGE your partner for successive assignments. That means by the end of the 3rd week of
class you have had 6 different partners! If you do not switch partners, you will receive no credit for that
assignment. After the first 3 weeks, you may choose your own partners at your discretion.

The purpose of the homework is for you to learn the course, not to prove that you already know it.
Therefore, the weekly homeworks are not graded on the correctness of your solutions, but on effort. You will
get more credit for an entirely wrong answer that shows reasonable effort than for a correct solution that
you copied from someone else. (But you should test your work! If your solution is incorrect, the grader will
want to see some evidence that you know it’s incorrect.)

Each homework is worth two points for a reasonable effort on all the problems, one point for some effort,
or zero points for no effort.

Both of each week’s homework assignments are due at 3:00 AM on the following Monday. There are two
ways to turn in assignments: online and on paper. All homework assignments must be turned in online,
and may also optionally be turned in on paper if you would like detailed comments on your work from your
reader.

Paper turnin: There are boxes with slots labelled by course in room 283 Soda Hall. (Don’t put them
in my mailbox or on my office door!) What you turn in should include transcripts showing that you have
tested your solution as appropriate.

8

Online turnin: You must create a directory (you’ll learn how to do that in lab) with the official
assignment name, which will be something like hw3 or proj1. Put in that directory all the files that you want
to turn in. Then, still in that directory, give the shell command submit hw5 (or whatever the assignment
name is). We’ll give more details in the lab.

Keep your graded papers until the semester is over. You may need them in case a grade is entered
incorrectly.

The four programming projects are graded on correctness, as well as on your understanding of your
solution. The first project is to be done individually, the second in a partnership of two, and the last two in
groups of four. The last two projects are larger, and your entire group of four will work on a single solution,
but the problems within each project are divided into two sets, and half of your group will work on each set.

The latter three group projects will probably include face-to-face grading with your reader. The reader
will ask questions of each member of your group, and you will be graded by ALL of your members’ ability
to answer correctly. Therefore, you must work together to ensure that all group members understand the
entire project.

Your group will turn in one copy of each project, with all of your names and logins listed on it. The
programming projects must be turned in online as well as in the homework box; the deadline is usually 3:00
AM on the second Monday after it is assigned (i.e. you have two weeks for each project), but there will be
some exceptions. You’ll get instructions about how to do this when the time comes.

13 Collaborative Learning Policies and Cheating

We encourage collaboration. It is the best way to learn and keep up with the wealth of material you are
expected to cover. At the same time, cheating is not permitted. Sometimes the line between collaboration
and cheating doesn’t seem so easy to articulate, so we’ve tried to come up with very clear and enforceable
rules so that you know what is expected and aren’t uncomfortable collaborating, and at the same time, so
that those who break the rules can be held accountable.

Unlike the homework and projects, the tests in this course must be your own, individual work. I hope
that you will work cooperatively with your friends before the test to help each other prepare by learning the
ideas and skills in the course. But during the test you’re on your own. The EECS Department Policy on
Academic Dishonesty says, “Copying all or part of another person’s work, or using reference materials not
specifically allowed, are forms of cheating and will not be tolerated.” (61A tests are open-book, so reference
materials are okay.) The policy statement goes on to explain the penalties for cheating, which range from a
zero grade for the test up to dismissal from the University, for a second offense.

For the programming projects, copying others’ work, whether from your friend who took the course last
semester or from other current students in other groups is cheating. You will get negative credit for copied
solutions, and repeated offenses will quickly lead to more severe penalties. If you don’t know how to do
something, it’s better to leave it out than to copy someone else’s work. If you do learn something from
someone else, and understand it now, then cite it as theirs. But be prepared to back up that you understand
it, without them around. If you do not cite it, it is considered plagiarism, and is again, cheating.

It is highly unlikely that different people would arrive at the exact same solutions on their own. We
do have programs to test for code similarity – these programs are smart enough to know when only the
variable names have been changed. Don’t cheat–you do a disservice to yourself, to those you copy from, and
ultimately, to the whole course as time is taken away from preparing lectures and answering questions to
deal with cheaters.

For the homework assignments, before you and your partner develop your solutions to the problems you
are encouraged to discuss it with other students, in groups as large or small as you like. When your pair
turns in solutions, you must give credit to any other student(s) who contributed to your work.
This does not mean e.g. 16 of you should turn in precisely the same work. It means that you may talk about
it, work it out, try it, and then each group of 2 writes it up themselves. Working on the homework in groups
is both a good way to learn and a lot more fun! Although the homework is graded on effort rather than on
correctness, if you take the opportunity to discuss the homework with other students then you’ll probably

9

solve every problem correctly.
Since the textbook exercises are largely the same from one semester to the next in this course, you may

be tempted to turn the official published solutions collected by a friend who’s already taken the course.
Don’t do it, for three reasons: First, it’s dishonest. Second, the readers will recognize those solutions and
you’ll get caught. Third, doing the homework is the main way you learn in this course. Read the published
solutions after you struggle with each problem yourself. Again, you are encouraged to talk about your
solutions with others, but you should write it up in pairs, so that both members understand all the solutions
to the problems. If you learned something from another pair, CITE IT, or else it is plagiarism.

In my experience, most students who cheat do so because they fall behind gradually, and then panic at
the last minute. Some students get into this situation because they are afraid of an unpleasant conversation
with an instructor if they admit to not understanding something. I would much rather deal with your
misunderstanding early than deal with its consequences later. Even if the problem is that you spent the
weekend stoned out of your skull instead of doing your homework, please overcome your feelings of guilt and
ask for help as soon as you need it.

If you are still unclear on the cheating policy, ask yourself this: in all of your talking with other students,
did you UNDERSTAND the solution, or did you merely write down what someone else told you? If you
didn’t understand, that you aren’t doing the work yourself– not honestly. Again, it is better to have the
answer wrong, or only partially right than to rely on someone else’s answer. (Often because they too could
be wrong!)

Working cooperatively in groups is a change from the traditional approach in schools, in which students
work either in isolation or in competition. But cooperative learning has become increasingly popular as
educational research has demonstrated its effectiveness. One advantage of cooperative learning is that it
allows us to give intense assignments, from which you’ll learn a great deal, while limiting the workload for
each individual student. Another advantage, of course, is that it helps you to understand new ideas when
you discuss them with other people. Even if you are the “smartest” person in your group, you’ll find that
you learn a lot by discussing the course with other students. For example, in the past some of our best
students have commented that they didn’t really understand the course until they worked as lab assistants
and had to explain the ideas to later students.

What does it mean to do an assignment as a group? The best groups solve each problem together,
making sure that every member contributes to the discussion and that every member understands the
group’s ultimate solution. Your experience in this course will depend on the cooperation of your group more
than anything else!

Second best is if you split up the problems so that each individual solves a few of them. This can be
okay, as long as you then get together, after doing the individual work, to discuss the results and ensure
that each member of the group understands every part of the project. It’s best if your group also discusses
the problems together before you split up to work on individual exercises, to make sure that everyone in the
group understands the broad ideas of the assignment.

A bad group is one in which one group leader does all the work and the other members become spectators.
Computer programming is a skill; you learn it by doing it. If you have a “freeloader” in your group, you’re
not doing him or her a favor! It’s important that everyone be an active participant. Try to resolve any
problems about working style within the group, but if that fails, ask me or your TA for help. As a last
resort, if a member just won’t cooperate, the group can “fire” that member between projects by notifying
the TA, who will help you rearrange group memberships.

If you split up the work, then be sure that your group meets to collect the results before the last minute! If
one group member fails to do the work, the entire group is responsible for ensuring that it gets finished. The
ideal working arrangement is to meet early in the week to plan your tasks for the week, then get together a
day or so later to confirm that everyone is mostly done and solve as a group any problems that the individual
members can’t solve, then meet for a third time early the day before it is due to collect everyone’s work and
solve any last-minute problems.

If some medical or personal emergency takes you away from the course for an extended period, or if you
decide to drop the course for any reason, please don’t just disappear silently! You should inform the other
members of your group, and your TA, so that nobody is depending on you to do something you can’t finish.

10

14 Lateness

A programming project that is not ready by the deadline may be turned in until 24 hours after the due
date. These late projects will count for 2/3 of the earned score. No credit will be given for late homeworks,
or for projects turned in after 24 hours. Please do not beg and plead for exceptions. If some personal crisis
disrupts your schedule one week, don’t waste your time and ours by trying to fake it; just be sure you do
the next week’s work on time.

By the way, if you wait until the night before to do the homework or a project, you will probably
experience some or all of the following: a shortage of available workstations, an unusually slow computer
response, or a file server crash.

15 Lost and Found

When people bring me found items from lecture or lab, I take them to the Computer Science office, 387
Soda. Another place to check for lost items is the campus police office in Sproul Hall.

16 Questions and Answers

Q: Is it true that 61A is the weed-out course for wannabe CS majors?

A: No. The lower division sequence as a whole does determine admission to the major, but no one course is
crucial. More to the point, the work in all of these courses is not designed to be especially hard; the upper
division courses are much harder. The grading policy in 61A is not harsh and is not curved as it would be
if we had weeding out in mind. However, you may take this course as an opportunity to weed yourself out;
if you find that you don’t enjoy the work, perhaps you aren’t a computer scientist at heart.

Q: I am pre-enrolled for this course, and I’m planning to do the homework on my home computer. Do I still
have to pick up a class account and log in by Wednesday to stay in the class?

A: Yes.

Q: I am a transfer student, and I’m pressed for time to fit in all my graduation requirements. I know how
to program. Do I really have to take 61A?

A: Yes, unless you have taken this same course elsewhere. 61A is really very different from the usual first
computer science course. However, your prior experience may well get you out of 61B, which is more nearly
a standard second course. Mike Clancy is in charge of approving course equivalents.

Q: Why don’t we learn some practical language like C++?

A: First of all, Lisp is practical. Of the hundreds of languages that have been invented, Lisp is the second-
oldest survivor, after Fortran. It hasn’t lasted 35 years by being useless. Second, and more important, the
goal of 61A isn’t to teach you a language. The language is just the medium for the ideas in the course, and
Lisp gets in the way less than most languages because it has very little syntax and because you don’t have to
worry about what’s where in the computer memory. (Next semester you’ll learn Java.) Finally, our textbook
is the best computer science book ever written. It happens to use Lisp; if they’d used COBOL, we’d
teach COBOL for the sake of this text.

11

Q: What’s your advice on surviving this course?

A: Two things: Don’t leave the homework and projects until the last minute, and ask for help as soon
as you don’t understand something.

Q: I got the Nobel prize last year, and my uncle is Chancellor of Berkeley. Do I still have to use my class
account by Wednesday Noon to stay in the class?

A: Yes.

Q: I am disabled and need special facilities or arrangements to do the course work. What should I do about
it?

A: If you need special arrangements about class attendance, taking tests, etc., I’ll be glad to accommodate
you; please take the initiative about letting me know what you need. For example, if you want to take
tests separately, that’s fine, as long as you ensure that we’ve worked out the arrangements before the test.
The Disabled Students Program (ext. 2-0518) has voice response terminals from which blind students can
connect to our computers. If English is not your native language, and you have trouble understanding
the course materials or lectures for that reason, please ask for help about that too.

Q: I don’t like (or have a conflict with) my pre-assigned discussion section. Can I switch?

A: You must negotiate this with the TA of the section you want to switch into. Please try to be settled into
a definite section by the second week, when the group assignments will be made.

Q: Isn’t it unfair that my grade depends in part on the performance of the other students in my group?

A: Do you complain about courses that are graded on a curve? It’s very common to find a course in which
your grade is hurt by someone else doing well in the course. If you can accept that, you should be much
happier about an arrangement in which your grade is helped if you can help someone else learn.

In the worst case, you’d be doing it all yourself anyway– here, there’s a lot of help so that you won’t have
to do that. But better still, you can get to know other people in the course; at some point, they will know
something that you don’t, and you’ll have a better chance to make more friends.

Q: Can we form a group with students in other sections?

A: Generally not. One purpose of the scheduled lab meetings is to ensure that your entire group can spend
some time working together with your TA available to help. If you want to be in the same group with a
friend, arrange your schedules so that you can be in the same section. If there’s some special reason why
you think you should be an exception, negotiate with the TA or TAs involved.

Q: I’m thinking about buying a personal computer. What do you recommend?

A: For this course, and in general for computer science courses at Berkeley, you don’t need a computer of
your own at all; you can work in the labs on campus. If you just want to be able to connect to the campus
computers from home, anything with a modem will do. (If you live in certain dorms, there is an Ethernet
connection in your room, and having a computer with an Ethernet adaptor will be very handy.) If you
want to work entirely within your home computer, you can get STk for PC-compatibles or Gambit for the
Macintosh in 387 Soda.

Some of our students, especially the ones with a particular interest in system administration, choose to
run one of the free versions of Unix at home, usually Linux or FreeBSD, but to each their own. Learning to
use some flavor of UNIX takes more effort than using commercial systems, but you learn a lot in the process.

12

Q: One of the other people in my working group never does any work. What should we do about it?

A: First of all, try to find out why. Sometimes people give up because they’re having trouble understanding
something. If that’s the problem, see if you can teach your partner and get him or her back on track. Also,
try to find out what his or her strengths are—how he or she can best contribute to the group’s efforts. But
sometimes people get distracted from coursework for non-academic reasons. If you can’t resolve the problem
within the group, talk with your TA. With your TA’s permission, your group may fire a member between
projects (not during a project). Your TA will generally allow you to fire members who make no effort to
cooperate, but not ones who are trying but having difficulty in the course. (If someone in your group insists
on doing all the work, that also counts as not cooperating.)

Firing a group member is a last resort. On the other hand, if you do have a problem with someone in
your group, you should be sure to resolve it quickly, because we will not accept hard-luck stories at the end
of the semester about how you lost points undeservedly because the other people in your group never did
their share of the work.

Q: What should we call you?

A: ”Kurt” is just fine.

Q: I’m having trouble understanding the assignments. I’ve never had a problem like this in school before.
Does this mean I’m not as good a programmer as I thought, or should I just wait a week or two and see if
things clear up?

A: Neither. THIS COURSE IS CHALLENGING! In some ways, it might be the most challenging CS
course you EVER take as an undergraduate. Most Berkeley students found high school pretty easy, and
for many of you, this course will be the first real intellectual challenge you’ve met. You may have come
to believe that everything should be easy for you. On the contrary; if you find your courses easy, you’re
taking the wrong courses! The whole reason you chose an excellent university was to stretch your mind. (If
you chose Berkeley for the sake of a prestigious diploma, maybe you should consider majoring in Business
Administration.) There is nothing shameful about asking for help. You will learn a lot even if you do not get
an A+. Every semester a few intelligent students end up in trouble in this course because they’re too proud
to come to office hours with questions. If you wait two weeks before you ask your question, by then you’ll
feel hopelessly behind, because the topics for those two weeks depend on the idea that you don’t understand
now.

17 First Assignments

Read section 1.1 of Abelson and Sussman as soon as possible. By Wednesday, read 1.3 of Abelson and
Sussman. The first homework assignment is due next Monday (check the reader or web site). You must log
into your class account by Wednesday.

13

